diff --git a/.dockerignore b/.dockerignore new file mode 100644 index 0000000000000000000000000000000000000000..4dcfcfeca16e22dd8d62d11094a6fe3eead40a4c --- /dev/null +++ b/.dockerignore @@ -0,0 +1,57 @@ +# Version control +.git +.gitignore + +# Python +__pycache__/ +*.py[cod] +*$py.class +*.so +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +share/python-wheels/ +*.egg-info/ +.installed.cfg +*.egg + +# Virtual environments +.env* +!.env.example +.venv +env/ +venv/ +ENV/ + +# IDE +.idea/ +.vscode/ +*.swp +*.swo + +# Testing +.tox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +.hypothesis/ +.pytest_cache/ + +# Project specific +nltk_data/ +.pdm-python +.pdm.toml +__pypackages__/ \ No newline at end of file diff --git a/.env.local.template b/.env.local.template new file mode 100644 index 0000000000000000000000000000000000000000..56d92ed0183eeb224729c29c75d8da6c575be599 --- /dev/null +++ b/.env.local.template @@ -0,0 +1,54 @@ +# ============================================================================= +# LOCAL/API CONFIGURATION +# ============================================================================= + +# ----------------------------------------------------------------------------- +# REQUIRED CONFIGURATION +# ----------------------------------------------------------------------------- +# Hugging Face token (required for all setups) +HF_TOKEN=hf_... + +# Generation Settings +MAX_NUM_TOKENS=2048 +MAX_NUM_ROWS=1000 +DEFAULT_BATCH_SIZE=5 + +# Required for chat data generation with Llama or Qwen models +# Options: "llama3", "qwen2", or custom template string +MAGPIE_PRE_QUERY_TEMPLATE=llama3 + +# ----------------------------------------------------------------------------- +# A. CLOUD API SERVICES +# ----------------------------------------------------------------------------- + +# 1. HUGGING FACE INFERENCE API (Default, Recommended) +MODEL=meta-llama/Llama-3.1-8B-Instruct +# MODEL=Qwen/Qwen2.5-1.5B-Instruct + +# 2. OPENAI API +# OPENAI_BASE_URL=https://api.openai.com/v1/ +# MODEL=gpt-4 +# API_KEY=sk-... + +# 3. HUGGING FACE SPACE FOR ARGILLA (optional) +# ARGILLA_API_URL=https://your-space.hf.space/ +# ARGILLA_API_KEY=your_key + +# ----------------------------------------------------------------------------- +# B. LOCAL SERVICES (Requires Installation) +# ----------------------------------------------------------------------------- + +# 1. LOCAL OLLAMA +# OLLAMA_BASE_URL=http://127.0.0.1:11434/ +# MODEL=llama3.2:1b +# TOKENIZER_ID=meta-llama/Llama-3.2-1B-Instruct + +# 2. LOCAL VLLM +# VLLM_BASE_URL=http://127.0.0.1:8000/ +# MODEL=Qwen/Qwen2.5-1.5B-Instruct +# TOKENIZER_ID=Qwen/Qwen2.5-1.5B-Instruct + +# 3. LOCAL TGI +# HUGGINGFACE_BASE_URL=http://127.0.0.1:3000/ +# MODEL=meta-llama/Llama-3.1-8B-Instruct +# TOKENIZER_ID=meta-llama/Llama-3.1-8B-Instruct diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..0f1a7033cf76ef468e0c7c5622f0bde87a8bda1b 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +assets/flow.png filter=lfs diff=lfs merge=lfs -text +*.sh text eol=lf +assets/argilla.png filter=lfs diff=lfs merge=lfs -text +assets/ui-full.png filter=lfs diff=lfs merge=lfs -text +assets/ui.png filter=lfs diff=lfs merge=lfs -text diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..ba21e58da821e5533e1af324794e5afa7b9f19b9 --- /dev/null +++ b/.gitignore @@ -0,0 +1,173 @@ +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +share/python-wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.nox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +*.py,cover +.hypothesis/ +.pytest_cache/ +cover/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 +db.sqlite3-journal + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +.pybuilder/ +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# IPython +profile_default/ +ipython_config.py + +# pyenv +# For a library or package, you might want to ignore these files since the code is +# intended to run in multiple environments; otherwise, check them in: +# .python-version + +# pipenv +# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. +# However, in case of collaboration, if having platform-specific dependencies or dependencies +# having no cross-platform support, pipenv may install dependencies that don't work, or not +# install all needed dependencies. +#Pipfile.lock + +# poetry +# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. +# This is especially recommended for binary packages to ensure reproducibility, and is more +# commonly ignored for libraries. +# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control +#poetry.lock + +# pdm +# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control. +#pdm.lock +# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it +# in version control. +# https://pdm-project.org/#use-with-ide +.pdm.toml +.pdm-python +.pdm-build/ + +# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm +__pypackages__/ + +# Celery stuff +celerybeat-schedule +celerybeat.pid + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ +.python-version + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ +.dmypy.json +dmypy.json + +# Pyre type checker +.pyre/ + +# pytype static type analyzer +.pytype/ + +# Cython debug symbols +cython_debug/ + +# PyCharm +# JetBrains specific template is maintained in a separate JetBrains.gitignore that can +# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore +# and can be added to the global gitignore or merged into this file. For a more nuclear +# option (not recommended) you can uncomment the following to ignore the entire idea folder. +#.idea/ +.DS_Store + +# nltk +nltk_data/ + +# examples +models/ + +# Elasticsearch data +elasticsearch_data/ \ No newline at end of file diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..f49a4e16e68b128803cc2dcea614603632b04eac --- /dev/null +++ b/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. \ No newline at end of file diff --git a/README.md b/README.md index ac226898c58c52ece91af68456ab46388e260b6a..fd31fb37e6956285a1c6f62bc47eefcd3fe20425 100644 --- a/README.md +++ b/README.md @@ -1,10 +1,172 @@ --- title: Synthetic Data Generator -emoji: 🐠 -colorFrom: blue -colorTo: blue -sdk: docker -pinned: false +short_description: Build datasets using natural language +emoji: 🧬 +colorFrom: yellow +colorTo: pink +sdk: gradio +sdk_version: 5.8.0 +app_file: app.py +pinned: true +license: apache-2.0 +hf_oauth: true +#header: mini +hf_oauth_scopes: +- read-repos +- write-repos +- manage-repos +- inference-api --- -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference +> [!IMPORTANT] +The original authors have moved on to other projects. While the code might still be functional for its original purpose, please be aware that the original team does not plan to develop new features, bug fixes, or updates. If you'd like to become a maintainer, please open an issue to discuss. +> +> +
+ +

+ Synthetic Data Generator Logo +

+

Build datasets using natural language

+ +![Synthetic Data Generator](https://huggingface.co/spaces/argilla/synthetic-data-generator/resolve/main/assets/ui-full.png) + +## Introduction + +Synthetic Data Generator is a tool that allows you to create high-quality datasets for training and fine-tuning language models. It leverages the power of distilabel and LLMs to generate synthetic data tailored to your specific needs. [The announcement blog](https://huggingface.co/blog/synthetic-data-generator) goes over a practical example of how to use it but you can also watch the [video](https://www.youtube.com/watch?v=nXjVtnGeEss) to see it in action. + +Supported Tasks: + +- Text Classification +- Chat Data for Supervised Fine-Tuning +- Retrieval Augmented Generation + +This tool simplifies the process of creating custom datasets, enabling you to: + +- Describe the characteristics of your desired application +- Iterate on sample datasets +- Produce full-scale datasets +- Push your datasets to the [Hugging Face Hub](https://huggingface.co/datasets?other=datacraft) and/or [Argilla](https://docs.argilla.io/) + +By using the Synthetic Data Generator, you can rapidly prototype and create datasets for, accelerating your AI development process. + +

+ + + + + + + + + +

+ +## Installation + +You can simply install the package with: + +```bash +pip install synthetic-dataset-generator +``` + +### Quickstart + +```python +from synthetic_dataset_generator import launch + +launch() +``` + +### Environment Variables + +- `HF_TOKEN`: Your [Hugging Face token](https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&tokenType=fineGrained) to push your datasets to the Hugging Face Hub and generate free completions from Hugging Face Inference Endpoints. You can find some configuration examples in the [examples](examples/) folder. + +You can set the following environment variables to customize the generation process. + +- `MAX_NUM_TOKENS`: The maximum number of tokens to generate, defaults to `2048`. +- `MAX_NUM_ROWS`: The maximum number of rows to generate, defaults to `1000`. +- `DEFAULT_BATCH_SIZE`: The default batch size to use for generating the dataset, defaults to `5`. + +Optionally, you can use different API providers and models. + +- `MODEL`: The model to use for generating the dataset, e.g. `meta-llama/Meta-Llama-3.1-8B-Instruct`, `gpt-4o`, `llama3.1`. +- `API_KEY`: The API key to use for the generation API, e.g. `hf_...`, `sk-...`. If not provided, it will default to the `HF_TOKEN` environment variable. +- `OPENAI_BASE_URL`: The base URL for any OpenAI compatible API, e.g. `https://api.openai.com/v1/`. +- `OLLAMA_BASE_URL`: The base URL for any Ollama compatible API, e.g. `http://127.0.0.1:11434/`. +- `HUGGINGFACE_BASE_URL`: The base URL for any Hugging Face compatible API, e.g. TGI server or Dedicated Inference Endpoints. If you want to use serverless inference, only set the `MODEL`. +- `VLLM_BASE_URL`: The base URL for any VLLM compatible API, e.g. `http://localhost:8000/`. + +To use a specific model exclusively for generating completions, set the corresponding environment variables by appending `_COMPLETION` to the ones mentioned earlier. For example, you can use `MODEL_COMPLETION` and `OPENAI_BASE_URL_COMPLETION`. + +SFT and Chat Data generation is not supported with OpenAI Endpoints. Additionally, you need to configure it per model family based on their prompt templates using the right `TOKENIZER_ID` and `MAGPIE_PRE_QUERY_TEMPLATE` environment variables. + +- `TOKENIZER_ID`: The tokenizer ID to use for the magpie pipeline, e.g. `meta-llama/Meta-Llama-3.1-8B-Instruct`. +- `MAGPIE_PRE_QUERY_TEMPLATE`: Enforce setting the pre-query template for Magpie, which is only supported with Hugging Face Inference Endpoints. `llama3` and `qwen2` are supported out of the box and will use `"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n"` and `"<|im_start|>user\n"`, respectively. For other models, you can pass a custom pre-query template string. + +Optionally, you can also push your datasets to Argilla for further curation by setting the following environment variables: + +- `ARGILLA_API_KEY`: Your Argilla API key to push your datasets to Argilla. +- `ARGILLA_API_URL`: Your Argilla API URL to push your datasets to Argilla. + +To save the