Spaces:
Running
Running
| import os | |
| os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache" | |
| os.environ["HF_HOME"] = "/tmp/hf-home" | |
| import nltk | |
| os.environ["NLTK_DATA"] = "/tmp/nltk_data" | |
| nltk.download("punkt", download_dir="/tmp/nltk_data") | |
| from typing import List, Optional | |
| from pydantic import BaseModel | |
| from transformers import pipeline | |
| # β Extra: Smart Summarization Imports | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| from sklearn.cluster import KMeans | |
| from nltk.tokenize import sent_tokenize | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| import numpy as np | |
| summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") | |
| sentiment_analyzer = pipeline("sentiment-analysis") | |
| # π§ Basic Summarization (Abstractive) | |
| def summarize_review(text): | |
| return summarizer(text, max_length=60, min_length=10, do_sample=False, no_repeat_ngram_size=3)[0]["summary_text"] | |
| # π§ Smart Summarization (Clustered Key Sentences) | |
| def smart_summarize(text, n_clusters=1): | |
| """Improved summarization using clustering on sentence embeddings""" | |
| tokenizer = nltk.tokenize.PunktSentenceTokenizer() # β Use default trained Punkt tokenizer | |
| sentences = tokenizer.tokenize(text) | |
| if len(sentences) <= 1: | |
| return text | |
| vectorizer = TfidfVectorizer(stop_words="english") | |
| tfidf_matrix = vectorizer.fit_transform(sentences) | |
| if len(sentences) <= n_clusters: | |
| return " ".join(sentences) | |
| kmeans = KMeans(n_clusters=n_clusters, random_state=42) | |
| kmeans.fit(tfidf_matrix) | |
| avg = [] | |
| for i in range(n_clusters): | |
| idx = np.where(kmeans.labels_ == i)[0] | |
| if len(idx) == 0: | |
| continue | |
| avg_vector = tfidf_matrix[idx].mean(axis=0).A1.reshape(1, -1) # Convert np.matrix to ndarray | |
| sim = cosine_similarity(avg_vector, tfidf_matrix[idx]) | |
| most_representative_idx = idx[np.argmax(sim)] | |
| avg.append(sentences[most_representative_idx]) | |
| return " ".join(sorted(avg, key=sentences.index)) | |
| # π Sentiment Detection | |
| def analyze_sentiment(text): | |
| result = sentiment_analyzer(text)[0] | |
| label = result["label"] | |
| score = result["score"] | |
| if "star" in label: | |
| stars = int(label[0]) | |
| if stars <= 2: | |
| label = "NEGATIVE" | |
| elif stars == 3: | |
| label = "NEUTRAL" | |
| else: | |
| label = "POSITIVE" | |
| return { | |
| "label": label, | |
| "score": score | |
| } | |
| # π₯ Emotion Detection (heuristic-based) | |
| def detect_emotion(text): | |
| text_lower = text.lower() | |
| if "angry" in text_lower or "hate" in text_lower: | |
| return "anger" | |
| elif "happy" in text_lower or "love" in text_lower: | |
| return "joy" | |
| elif "sad" in text_lower or "disappointed" in text_lower: | |
| return "sadness" | |
| elif "confused" in text_lower or "unclear" in text_lower: | |
| return "confusion" | |
| else: | |
| return "neutral" | |
| # π§© Aspect-Based Sentiment (mock) | |
| def extract_aspect_sentiment(text, aspects: list): | |
| results = {} | |
| text_lower = text.lower() | |
| for asp in aspects: | |
| label = "positive" if asp in text_lower and "not" not in text_lower else "neutral" | |
| results[asp] = { | |
| "label": label, | |
| "confidence": 0.85 | |
| } | |
| return results | |
| # β Pydantic Schemas for FastAPI | |
| class ReviewInput(BaseModel): | |
| text: str | |
| model: str = "distilbert-base-uncased-finetuned-sst-2-english" | |
| industry: str = "Generic" | |
| aspects: bool = False | |
| follow_up: Optional[str] = None | |
| product_category: Optional[str] = None | |
| device: Optional[str] = None | |
| class BulkReviewInput(BaseModel): | |
| reviews: List[str] | |
| model: str = "distilbert-base-uncased-finetuned-sst-2-english" | |
| industry: str = "Generic" | |
| aspects: bool = False | |
| product_category: Optional[str] = None | |
| device: Optional[str] = None | |
| class TranslationInput(BaseModel): | |
| text: str | |
| target_lang: str = "fr" | |
| class ChatInput(BaseModel): | |
| question: str | |
| context: str |