Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import cv2
|
|
| 3 |
import numpy as np
|
| 4 |
import os
|
| 5 |
from PIL import Image
|
|
|
|
| 6 |
import torch
|
| 7 |
import torch.nn.functional as F
|
| 8 |
from torchvision.transforms import Compose
|
|
@@ -24,11 +25,11 @@ css = """
|
|
| 24 |
}
|
| 25 |
"""
|
| 26 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 27 |
-
|
|
|
|
| 28 |
|
| 29 |
title = "# Depth Anything"
|
| 30 |
description = """Official demo for **Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data**.
|
| 31 |
-
|
| 32 |
Please refer to our [paper](https://arxiv.org/abs/2401.10891), [project page](https://depth-anything.github.io), or [github](https://github.com/LiheYoung/Depth-Anything) for more details."""
|
| 33 |
|
| 34 |
transform = Compose([
|
|
@@ -45,54 +46,53 @@ transform = Compose([
|
|
| 45 |
PrepareForNet(),
|
| 46 |
])
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
@torch.no_grad()
|
| 51 |
def predict_depth(model, image):
|
| 52 |
return model(image)
|
| 53 |
|
|
|
|
| 54 |
with gr.Blocks(css=css) as demo:
|
| 55 |
gr.Markdown(title)
|
| 56 |
gr.Markdown(description)
|
| 57 |
gr.Markdown("### Depth Prediction demo")
|
| 58 |
gr.Markdown("You can slide the output to compare the depth prediction with input image")
|
| 59 |
|
| 60 |
-
with gr.
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
submit = gr.Button("Submit")
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
|
| 70 |
-
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
|
| 87 |
-
|
| 88 |
|
| 89 |
-
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
|
| 96 |
|
| 97 |
if __name__ == '__main__':
|
| 98 |
-
demo.queue().launch()
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import os
|
| 5 |
from PIL import Image
|
| 6 |
+
import spaces
|
| 7 |
import torch
|
| 8 |
import torch.nn.functional as F
|
| 9 |
from torchvision.transforms import Compose
|
|
|
|
| 25 |
}
|
| 26 |
"""
|
| 27 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 28 |
+
encoder = 'vitl' # can also be 'vitb' or 'vitl'
|
| 29 |
+
model = DepthAnything.from_pretrained(f"LiheYoung/depth_anything_{encoder}14").to(DEVICE).eval()
|
| 30 |
|
| 31 |
title = "# Depth Anything"
|
| 32 |
description = """Official demo for **Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data**.
|
|
|
|
| 33 |
Please refer to our [paper](https://arxiv.org/abs/2401.10891), [project page](https://depth-anything.github.io), or [github](https://github.com/LiheYoung/Depth-Anything) for more details."""
|
| 34 |
|
| 35 |
transform = Compose([
|
|
|
|
| 46 |
PrepareForNet(),
|
| 47 |
])
|
| 48 |
|
| 49 |
+
@spaces.GPU
|
|
|
|
| 50 |
@torch.no_grad()
|
| 51 |
def predict_depth(model, image):
|
| 52 |
return model(image)
|
| 53 |
|
| 54 |
+
|
| 55 |
with gr.Blocks(css=css) as demo:
|
| 56 |
gr.Markdown(title)
|
| 57 |
gr.Markdown(description)
|
| 58 |
gr.Markdown("### Depth Prediction demo")
|
| 59 |
gr.Markdown("You can slide the output to compare the depth prediction with input image")
|
| 60 |
|
| 61 |
+
with gr.Row():
|
| 62 |
+
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
|
| 63 |
+
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5,)
|
| 64 |
+
raw_file = gr.File(label="16-bit raw depth (can be considered as disparity)")
|
| 65 |
+
submit = gr.Button("Submit")
|
|
|
|
| 66 |
|
| 67 |
+
def on_submit(image):
|
| 68 |
+
original_image = image.copy()
|
| 69 |
|
| 70 |
+
h, w = image.shape[:2]
|
| 71 |
|
| 72 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
|
| 73 |
+
image = transform({'image': image})['image']
|
| 74 |
+
image = torch.from_numpy(image).unsqueeze(0).to(DEVICE)
|
| 75 |
|
| 76 |
+
depth = predict_depth(model, image)
|
| 77 |
+
depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0]
|
| 78 |
|
| 79 |
+
raw_depth = Image.fromarray(depth.cpu().numpy().astype('uint16'))
|
| 80 |
+
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|
| 81 |
+
raw_depth.save(tmp.name)
|
| 82 |
|
| 83 |
+
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|
| 84 |
+
depth = depth.cpu().numpy().astype(np.uint8)
|
| 85 |
+
colored_depth = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)[:, :, ::-1]
|
| 86 |
|
| 87 |
+
return [(original_image, colored_depth), tmp.name]
|
| 88 |
|
| 89 |
+
submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider, raw_file])
|
| 90 |
|
| 91 |
+
example_files = os.listdir('examples')
|
| 92 |
+
example_files.sort()
|
| 93 |
+
example_files = [os.path.join('examples', filename) for filename in example_files]
|
| 94 |
+
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider, raw_file], fn=on_submit, cache_examples=True)
|
| 95 |
|
| 96 |
|
| 97 |
if __name__ == '__main__':
|
| 98 |
+
demo.queue().launch()
|