Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import cv2
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
-
import spaces
|
| 6 |
import torch
|
| 7 |
import torch.nn.functional as F
|
| 8 |
from torchvision.transforms import Compose
|
|
@@ -21,7 +21,6 @@ css = """
|
|
| 21 |
#img-display-output {
|
| 22 |
max-height: 80vh;
|
| 23 |
}
|
| 24 |
-
|
| 25 |
"""
|
| 26 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 27 |
model = DPT_DINOv2(encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024]).to(DEVICE).eval()
|
|
@@ -29,7 +28,6 @@ model.load_state_dict(torch.load('checkpoints/depth_anything_vitl14.pth'))
|
|
| 29 |
|
| 30 |
title = "# Depth Anything"
|
| 31 |
description = """Official demo for **Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data**.
|
| 32 |
-
|
| 33 |
Please refer to our [paper](), [project page](https://depth-anything.github.io), or [github](https://github.com/LiheYoung/Depth-Anything) for more details."""
|
| 34 |
|
| 35 |
transform = Compose([
|
|
@@ -47,7 +45,6 @@ transform = Compose([
|
|
| 47 |
])
|
| 48 |
|
| 49 |
|
| 50 |
-
@spaces.GPU
|
| 51 |
@torch.no_grad()
|
| 52 |
def predict_depth(model, image):
|
| 53 |
return model(image)
|
|
@@ -85,9 +82,13 @@ with gr.Blocks(css=css) as demo:
|
|
| 85 |
return [colored_depth, tmp.name]
|
| 86 |
|
| 87 |
submit.click(on_submit, inputs=[input_image], outputs=[depth_image, raw_file])
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
|
| 92 |
if __name__ == '__main__':
|
| 93 |
demo.queue().launch()
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import cv2
|
| 3 |
import numpy as np
|
| 4 |
+
import os
|
| 5 |
from PIL import Image
|
|
|
|
| 6 |
import torch
|
| 7 |
import torch.nn.functional as F
|
| 8 |
from torchvision.transforms import Compose
|
|
|
|
| 21 |
#img-display-output {
|
| 22 |
max-height: 80vh;
|
| 23 |
}
|
|
|
|
| 24 |
"""
|
| 25 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 26 |
model = DPT_DINOv2(encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024]).to(DEVICE).eval()
|
|
|
|
| 28 |
|
| 29 |
title = "# Depth Anything"
|
| 30 |
description = """Official demo for **Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data**.
|
|
|
|
| 31 |
Please refer to our [paper](), [project page](https://depth-anything.github.io), or [github](https://github.com/LiheYoung/Depth-Anything) for more details."""
|
| 32 |
|
| 33 |
transform = Compose([
|
|
|
|
| 45 |
])
|
| 46 |
|
| 47 |
|
|
|
|
| 48 |
@torch.no_grad()
|
| 49 |
def predict_depth(model, image):
|
| 50 |
return model(image)
|
|
|
|
| 82 |
return [colored_depth, tmp.name]
|
| 83 |
|
| 84 |
submit.click(on_submit, inputs=[input_image], outputs=[depth_image, raw_file])
|
| 85 |
+
|
| 86 |
+
example_files = os.listdir('examples')
|
| 87 |
+
example_files.sort()
|
| 88 |
+
example_files = [os.path.join('examples', filename) for filename in example_files]
|
| 89 |
+
examples = gr.Examples(examples=example_files, inputs=[input_image])
|
| 90 |
|
| 91 |
|
| 92 |
if __name__ == '__main__':
|
| 93 |
demo.queue().launch()
|
| 94 |
+
|