Spaces:
Runtime error
Runtime error
Odulana Hammed
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,49 +1,51 @@
|
|
| 1 |
-
import
|
| 2 |
-
from transformers import AutoProcessor, MllamaForConditionalGeneration
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
-
import
|
| 6 |
import spaces
|
| 7 |
|
| 8 |
-
#
|
| 9 |
ckpt = "alpindale/Llama-3.2-11B-Vision-Instruct"
|
| 10 |
-
model = MllamaForConditionalGeneration.from_pretrained(
|
|
|
|
|
|
|
|
|
|
| 11 |
processor = AutoProcessor.from_pretrained(ckpt)
|
| 12 |
|
| 13 |
-
# Define the function to extract text from the image
|
| 14 |
@spaces.GPU
|
| 15 |
-
def
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
| 38 |
|
|
|
|
| 39 |
demo = gr.Interface(
|
| 40 |
-
fn=
|
| 41 |
-
inputs=gr.Image(type="
|
| 42 |
outputs=gr.Textbox(label="Extracted Text"),
|
| 43 |
-
title=
|
| 44 |
-
description=
|
| 45 |
-
live=False # Disable live updates since the extraction will happen after the user submits
|
| 46 |
)
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
|
|
|
| 1 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
|
|
|
| 2 |
from PIL import Image
|
| 3 |
import torch
|
| 4 |
+
import gradio as gr
|
| 5 |
import spaces
|
| 6 |
|
| 7 |
+
# Initialize model and processor
|
| 8 |
ckpt = "alpindale/Llama-3.2-11B-Vision-Instruct"
|
| 9 |
+
model = MllamaForConditionalGeneration.from_pretrained(
|
| 10 |
+
ckpt,
|
| 11 |
+
torch_dtype=torch.bfloat16
|
| 12 |
+
).to("cuda")
|
| 13 |
processor = AutoProcessor.from_pretrained(ckpt)
|
| 14 |
|
|
|
|
| 15 |
@spaces.GPU
|
| 16 |
+
def extract_text(image):
|
| 17 |
+
# Convert image to RGB
|
| 18 |
+
image = Image.open(image).convert("RGB")
|
| 19 |
+
|
| 20 |
+
# Create message structure
|
| 21 |
+
messages = [
|
| 22 |
+
{
|
| 23 |
+
"role": "user",
|
| 24 |
+
"content": [
|
| 25 |
+
{"type": "text", "text": "Extract handwritten text from the image"},
|
| 26 |
+
{"type": "image"}
|
| 27 |
+
]
|
| 28 |
+
}
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
# Process input
|
| 32 |
+
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 33 |
+
inputs = processor(text=texts, images=[image], return_tensors="pt").to("cuda")
|
| 34 |
+
|
| 35 |
+
# Generate output
|
| 36 |
+
outputs = model.generate(**inputs, max_new_tokens=250)
|
| 37 |
+
result = processor.decode(outputs[0], skip_special_tokens=True)
|
| 38 |
+
|
| 39 |
+
return result
|
| 40 |
|
| 41 |
+
# Create Gradio interface
|
| 42 |
demo = gr.Interface(
|
| 43 |
+
fn=extract_text,
|
| 44 |
+
inputs=gr.Image(type="filepath", label="Upload Image"),
|
| 45 |
outputs=gr.Textbox(label="Extracted Text"),
|
| 46 |
+
title="Handwritten Text Extractor",
|
| 47 |
+
description="Upload an image containing handwritten text to extract its content.",
|
|
|
|
| 48 |
)
|
| 49 |
|
| 50 |
+
# Launch the app
|
| 51 |
+
demo.launch(debug=True)
|