Spaces:
Runtime error
Runtime error
| #SBATCH --job-name=pegasus-base_last # create a short name for your job | |
| #SBATCH --nodes=1 # node count | |
| #SBATCH --ntasks-per-node=8 # number of tasks to run per node | |
| #SBATCH --cpus-per-task=30 # cpu-cores per task (>1 if multi-threaded tasks) | |
| #SBATCH --gres=gpu:8 # number of gpus per node | |
| #SBATCH -o %x-%j.log # output and error log file names (%x for job id) | |
| set -x -e | |
| echo "START TIME: $(date)" | |
| MODEL_NAME=pegasus-base_test | |
| config_json="./$MODEL_NAME.ds_config.json" | |
| export MASTER_PORT=$[RANDOM%10000+40000] | |
| MICRO_BATCH_SIZE=4 | |
| # Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size() | |
| cat <<EOT > $config_json | |
| { | |
| "zero_optimization": { | |
| "stage": 1 | |
| }, | |
| "fp16": { | |
| "enabled": true, | |
| "loss_scale": 0, | |
| "loss_scale_window": 1000, | |
| "initial_scale_power": 16, | |
| "hysteresis": 2, | |
| "min_loss_scale": 1 | |
| }, | |
| "optimizer": { | |
| "params": { | |
| "betas": [ | |
| 0.9, | |
| 0.999 | |
| ], | |
| "eps": 1e-08, | |
| "lr": 1e-04, | |
| "weight_decay": 0.01 | |
| }, | |
| "type": "Adam" | |
| }, | |
| "scheduler": { | |
| "params": { | |
| "warmup_max_lr": 1e-04, | |
| "warmup_min_lr": 1e-05, | |
| "total_num_steps": 80000000, | |
| "warmup_num_steps" : 50000 | |
| }, | |
| "type": "WarmupDecayLR" | |
| }, | |
| "steps_per_print": 100, | |
| "gradient_clipping": 1, | |
| "train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE, | |
| "zero_allow_untested_optimizer": false | |
| } | |
| EOT | |
| export PL_DEEPSPEED_CONFIG_PATH=$config_json | |
| export TORCH_EXTENSIONS_DIR=/cognitive_comp/dongxiaoqun/torch_extendsions | |
| DATA_ARGS="\ | |
| --datasets_name wudao_180g_512 \ | |
| --num_workers 20 \ | |
| --train_batchsize $MICRO_BATCH_SIZE \ | |
| --val_batchsize 8 \ | |
| --test_batchsize 8 \ | |
| --max_seq_length 512 \ | |
| --val_datasets_field valid \ | |
| " | |
| MODEL_ARGS="\ | |
| --model_path /cognitive_comp/dongxiaoqun/pretrained_model/pegasus-base/ \ | |
| --learning_rate 1e-5 \ | |
| --weight_decay 0.1 \ | |
| --warmup_ratio 0.001 \ | |
| " | |
| MODEL_CHECKPOINT_ARGS="\ | |
| --monitor train_loss \ | |
| --save_top_k 3 \ | |
| --mode min \ | |
| --every_n_train_steps 200 \ | |
| --dirpath /cognitive_comp/dongxiaoqun/train_model/fengshen-$MODEL_NAME_debug/ckpt \ | |
| --filename model-{step:02d}-{train_loss:.4f} \ | |
| --save_last \ | |
| " | |
| TRAINER_ARGS="\ | |
| --gradient_clip_val 1.0 \ | |
| --max_epochs 1 \ | |
| --gpus 2 \ | |
| --num_nodes 1 \ | |
| --strategy ddp \ | |
| --log_every_n_steps 100 \ | |
| --val_check_interval 0.1 \ | |
| --accumulate_grad_batches 8 \ | |
| --default_root_dir /cognitive_comp/dongxiaoqun/train_model/fengshen-$MODEL_NAME_debug \ | |
| --stopword_path /cognitive_comp/dongxiaoqun/pretrained_model/pegasus-large/stopwords \ | |
| " | |
| export options=" \ | |
| $DATA_ARGS \ | |
| $MODEL_ARGS \ | |
| $MODEL_CHECKPOINT_ARGS \ | |
| $TRAINER_ARGS \ | |
| " | |
| SINGULARITY_PATH=/cognitive_comp/dongxiaoqun/software/docker/pytorch21_06_py3_docker_image_v2.sif | |
| export SCRIPT_PATH=/cognitive_comp/dongxiaoqun/project/idea-ccnl/bug_fix/Fengshenbang-LM/fengshen/examples/pegasus/pretrain_pegasus.py | |
| # python $SCRIPT_PATH $options | |
| source activate | |
| conda activate torchnew | |
| srun --nodes=1 --ntasks-per-node=1 --gres=gpu:2 --cpus-per-task=30 -o ${MODEL_NAME}-%J.log --jobid=226191 bash -c 'python3 $SCRIPT_PATH $options' | |