generated datasets to a local directory instead of pushing them to the Hugging Face Hub, set the following environment variable: + +- `SAVE_LOCAL_DIR`: The local directory to save the generated datasets to. + +You can use our environment template as a starting point: + +```bash +cp .env.local.template .env +``` + +### Argilla integration + +Argilla is an open source tool for data curation. It allows you to annotate and review datasets, and push curated datasets to the Hugging Face Hub. You can easily get started with Argilla by following the [quickstart guide](https://docs.argilla.io/latest/getting_started/quickstart/). + +![Argilla integration](https://huggingface.co/spaces/argilla/synthetic-data-generator/resolve/main/assets/argilla.png) + +## Custom synthetic data generation? + +Each pipeline is based on distilabel, so you can easily change the LLM or the pipeline steps. + +Check out the [distilabel library](https://github.com/argilla-io/distilabel) for more information. + +## Development + +Install the dependencies: + +```bash +# Create a virtual environment +python -m venv .venv +source .venv/bin/activate + +# Install the dependencies +pip install -e . # pdm install +``` + +Run the app: + +```bash +python app.py +``` + +## 🐳 Docker Setup + +The containerized tool uses Ollama for local LLM inference and Argilla for data curation. Here's the architecture: + +![Container Structure](https://cdn-uploads.huggingface.co/production/uploads/64461026e1fd8d65b27e6187/Uz-kDOBrV-_GahUrc1K_O.png) + +Quick setup with all services (App + Ollama + Argilla): + +```bash +# Copy environment template +cp docker/.env.docker.template .env # Add your HF_TOKEN in .env + +# Build all services (this may take a few minutes) +docker compose -f docker-compose.yml -f docker/ollama/compose.yml -f docker/argilla/compose.yml build + +# Start all services +docker compose -f docker-compose.yml -f docker/ollama/compose.yml -f docker/argilla/compose.yml up -d +``` + +> For more detailed Docker configurations and setups, check [docker/README.md](docker/README.md) diff --git a/app.py b/app.py new file mode 100644 index 0000000000000000000000000000000000000000..043fa99a266646d779e44e5f5a4effd7872e0ce3 --- /dev/null +++ b/app.py @@ -0,0 +1,4 @@ +from synthetic_dataset_generator import launch + +if __name__ == "__main__": + launch() diff --git a/assets/argilla.png b/assets/argilla.png new file mode 100644 index 0000000000000000000000000000000000000000..1a19c39c6d6605be73306c3d5f40b50b3a53a7ef --- /dev/null +++ b/assets/argilla.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1892b7867842f7f5154c3923278c42d21ec7b6c4bacd159951b8d32d9e64524b +size 474983 diff --git a/assets/flow.png b/assets/flow.png new file mode 100644 index 0000000000000000000000000000000000000000..b2e4958afe1e71d8c68da8172b2beb54c45a98f2 --- /dev/null +++ b/assets/flow.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b0465f5f3ed2a87b14cc609a1f25a1e7b0bfeb1cc8cab534a6ec79a9a8651996 +size 1810372 diff --git a/assets/logo.png b/assets/logo.png new file mode 100644 index 0000000000000000000000000000000000000000..ee4a2a895055b0780f689805c435b3564c60d971 Binary files /dev/null and b/assets/logo.png differ diff --git a/assets/logo.svg b/assets/logo.svg new file mode 100644 index 0000000000000000000000000000000000000000..8ff89df6d5a5b657ffbfde07919c82c2926911ed --- /dev/null +++ b/assets/logo.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/assets/ui-full.png b/assets/ui-full.png new file mode 100644 index 0000000000000000000000000000000000000000..155817d1d530f708ec992923ddfea843d1c227ad --- /dev/null +++ b/assets/ui-full.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a38e10e98dd3ed4c93bfd0a5ec7ebc2584cd4ed54c120aad5da9809b8422dc75 +size 968323 diff --git a/assets/ui.png b/assets/ui.png new file mode 100644 index 0000000000000000000000000000000000000000..87c73569cc9dfabc9fa4070ea1f3e987d1681839 --- /dev/null +++ b/assets/ui.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fdd5805b833fca7b064a67f220489e88bee139348b094bf50a907adb733aad5b +size 652341 diff --git a/docker-compose.yml b/docker-compose.yml new file mode 100644 index 0000000000000000000000000000000000000000..306fcf8abd9a46de57bd0f3d70e39a4444e52514 --- /dev/null +++ b/docker-compose.yml @@ -0,0 +1,17 @@ +services: + app: + build: + context: . + dockerfile: docker/Dockerfile + image: synthetic-data-generator:app + ports: + - "7860:7860" + env_file: + - .env + networks: + - app-network + +networks: + app-network: + name: synthetic-data-network + driver: bridge \ No newline at end of file diff --git a/docker/.env.docker.template b/docker/.env.docker.template new file mode 100644 index 0000000000000000000000000000000000000000..40cf883ad9f96207c612fd0cf200342f45bebfcf --- /dev/null +++ b/docker/.env.docker.template @@ -0,0 +1,43 @@ +# ============================================================================= +# DOCKER CONFIGURATION ONLY - FULL SETUP (APP + OLLAMA + ARGILLA) +# ============================================================================= + +# Note: Before building: +# 1. Copy this template to the root directory: cp docker/.env.docker.template .env +# 2. Comment/uncomment the sections you want to use (OLLAMA and/or ARGILLA) +# 3. Then build and run with the appropriate docker compose command + +# Hugging Face token with read/write permissions +HF_TOKEN=your_token_here + +# ----------------------------------------------------------------------------- +# GENERATION SETTINGS +# ----------------------------------------------------------------------------- +MAX_NUM_TOKENS=2048 +MAX_NUM_ROWS=1000 +DEFAULT_BATCH_SIZE=5 + +# ----------------------------------------------------------------------------- +# OLLAMA DOCKER CONFIGURATION +# ----------------------------------------------------------------------------- +OLLAMA_BASE_URL=http://ollama:11434 +OLLAMA_HARDWARE=latest # latest (for CPU/NVIDIA), rocm (for AMD) + +# LLAMA 3.2 +MODEL=llama3.2:1b +TOKENIZER_ID=meta-llama/Llama-3.2-1B-Instruct +MAGPIE_PRE_QUERY_TEMPLATE=llama3 + +# DEEPSEEK R1 +#MODEL=deepseek-r1:1.5b # must match ollama tags https://ollama.com/library/deepseek-r1:1.5b +#TOKENIZER_ID=deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B +#MAGPIE_PRE_QUERY_TEMPLATE= "<|begin▁of▁sentence|>User: " + +# ----------------------------------------------------------------------------- +# ARGILLA DOCKER CONFIGURATION (persistent data) +# ----------------------------------------------------------------------------- +ARGILLA_API_URL=http://argilla:6900 +ARGILLA_USERNAME=admin +ARGILLA_PASSWORD=admin1234 +ARGILLA_API_KEY=admin.1234 +ARGILLA_REINDEX_DATASET=1 \ No newline at end of file diff --git a/docker/Dockerfile b/docker/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..a4740d4e8bea29e2de1fdda25e1ce5d3c5e0d9a8 --- /dev/null +++ b/docker/Dockerfile @@ -0,0 +1,45 @@ +# Use Python slim image as base +FROM python:3.10-slim + +# Set environment variables +ENV PYTHONUNBUFFERED=1 \ + PYTHONDONTWRITEBYTECODE=1 \ + PIP_NO_CACHE_DIR=1 + +# Create and set working directory +WORKDIR /app + +# Create non-root user first +RUN useradd -m -u 1000 appuser + +# Install system dependencies including build tools +RUN apt-get update && apt-get install -y --no-install-recommends \ + curl \ + build-essential \ + cmake \ + libgl1-mesa-glx \ + libglib2.0-0 \ + libsm6 \ + libxext6 \ + libxrender-dev \ + && rm -rf /var/lib/apt/lists/* + +# Install pdm +RUN pip install --no-cache-dir pdm + +# Copy project files and set permissions +COPY . . +RUN chown -R appuser:appuser /app && \ + chmod -R 755 /app + +# Switch to non-root user +USER appuser + +# Install dependencies in a virtual environment +RUN pdm install --prod --frozen-lockfile + +# Expose Gradio port +EXPOSE 7860 + +# Start command using pdm run to use the virtual environment +CMD ["pdm", "run", "python", "-m", "synthetic_dataset_generator"] \ No newline at end of file diff --git a/docker/README.md b/docker/README.md new file mode 100644 index 0000000000000000000000000000000000000000..fe3a975c1f682dddd2e365f9ef188bc6becfb100 --- /dev/null +++ b/docker/README.md @@ -0,0 +1,80 @@ +# Docker Configuration Guide + +Each service runs in its own container, communicating through internal networks. The core app connects to Ollama for model inference and Argilla for data review: + +![Container Structure](https://cdn-uploads.huggingface.co/production/uploads/64461026e1fd8d65b27e6187/Uz-kDOBrV-_GahUrc1K_O.png) + +The application can be run with different configurations using Docker Compose: + +- `docker-compose.yml`: Core application +- `docker/ollama/compose.yml`: Ollama service for local LLM inference +- `docker/argilla/compose.yml`: Argilla service for data curation + +## Ollama Integration + +The `MODEL` variable in your `.env` file determines which model Ollama will download and use. For example: +```env +MODEL=llama3.2:1b +``` + +## Setup Options + +### Full Setup (App + Ollama + Argilla) +```bash +# Keep all sections uncommented in .env +docker compose -f docker-compose.yml -f docker/ollama/compose.yml -f docker/argilla/compose.yml build +docker compose -f docker-compose.yml -f docker/ollama/compose.yml -f docker/argilla/compose.yml up -d +``` + +### App + Ollama +```bash +# Comment out ARGILLA section in .env +docker compose -f docker-compose.yml -f docker/ollama/compose.yml build +docker compose -f docker-compose.yml -f docker/ollama/compose.yml up -d +``` + +### App + Argilla +```bash +# Comment out OLLAMA section in .env +docker compose -f docker-compose.yml -f docker/argilla/compose.yml build +docker compose -f docker-compose.yml -f docker/argilla/compose.yml up -d +``` + +### App Only +```bash +# Comment out both OLLAMA and ARGILLA sections in .env +docker compose -f docker-compose.yml build +docker compose -f docker-compose.yml up -d +``` + +## Managing Services + +Services are built separately but are linked together. If you already have some services built and want to add another: + +1. You don't need to rebuild existing services +2. Just build the new service +3. Stop everything with `down` and start again with `up` + +For example, if you have App + Ollama and want to add Argilla: +```bash +docker compose -f docker/argilla/compose.yml build # only build Argilla +docker compose -f docker-compose.yml -f docker/ollama/compose.yml -f docker/argilla/compose.yml down +docker compose -f docker-compose.yml -f docker/ollama/compose.yml -f docker/argilla/compose.yml up -d +``` + +Similarly, if you have built all services but want to run only some of them: +> **Important**: When running specific services, remember to comment out unused services in `.env` first + +```bash +# No need to build again, just start the services you need +docker compose -f docker-compose.yml -f docker/ollama/compose.yml up -d # start only App + Ollama +``` + +## Service URLs + +Once running, access the services at: +- App: http://localhost:7860 +- Argilla: http://localhost:6900 (if enabled) +- Ollama: http://localhost:11434 (if enabled) + +> Note: Services will be available after a few seconds while they initialize. Ollama models and Argilla datasets are persisted and available after restarts \ No newline at end of file diff --git