Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| import spaces | |
| from PIL import Image | |
| import os | |
| import torch.cuda | |
| import gc | |
| from gradio_client import Client, file | |
| from pipeline_flux_ipa import FluxPipeline | |
| from transformer_flux import FluxTransformer2DModel | |
| from attention_processor import IPAFluxAttnProcessor2_0 | |
| from transformers import AutoProcessor, SiglipVisionModel | |
| from infer_flux_ipa_siglip import MLPProjModel, IPAdapter | |
| from huggingface_hub import hf_hub_download | |
| # Constants | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| image_encoder_path = "google/siglip-so400m-patch14-384" | |
| ipadapter_path = hf_hub_download(repo_id="InstantX/FLUX.1-dev-IP-Adapter", filename="ip-adapter.bin") | |
| transformer = FluxTransformer2DModel.from_pretrained( | |
| "black-forest-labs/FLUX.1-dev", | |
| subfolder="transformer", | |
| torch_dtype=torch.bfloat16 | |
| ) | |
| pipe = FluxPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-dev", | |
| transformer=transformer, | |
| torch_dtype=torch.bfloat16 | |
| ) | |
| ip_model = IPAdapter(pipe, image_encoder_path, ipadapter_path, device="cuda", num_tokens=128) | |
| def clear_gpu_memory(): | |
| """Clear GPU memory and cache""" | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| gc.collect() | |
| def resize_img(image, max_size=1024): | |
| width, height = image.size | |
| scaling_factor = min(max_size / width, max_size / height) | |
| new_width = int(width * scaling_factor) | |
| new_height = int(height * scaling_factor) | |
| return image.resize((new_width, new_height), Image.LANCZOS) | |
| def process_image( | |
| image, | |
| prompt: str, | |
| scale, | |
| seed: int, | |
| randomize_seed: bool, | |
| width: int, | |
| height: int, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| clear_gpu_memory() | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| if image is None: | |
| return None, seed | |
| # Ensure image is a PIL Image | |
| if not isinstance(image, Image.Image): | |
| image = Image.fromarray(image) | |
| image = resize_img(image) | |
| result = ip_model.generate( | |
| pil_image=image, | |
| prompt=prompt, | |
| scale=scale, | |
| width=width, | |
| height=height, | |
| seed=seed | |
| ) | |
| clear_gpu_memory() | |
| return result[0], seed | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, 2000) | |
| return seed | |
| def create_image_sdxl( | |
| image_pil, | |
| prompt: str, | |
| n_prompt: str, | |
| scale, | |
| control_scale, | |
| guidance_scale: float, | |
| num_inference_steps: int, | |
| seed: int, | |
| target: str = "Load only style blocks", | |
| ): | |
| try: | |
| image_pil.save("./tmp.png", format="PNG") | |
| client = Client("Hatman/InstantStyle") | |
| result = client.predict( | |
| image_pil=file("./tmp.png"), | |
| prompt=prompt, | |
| n_prompt=n_prompt, | |
| scale=1, | |
| control_scale=control_scale, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| seed=seed, | |
| target=target, | |
| api_name="/create_image" | |
| ) | |
| return result | |
| except Exception as e: | |
| print(f"Error in create_image_sdxl: {str(e)}") | |
| return None | |
| # UI CSS | |
| css = """ | |
| ::-webkit-scrollbar { | |
| display: none; | |
| } | |
| #component-0 { | |
| max-width: 900px; | |
| margin: 0 auto; | |
| } | |
| .center-markdown { | |
| text-align: center !important; | |
| display: flex !important; | |
| justify-content: center !important; | |
| width: 100% !important; | |
| } | |
| .gradio-row { | |
| display: flex !important; | |
| gap: 1rem !important; | |
| flex-wrap: nowrap !important; | |
| } | |
| .gradio-column { | |
| flex: 1 1 0 !important; | |
| min-width: 0 !important; | |
| } | |
| """ | |
| title = r""" | |
| <h1>InstantStyle Flux & SDXL</h1> | |
| """ | |
| description = r""" | |
