Spaces:
Sleeping
Sleeping
Update model.py
Browse files
model.py
CHANGED
|
@@ -52,12 +52,16 @@ def smart_summarize(text, n_clusters=1):
|
|
| 52 |
logging.error(f"Smart summarize error: {e}")
|
| 53 |
return text
|
| 54 |
|
| 55 |
-
# === Emotion Detection ===
|
| 56 |
def detect_emotion(text):
|
| 57 |
try:
|
| 58 |
result = emotion_pipeline(text)
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
except Exception as e:
|
| 62 |
logging.warning(f"Emotion detection failed: {e}")
|
| 63 |
return "neutral"
|
|
@@ -65,9 +69,13 @@ def detect_emotion(text):
|
|
| 65 |
# === Follow-up Q&A ===
|
| 66 |
def answer_followup(text, question, verbosity="brief"):
|
| 67 |
try:
|
|
|
|
|
|
|
| 68 |
if isinstance(question, list):
|
| 69 |
answers = []
|
| 70 |
for q in question:
|
|
|
|
|
|
|
| 71 |
response = qa_pipeline({"question": q, "context": text})
|
| 72 |
ans = response.get("answer", "")
|
| 73 |
answers.append(f"**{q}** → {ans}" if verbosity.lower() == "detailed" else ans)
|
|
@@ -80,6 +88,7 @@ def answer_followup(text, question, verbosity="brief"):
|
|
| 80 |
logging.warning(f"Follow-up error: {e}")
|
| 81 |
return "Sorry, I couldn't generate a follow-up answer."
|
| 82 |
|
|
|
|
| 83 |
def answer_only(text, question):
|
| 84 |
try:
|
| 85 |
if not question:
|
|
@@ -106,10 +115,6 @@ def assess_churn_risk(sentiment_label, emotion_label):
|
|
| 106 |
|
| 107 |
# === Pain Point Extractor ===
|
| 108 |
def extract_pain_points(text):
|
| 109 |
-
"""
|
| 110 |
-
Returns a list of keyword-based user pain points.
|
| 111 |
-
Later you can extend with transformer-based aspect mining (KeyBERT, LLMs).
|
| 112 |
-
"""
|
| 113 |
common_issues = [
|
| 114 |
"slow", "crash", "lag", "expensive", "confusing", "noisy", "poor", "rude",
|
| 115 |
"unhelpful", "bug", "broken", "unresponsive", "not working", "error", "delay", "disconnect"
|
|
|
|
| 52 |
logging.error(f"Smart summarize error: {e}")
|
| 53 |
return text
|
| 54 |
|
| 55 |
+
# === Emotion Detection (Fixed) ===
|
| 56 |
def detect_emotion(text):
|
| 57 |
try:
|
| 58 |
result = emotion_pipeline(text)
|
| 59 |
+
if isinstance(result, list) and len(result) > 0:
|
| 60 |
+
item = result[0]
|
| 61 |
+
if isinstance(item, list): # Nested list case
|
| 62 |
+
return item[0]["label"]
|
| 63 |
+
return item["label"]
|
| 64 |
+
return "neutral"
|
| 65 |
except Exception as e:
|
| 66 |
logging.warning(f"Emotion detection failed: {e}")
|
| 67 |
return "neutral"
|
|
|
|
| 69 |
# === Follow-up Q&A ===
|
| 70 |
def answer_followup(text, question, verbosity="brief"):
|
| 71 |
try:
|
| 72 |
+
if not question:
|
| 73 |
+
return "No question provided."
|
| 74 |
if isinstance(question, list):
|
| 75 |
answers = []
|
| 76 |
for q in question:
|
| 77 |
+
if not q.strip():
|
| 78 |
+
continue
|
| 79 |
response = qa_pipeline({"question": q, "context": text})
|
| 80 |
ans = response.get("answer", "")
|
| 81 |
answers.append(f"**{q}** → {ans}" if verbosity.lower() == "detailed" else ans)
|
|
|
|
| 88 |
logging.warning(f"Follow-up error: {e}")
|
| 89 |
return "Sorry, I couldn't generate a follow-up answer."
|
| 90 |
|
| 91 |
+
# === Direct follow-up route handler ===
|
| 92 |
def answer_only(text, question):
|
| 93 |
try:
|
| 94 |
if not question:
|
|
|
|
| 115 |
|
| 116 |
# === Pain Point Extractor ===
|
| 117 |
def extract_pain_points(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
common_issues = [
|
| 119 |
"slow", "crash", "lag", "expensive", "confusing", "noisy", "poor", "rude",
|
| 120 |
"unhelpful", "bug", "broken", "unresponsive", "not working", "error", "delay", "disconnect"
|