a/docker/argilla/compose.yml b/docker/argilla/compose.yml new file mode 100644 index 0000000000000000000000000000000000000000..b7ffb7c2daf53c81e0af136b1ba72857ee55fdaa --- /dev/null +++ b/docker/argilla/compose.yml @@ -0,0 +1,118 @@ +services: + app: + extends: + file: docker-compose.yml + service: app + depends_on: + argilla: + condition: service_healthy + required: false + environment: + - ARGILLA_API_URL=http://argilla:6900 + + elasticsearch: + image: docker.elastic.co/elasticsearch/elasticsearch:8.17.0 + environment: + - ES_JAVA_OPTS=-Xms512m -Xmx512m + - node.name=elasticsearch + - cluster.name=es-argilla-local + - discovery.type=single-node + - cluster.routing.allocation.disk.threshold_enabled=false + - xpack.security.enabled=false + volumes: + - es_data:/usr/share/elasticsearch/data + networks: + - app-network + ports: + - "9200:9200" + - "9300:9300" + ulimits: + memlock: + soft: -1 + hard: -1 + nofile: + soft: 65536 + hard: 65536 + healthcheck: + test: ["CMD", "curl", "-f", "http://localhost:9200"] + interval: 30s + timeout: 10s + retries: 3 + + postgres: + image: postgres:14 + environment: + POSTGRES_USER: postgres + POSTGRES_PASSWORD: postgres + POSTGRES_DB: argilla + networks: + - app-network + volumes: + - postgres_data:/var/lib/postgresql/data + + redis: + image: redis + networks: + - app-network + + argilla: + image: argilla/argilla-server:latest + ports: + - "6900:6900" + healthcheck: + test: ["CMD", "curl", "-f", "http://localhost:6900/api/ready"] + interval: 30s + timeout: 10s + retries: 3 + env_file: + - .env + environment: + - ARGILLA_HOME_PATH=/var/lib/argilla + - ARGILLA_ELASTICSEARCH=http://elasticsearch:9200 + - ARGILLA_DATABASE_URL=postgresql+asyncpg://postgres:postgres@postgres:5432/argilla + - ARGILLA_REDIS_URL=redis://redis:6379/0 + - USERNAME=${ARGILLA_USERNAME} + - PASSWORD=${ARGILLA_PASSWORD} + - API_KEY=${ARGILLA_API_KEY} + - WORKSPACE=default + volumes: + - argilla_data:/argilla + networks: + - app-network + depends_on: + elasticsearch: + condition: service_healthy + postgres: + condition: service_started + redis: + condition: service_started + + worker: + image: argilla/argilla-server:latest + env_file: + - .env + environment: + - ARGILLA_HOME_PATH=/var/lib/argilla + - ARGILLA_ELASTICSEARCH=http://elasticsearch:9200 + - ARGILLA_DATABASE_URL=postgresql+asyncpg://postgres:postgres@postgres:5432/argilla + - ARGILLA_REDIS_URL=redis://redis:6379/0 + - BACKGROUND_NUM_WORKERS=2 + - USERNAME=${ARGILLA_USERNAME} + - PASSWORD=${ARGILLA_PASSWORD} + - API_KEY=${ARGILLA_API_KEY} + - WORKSPACE=default + networks: + - app-network + depends_on: + - postgres + - elasticsearch + - redis + command: sh -c 'python -m argilla_server worker --num-workers $${BACKGROUND_NUM_WORKERS}' + +volumes: + es_data: + name: synthetic-data-es + argilla_data: + name: synthetic-data-argilla + postgres_data: + name: synthetic-data-postgres \ No newline at end of file diff --git a/docker/ollama/compose.yml b/docker/ollama/compose.yml new file mode 100644 index 0000000000000000000000000000000000000000..534e2e1687504d69a92f751e608983f74342deac --- /dev/null +++ b/docker/ollama/compose.yml @@ -0,0 +1,48 @@ +services: + app: + extends: + file: docker-compose.yml + service: app + depends_on: + ollama: + condition: service_healthy + required: true + environment: + - OLLAMA_BASE_URL=http://ollama:11434 + + ollama: + image: ollama/ollama:${OLLAMA_HARDWARE:-latest} + ports: + - "11434:11434" + env_file: + - .env + environment: + - OLLAMA_BASE_URL=${OLLAMA_BASE_URL:-} + volumes: + - ollama_data:/root/.ollama + - ./docker/ollama/entrypoint.sh:/entrypoint.sh + networks: + - app-network + deploy: + resources: + reservations: + devices: + - driver: nvidia + count: all + capabilities: [gpu] + tty: true + entrypoint: ["/usr/bin/bash", "/entrypoint.sh"] + healthcheck: + test: + - "CMD-SHELL" + - | + test -f /tmp/ollama_ready && \ + bash -c '/dev/null && ollama list | grep -q "$MODEL_NAME"; then + echo "🟢 Model download complete!" + touch /tmp/ollama_ready + else + echo "❌ Error downloading model ($MODEL_NAME)" + fi + fi +fi + +# Wait for Ollama process to finish +wait $pid \ No newline at end of file diff --git a/examples/argilla-deployment.py b/examples/argilla-deployment.py new file mode 100644 index 0000000000000000000000000000000000000000..fee3f0cc0aea7891b7d2e2572d496d0653c9daa6 --- /dev/null +++ b/examples/argilla-deployment.py @@ -0,0 +1,18 @@ +# /// script +# requires-python = ">=3.11,<3.12" +# dependencies = [ +# "synthetic-dataset-generator", +# ] +# /// +import os + +from synthetic_dataset_generator import launch + +# Follow https://docs.argilla.io/latest/getting_started/quickstart/ to get your Argilla API key and URL +os.environ["HF_TOKEN"] = "hf_..." +os.environ["ARGILLA_API_URL"] = ( + "https://[your-owner-name]-[your_space_name].hf.space" # argilla base url +) +os.environ["ARGILLA_API_KEY"] = "my_api_key" # argilla api key + +launch() diff --git a/examples/blog_private_synthetic_data_generation.md b/examples/blog_private_synthetic_data_generation.md new file mode 100644 index 0000000000000000000000000000000000000000..64f69798c7ddde6aebb4981f388996f5491061e4 --- /dev/null +++ b/examples/blog_private_synthetic_data_generation.md @@ -0,0 +1,222 @@ +# Private Synthetic Data Generation Made Easy: Out-of-the-Box with Docker, Argilla & Ollama + +> "Empowering organizations with a turnkey solution for synthetic dataset creation in private environments." + +The increasing adoption of AI solutions across industries has created an unprecedented demand for high-quality training data. As organizations scale their AI initiatives, they