Update tasks/image.py
Browse files- tasks/image.py +36 -20
tasks/image.py
CHANGED
|
@@ -36,6 +36,29 @@ model = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobile
|
|
| 36 |
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
| 37 |
model.eval()
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
def preprocess(image):
|
| 40 |
# Ensure input image is resized to a fixed size (512, 512)
|
| 41 |
image = image.resize((512, 512))
|
|
@@ -153,39 +176,32 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
| 153 |
# YOUR MODEL INFERENCE CODE HERE
|
| 154 |
# Update the code below to replace the random baseline with your model inference
|
| 155 |
#--------------------------------------------------------------------------------------------
|
| 156 |
-
|
| 157 |
-
dataloader = DataLoader(
|
| 158 |
|
| 159 |
predictions = []
|
| 160 |
true_labels = []
|
| 161 |
pred_boxes = []
|
| 162 |
true_boxes_list = []
|
| 163 |
|
| 164 |
-
for
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
annotations = [example.get("annotations", "").strip() for example in batch_examples]
|
| 168 |
-
|
| 169 |
-
has_smoke_list = [len(annotation) > 0 for annotation in annotations]
|
| 170 |
-
true_labels.extend([1 if has_smoke else 0 for has_smoke in has_smoke_list])
|
| 171 |
-
|
| 172 |
-
# Preprocess images and extract features
|
| 173 |
-
preprocessed_images = preprocess_batch(images)
|
| 174 |
-
image_inputs = feature_extractor(images=preprocessed_images, return_tensors="pt", padding=True).pixel_values
|
| 175 |
-
|
| 176 |
# Perform inference
|
| 177 |
with torch.no_grad():
|
| 178 |
outputs = model(pixel_values=image_inputs)
|
| 179 |
logits = outputs.logits
|
| 180 |
-
|
| 181 |
-
# Threshold and process the segmentation masks
|
| 182 |
probabilities = torch.sigmoid(logits)
|
| 183 |
batch_predicted_masks = (probabilities[:, 1, :, :] > 0.30).cpu().numpy().astype(np.uint8)
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
|
|
|
| 188 |
pred_boxes.append(predicted_boxes)
|
|
|
|
|
|
|
| 189 |
|
| 190 |
# Append smoke detection based on bounding boxes
|
| 191 |
predictions.append(1 if len(predicted_boxes) > 0 else 0)
|
|
|
|
| 36 |
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
| 37 |
model.eval()
|
| 38 |
|
| 39 |
+
from torch.utils.data import Dataset
|
| 40 |
+
|
| 41 |
+
class SmokeDataset(Dataset):
|
| 42 |
+
def __init__(self, dataset):
|
| 43 |
+
self.dataset = dataset
|
| 44 |
+
|
| 45 |
+
def __len__(self):
|
| 46 |
+
return len(self.dataset)
|
| 47 |
+
|
| 48 |
+
def __getitem__(self, idx):
|
| 49 |
+
example = self.dataset[idx]
|
| 50 |
+
image = example["image"]
|
| 51 |
+
annotation = example.get("annotations", "").strip()
|
| 52 |
+
|
| 53 |
+
# Resize and preprocess the image directly here
|
| 54 |
+
image = image.resize((512, 512))
|
| 55 |
+
image = np.array(image)[:, :, ::-1] # Convert RGB to BGR
|
| 56 |
+
image = np.array(image, dtype=np.float32) / 255.0
|
| 57 |
+
|
| 58 |
+
# Return both the preprocessed image and annotation
|
| 59 |
+
return torch.tensor(image).permute(2, 0, 1), annotation
|
| 60 |
+
|
| 61 |
+
|
| 62 |
def preprocess(image):
|
| 63 |
# Ensure input image is resized to a fixed size (512, 512)
|
| 64 |
image = image.resize((512, 512))
|
|
|
|
| 176 |
# YOUR MODEL INFERENCE CODE HERE
|
| 177 |
# Update the code below to replace the random baseline with your model inference
|
| 178 |
#--------------------------------------------------------------------------------------------
|
| 179 |
+
smoke_dataset = SmokeDataset(test_dataset)
|
| 180 |
+
dataloader = DataLoader(smoke_dataset, batch_size=16, shuffle=False)
|
| 181 |
|
| 182 |
predictions = []
|
| 183 |
true_labels = []
|
| 184 |
pred_boxes = []
|
| 185 |
true_boxes_list = []
|
| 186 |
|
| 187 |
+
for batch_images, batch_annotations in dataloader:
|
| 188 |
+
image_inputs = feature_extractor(images=batch_images, return_tensors="pt", padding=True).pixel_values
|
| 189 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
# Perform inference
|
| 191 |
with torch.no_grad():
|
| 192 |
outputs = model(pixel_values=image_inputs)
|
| 193 |
logits = outputs.logits
|
| 194 |
+
|
|
|
|
| 195 |
probabilities = torch.sigmoid(logits)
|
| 196 |
batch_predicted_masks = (probabilities[:, 1, :, :] > 0.30).cpu().numpy().astype(np.uint8)
|
| 197 |
+
|
| 198 |
+
# Post-process predictions and compute metrics
|
| 199 |
+
for mask, annotation in zip(batch_predicted_masks, batch_annotations):
|
| 200 |
+
predicted_mask_resized = cv2.resize(mask, (512, 512), interpolation=cv2.INTER_NEAREST)
|
| 201 |
+
predicted_boxes = get_bounding_boxes_from_mask(predicted_mask_resized)
|
| 202 |
pred_boxes.append(predicted_boxes)
|
| 203 |
+
predictions.append(1 if len(predicted_boxes) > 0 else 0)
|
| 204 |
+
true_labels.append(1 if annotation else 0)
|
| 205 |
|
| 206 |
# Append smoke detection based on bounding boxes
|
| 207 |
predictions.append(1 if len(predicted_boxes) > 0 else 0)
|