Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,12 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
|
|
|
| 3 |
from torchvision.transforms import Compose
|
| 4 |
import tempfile
|
| 5 |
-
from PIL import Image
|
| 6 |
-
import numpy as np
|
| 7 |
-
import cv2
|
| 8 |
-
import torch.nn.functional as F
|
| 9 |
|
| 10 |
from depth_anything.dpt import DPT_DINOv2
|
| 11 |
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
|
|
@@ -45,6 +46,11 @@ transform = Compose([
|
|
| 45 |
PrepareForNet(),
|
| 46 |
])
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
with gr.Blocks(css=css) as demo:
|
| 49 |
gr.Markdown(title)
|
| 50 |
gr.Markdown(description)
|
|
@@ -63,9 +69,8 @@ with gr.Blocks(css=css) as demo:
|
|
| 63 |
image = transform({'image': image})['image']
|
| 64 |
image = torch.from_numpy(image).unsqueeze(0).to(DEVICE)
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0]
|
| 69 |
|
| 70 |
raw_depth = Image.fromarray(depth.cpu().numpy().astype('uint16'))
|
| 71 |
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
import torch
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
from torchvision.transforms import Compose
|
| 9 |
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
from depth_anything.dpt import DPT_DINOv2
|
| 12 |
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
|
|
|
|
| 46 |
PrepareForNet(),
|
| 47 |
])
|
| 48 |
|
| 49 |
+
@spaces.GPU
|
| 50 |
+
def predict_depth(model, image):
|
| 51 |
+
with torch.no_grad():
|
| 52 |
+
return model(image)
|
| 53 |
+
|
| 54 |
with gr.Blocks(css=css) as demo:
|
| 55 |
gr.Markdown(title)
|
| 56 |
gr.Markdown(description)
|
|
|
|
| 69 |
image = transform({'image': image})['image']
|
| 70 |
image = torch.from_numpy(image).unsqueeze(0).to(DEVICE)
|
| 71 |
|
| 72 |
+
depth = predict_depth(model, image)
|
| 73 |
+
depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0]
|
|
|
|
| 74 |
|
| 75 |
raw_depth = Image.fromarray(depth.cpu().numpy().astype('uint16'))
|
| 76 |
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|