face the dual challenge of generating substantial, domain-specific datasets while ensuring data privacy and security. Traditional approaches often involve compromises: either using public datasets that may not fully align with specific needs, or investing heavily in custom data generation infrastructure. + +The complexity of this challenge is amplified by regulatory requirements, resource constraints, and the need for specialized expertise. Organizations must navigate GDPR, CCPA, and industry-specific regulations while maintaining efficient data generation pipelines. This has created a pressing need for solutions that can operate entirely within private infrastructure while maintaining enterprise-grade capabilities. + +## The Challenge + +The development of AI models requires extensive training data, yet organizations face significant obstacles in data generation and management. Privacy regulations and security requirements often prevent the use of public datasets or cloud-based generation services. Additionally, existing solutions typically demand complex infrastructure setups and significant technical expertise, increasing both implementation time and costs. + +Modern enterprises require a solution that addresses several critical aspects: +1. Data Privacy: Complete control over data generation and storage +2. Infrastructure Flexibility: Deployment options that fit existing systems +3. Quality Assurance: Tools for data validation and curation +4. Scalability: Ability to grow with increasing data needs +5. Cost Efficiency: Reduction in infrastructure and maintenance costs + +## The Solution + +This out-of-the-box Synthetic Dataset Generator approach leverages the power of three technologies to create a seamless, private data generation pipeline. At its core is the [Synthetic Dataset Generator](https://github.com/argilla-io/synthetic-data-generator), a tool designed for dataset creation. [Ollama](https://ollama.ai/) ensures secure local LLM inference with [Distilabel](https://github.com/argilla-io/distilabel) integration, while [Argilla's](https://argilla.io/) data curation capabilities complete the workflow, all operating within your secure infrastructure. + +This architecture delivers key technical advantages: +- Full data sovereignty with containerized local deployment +- End-to-end pipeline from generation to validation +- Modular design for system integration + +Here's how it all fits together: + +![image/png](https://cdn-uploads.huggingface.co/production/uploads/64461026e1fd8d65b27e6187/Uz-kDOBrV-_GahUrc1K_O.png) + +Let's explore how these components work together in a practical workflow. + +## 1. Installation & Setup + + + +### 1.1 Clone Repository +```bash +git clone https://github.com/argilla-io/synthetic-data-generator +cd synthetic-data-generator +``` + +### 1.2 Environment Setup +```bash +# Copy environment template +cp docker/.env.docker.template .env + +# Model configuration in .env (if using Ollama) +MODEL="deepseek-r1:1.5b" # Must match Ollama model name +``` + +### 1.3 Build & Deploy Services +> Pro tip: Even if you're planning to use just one component initially, we recommend building all services to enable future functionality without rebuilding. For detailed deployment options, check the [Docker documentation](https://github.com/argilla-io/synthetic-data-generator/blob/main/docker/README.md). + +> Note: Ollama runs on CPU/GPU for Linux/Windows in Docker. For macOS, only CPU is supported in Docker - for GPU support, install Ollama separately ([details](https://ollama.com/blog/ollama-is-now-available-as-an-official-docker-image)). + +```bash +# Build all services +docker compose -f docker-compose.yml -f docker/ollama/compose.yml -f docker/argilla/compose.yml build +# Start all services +docker compose -f docker-compose.yml -f docker/ollama/compose.yml -f docker/argilla/compose.yml up -d +``` + +To view logs, either: +- Use Docker Desktop's interface +- Remove the `-d` flag when running the above command +- Or execute the following for specific service logs: + ```bash + # Core App logs + docker compose logs -f app + # Ollama logs + docker compose -f docker-compose.yml -f docker/ollama/compose.yml logs -f ollama + # Argilla logs + docker compose -f docker-compose.yml -f docker/argilla/compose.yml logs -f argilla + ``` + +## 2. Dataset Generation + +The tool currently supports **Text Classification**, **Chat**, and **RAG** datasets. These tasks will determine the type of dataset you will generate: classification requires categories, chat data requires a conversation format, and RAG requires question-answer pairs with relevant context, offering options for both retrieval and reranking data generation to enhance different aspects of information retrieval systems. + +For a detailed overview of the generation process, check out the [introduction to the Synthetic Data Generator](https://huggingface.co/blog/synthetic-data-generator). + + +### 2.1. **Dataset Description** + + Let's walk through creating a **RAG dataset**. + ```text + A dataset to retrieve information from information security policies + ``` + + System initializes and processes the prompt: + ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64461026e1fd8d65b27e6187/sxH8JChF-HnGMOilymYpA.png) + + +### 2.2. **Task Configuration & Sample Generation** + System analyzes and generates the system prompt and optimal parameters automatically. Then, samples are generated for validation (modify system prompt or parameters manually if needed, then click save to generate sample data): + ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64461026e1fd8d65b27e6187/mYVlGNnz6YNrPJutxmBtR.png) + + +### 