| <p>Two different models using the IP Adapter with InstantStyle to preserve style across text-to-image generation.</p> | |
| """ | |
| article = r""" | |
| --- | |
| ```bibtex | |
| @article{wang2024instantstyle, | |
| title={InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation}, | |
| author={Wang, Haofan and Wang, Qixun and Bai, Xu and Qin, Zekui and Chen, Anthony}, | |
| journal={arXiv preprint arXiv:2404.02733}, | |
| year={2024} | |
| } | |
| ``` | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown(title, elem_classes="center-markdown") | |
| gr.Markdown(description, elem_classes="center-markdown") | |
| with gr.Tab("FLUX"): | |
| with gr.Row(): | |
| with gr.Column(scale=1, min_width=300): | |
| input_image = gr.Image( | |
| label="Input Image", | |
| type="pil" | |
| ) | |
| scale = gr.Slider( | |
| label="Image Scale", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.1, | |
| value=0.7, | |
| ) | |
| prompt = gr.Text( | |
| label="Prompt", | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| ) | |
| run_button = gr.Button("Generate", variant="primary") | |
| with gr.Column(scale=1, min_width=300): | |
| result = gr.Image(label="Result") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=42, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=512, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=512, | |
| ) | |
| run_button.click( | |
| fn=process_image, | |
| inputs=[ | |
| input_image, | |
| prompt, | |
| scale, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| with gr.Tab("SDXL"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_pil = gr.Image(label="Style Image", type="pil") | |
| target_radio = gr.Radio( | |
| ["Load only style blocks", "Load only layout blocks", "Load style+layout block", "Load original IP-Adapter"], | |
| value="Load only style blocks", | |
| label="Style mode" | |
| ) | |
| prompt_textbox = gr.Textbox( | |
| label="Prompt", | |
| value="a dog, masterpiece, best quality, high quality" | |
| ) | |
| scale_slider_sdxl = gr.Slider( | |
| minimum=0, | |
| maximum=2.0, | |
| step=0.01, | |
| value=1.0, | |
| label="Scale" | |
| ) | |
| with gr.Accordion(open=False, label="Advanced Options"): | |
| control_scale_slider = gr.Slider( | |
| minimum=0, | |
| maximum=1.0, | |
| step=0.01, | |
| value=0.5, | |
| label="Controlnet conditioning scale" | |
| ) | |
| n_prompt_textbox = gr.Textbox( | |
| label="Neg Prompt", | |
| value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry" | |
| ) | |
| guidance_scale_slider = gr.Slider( | |
| minimum=1, | |
| maximum=15.0, | |
| step=0.01, | |
| value=5.0, | |
| label="guidance scale" | |
| ) | |
| num_inference_steps_slider = gr.Slider( | |
| minimum=5, | |
| maximum=50.0, | |
| step=1.0, | |
| value=20, | |
| label="num inference steps" | |
| ) | |
| seed_slider_sdxl = gr.Slider( | |
| minimum=-1000000, | |
| maximum=1000000, | |
| value=1, | |
| step=1, | |
| label="Seed Value" | |
| ) | |
| randomize_seed_checkbox_sdxl = gr.Checkbox(label="Randomize seed", value=True) | |
| generate_button = gr.Button("Generate Image", variant="primary") | |
| with gr.Column(): | |
| generated_image = gr.Image(label="Generated Image", show_label=False) | |
| generate_button.click( | |
| fn=randomize_seed_fn, | |
| inputs=[seed_slider_sdxl, randomize_seed_checkbox_sdxl], | |
| outputs=seed_slider_sdxl, | |
| queue=False, | |
| api_name=False, | |
| ).then( | |
| fn=create_image_sdxl, | |
| inputs=[ | |
| image_pil, | |
| prompt_textbox, | |
| n_prompt_textbox, | |
| scale_slider_sdxl, | |
| control_scale_slider, | |
| guidance_scale_slider, | |
| num_inference_steps_slider, | |
| seed_slider_sdxl, | |
| target_radio, | |
| ], | |
| outputs=[generated_image] | |
| ) | |
| gr.Markdown(article) | |
| if __name__ == "__main__": | |
| demo.launch( | |
| share=True, | |
| show_error=True, | |
| quiet=False | |
| ) |