2.3. **Full Dataset Generation** +After validating the sample data quality, proceed with full dataset generation. Configure the following parameters: + +- **Repository Owner**: Your Hugging Face username for dataset hosting +- **Dataset Name**: A descriptive name following standard naming conventions +- **Number of Examples**: Define dataset size (recommended: 100-1000 for initial deployments) +- **Temperature**: Controls generation creativity (default 0.7 balances coherence and diversity) +- **Privacy Settings**: Optional dataset privacy configuration for Hugging Face Hub + +The temperature parameter significantly impacts output quality: +- 0.5-0.7: Optimal for technical documentation and factual content +- 0.7-0.8: Balanced for general purpose datasets +- 0.8-1.0: Increased creativity, suitable for conversational data + + +The system initiates the generation pipeline, leveraging Distilabel for structured output: +![image/png](https://cdn-uploads.huggingface.co/production/uploads/64461026e1fd8d65b27e6187/PWNT_bLHwFjeoFX7AhA-z.png) + + +Upon completion, the dataset is pushed to Hugging Face Hub: +![Generation Complete](https://cdn-uploads.huggingface.co/production/uploads/64461026e1fd8d65b27e6187/ohd4S-RyNI406uLPf4bnZ.png) + +Access your generated dataset through the Hugging Face Hub interface: + + + + + +## 3. Data Curation with Argilla + +The integration with Argilla provides enterprise-grade dataset curation capabilities through a comprehensive review system. This phase is crucial for ensuring data quality and maintaining high standards in your training datasets. + +### Environment Configuration +Before accessing Argilla's features, ensure proper configuration in your `.env` file. + + +### Curation Workflow + +1. **Dataset Integration** + Upon generation completion, the dataset is automatically ingested into Argilla. The system maintains data integrity and version control throughout the process. All datasets and progress persist across Docker restarts unless you explicitly remove the Argilla services and volumes. + ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64461026e1fd8d65b27e6187/0gF6iLywhKafEo3z94cd-.png) + + +2. **Quality Assurance Process** + Argilla's interface provides comprehensive tools for dataset validation: + - Semantic analysis of generated content + - Consistency checking across entries + - Metadata validation and enrichment + - Collaborative review capabilities + + ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64461026e1fd8d65b27e6187/h9kJ-4lA0LcFC8g6g_vwF.png) + + + +3. **Dataset Publication** + After thorough review, export your curated dataset to Hugging Face Hub: + + > Note: Consider using a new repository name to preserve both raw and curated datasets separately. + + - Configure repository settings + - Set visibility and access controls + - Add dataset cards and documentation + + ![Export Configuration](https://cdn-uploads.huggingface.co/production/uploads/64461026e1fd8d65b27e6187/CPwtVr_Jw6mndNCOU2a5T.png) + + +The curated dataset maintains full provenance tracking and quality metrics: + + +# 🎉 You're Done! +Congratulations! You've successfully completed the end-to-end dataset generation and curation process. Your curated dataset is now ready for model training. + +## Experience the Solution + +For a hands-on preview of the Synthetic Dataset Generator's capabilities, explore the hosted space. This allows you to evaluate the interface and functionality before deploying your own instance: + + + +Create your own deployment by duplicating this Space. + +## What's Next? + +After successfully generating your first dataset, several advanced implementation paths are available: + +Extend your dataset generation capabilities: +- [Fine-tune models on synthetic data](https://huggingface.co/blog/davidberenstein1957/fine-tune-a-smollm-on-synthetic-data-of-llm) for domain-specific tasks +- [Create specialized reasoning datasets](https://huggingface.co/blog/sdiazlor/fine-tune-deepseek-with-a-synthetic-reasoning-data) for advanced model training + +## Conclusion + +The Synthetic Dataset Generator represents a significant advancement in private data generation technology, addressing the growing need for high-quality training data while maintaining security and control. By leveraging containerized architecture and local LLM inference, organizations can now generate custom datasets without compromising on data privacy or quality. + +The solution's modular design enables seamless integration with existing ML pipelines while providing enterprise-grade features like persistent storage, comprehensive monitoring, and scalable infrastructure. Through collaborative validation workflows and structured quality control processes, teams can efficiently create and curate datasets tailored to their specific needs. + +This combination of security, efficiency, and flexibility makes the Synthetic Dataset Generator an essential tool for organizations looking to accelerate their AI development while maintaining complete control over their data generation pipeline. + +## References & Documentation + + +- [Synthetic Dataset Generator](https://github.com/argilla-io/synthetic-data-generator): Open-source tool for dataset generation using natural language +- [Distilabel Framework](https://github.com/argilla-io/distilabel): Advanced dataset generation framework +- [Docker Best Practices](https://docs.docker.com/develop/develop-images/dockerfile_best-practices/): Container optimization guidelines +- [Argilla Documentation](https://docs.argilla.io): Data curation platform documentation +- [Ollama Integration](https://github.com/jmorganca/ollama): Local LLM deployment guide \ No newline at end of file diff --git a/examples/fine-tune-deepseek-reasoning-sft.ipynb b/examples/fine-tune-deepseek-reasoning-sft.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..f8328c2672c18350985a181d0e17c8705a6ab698 --- /dev/null +++ b/examples/fine-tune-deepseek-reasoning-sft.ipynb @@ -0,0 +1,6206 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fine-tune DeepSeek with a Synthetic Reasoning Dataset\n", + "\n", + "This notebook demonstrates the fine-tuning process of `unsloth/DeepSeek-R1-Distill-Qwen-1.5B-unsloth-bnb-4bit` using a synthetic reasoning dataset.\n", + "\n", + "It provides a complete walkthrough of the fine-tuning process after generating synthetic data using the Synthetic Data Generator. For a comprehensive explanation of the methodology and additional details, refer to the blog post: [Fine-tune DeepSeek with a Synthetic Reasoning Dataset](https://huggingface.co/blog/sdiazlor/fine-tune-deepseek-with-a-synthetic-reasoning-data)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Getting Started" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Install the Dependencies" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!pip install datasets\n", + "!pip install unsloth" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import the Required Libraries" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "from datasets import load_dataset\n", + "from transformers import TrainingArguments\n", + "from trl import SFTTrainer\n", + "from unsloth import is_bfloat16_supported, FastLanguageModel" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Configure the Environment" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "MODEL = \"unsloth/DeepSeek-R1-Distill-Qwen-1.5B-unsloth-bnb-4bit\"\n", + "REPO_NAME = \"sdiazlor\" # your HF username here\n", + "MODEL_NAME = \"deepseek-r1-distill-qwen-1.5-unsloth-sft-python\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load the Model and Tokenizer" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 316, + "referenced_widgets": [ + "5b30f4877b554974bb8cdfc9814bb967", + "1b216f51a8714e9dab82dc844fed17bf", + "a87fd32f965c41e68249ba9bf4234691", + "0b7b5a1ecb964a9cbd035b559438fb52", + "453b1c07c5e345fbac74856842c28784", + "5718ee0ebe1f4cadaf79c14d2a8e5339", + "a03e6373939e489c87c8ed6546dc03d6", + "b9974277d199419699e9b2a584f6198f", + "210d0c13cbec434097f0a9b6b68d456d", + "31abf79b170443fabbbb924ca4220e4c", + "0142b4aeab9b4d87819b86c26a908f7a", + "a4362f76cffa45a89675d66f8f51d440", + "178df7b3c6b74583b70b6ebfd2272336", + "921c02b29a564833ae10ac54f220c1d4", + "4b8d88e2c0634338affb3b4d81e77974", + "67dfa13c01f64b589e04c053f89ec671", + "2bdd42e1bb57415584d2a38edfe8ea6b", + "398508c460594d22b7fdbf3be15d761b", + "a383ed5654194fefa9312b747d5d6ed6", + "03ea6c67112843c9933b3e1a768b77f6", + "b7c04ccedc1c48adb34f615f24b8c424", + "db31df39f56546b6a64a55f97b91a8f2", + "f187dd6f0dbf4f49bca90bd394f27e23", + "1a0a4ae3d6c147c3bbb72e703858aedc", + "d3de80a9bafa4b4b9c13c4361d6213db", + "84a304df3ea4459ebcd3706f57404eba", + "6904076b530c44ae8a34b2fd424b89c0", + "5e51b3b8054d477fa3af1cf1682d4304", + "213c0e1e238849f7a071b2f9bcf9c433", + "dc84dfd9af984f02a09770dffc8f3001", + "38e3a03149754b048a0459f4e5d00e2a", + "f74d4bc9f00b4cac8de83792f405ad5a", + "4ddc8e1a851c4e9da6ede032d40908f0", + "24dfeff577da4393bdaa5de47bf5d096", + "0b722c2760634ce3856dbf2f3ac329fe", + "8d652113d0964829a65fbbcab211e141", + "d0eb3820302646e9a848da2f936aa9eb", + "d089d26bfd1a4a8488133f0f82b120c3", + "5094f58022ca4565873196fde589bec8", + "d180a951e872463c8c39f28f61b3b734", + "02302f414c384422920e3e310f597063", + "a8001e449dca4533bd56918d8da1a69d", + "19b6b7f26e394d9fb7c2992d71b1fc14", + "007ba2f3f37c48f8a5e7e21a4a2e5a71", + "65a71e24010b4ba4884dc0bb2fe37e1f", + "99831f0a5b204b24923d5ca3d30c42a9", + "52b547101e8848cb9e5881c3e63eca3c", + "b6e67b2b00be4835962dc5939e25a289", + "747b3c80a240453c986bc8db01072394", + "29d52353241742bf882ade4bc4eeb402", + "c2cd6a947bda4a09ad56b0c2069a9166", + "02db395a497443adad709a5a5b2ee463", + "28b224e830e24bbdb9abf547b3789769", + "a76024ba39194881b63302a11383e84e", + "40f0399f117845b08eff5c5ed84f137d" + ] + }, + "id": "QmUBVEnvCDJv", + "outputId": "977ab27e-7773-4b20-e16b-7df3f1d8994e" + }, + "outputs": [], + "source": [ + "# Load the 4bit pre quantized model of deepseek and the tokenizer\n", + "\n", + "model, tokenizer = FastLanguageModel.from_pretrained(\n", + " model_name = MODEL,\n", + " max_seq_length = 2048,\n", + " dtype = None,\n", + " load_in_4bit = True,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6bZsfBuZDeCL", + "outputId": "4bdd6bfa-47c5-47cd-cd45-475107258a89" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Unsloth 2025.2.5 patched 28 layers with 28 QKV layers, 28 O layers and 28 MLP layers.\n" + ] + } + ], + "source": [ + "# We add the LORA adapters to the model\n", + "model = FastLanguageModel.get_peft_model(\n", + " model,\n", + " r=16,\n", + " target_modules=[\n", + " \"q_proj\",\n", + " \"k_proj\",\n", + " \"v_proj\",\n", + " \"o_proj\",\n", + " \"gate_proj\",\n", + " \"up_proj\",\n", + " \"down_proj\",\n", + " ],\n", + " lora_alpha=16,\n", + " lora_dropout=0,\n", + " bias=\"none\",\n", + " use_gradient_checkpointing=\"unsloth\",\n", + " random_state=3407,\n", + " use_rslora=False,\n", + " loftq_config=None,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pre-process the Synthetic Data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 154, + "referenced_widgets": [ + "e6ffb622331241239867b1477d3da76b", + "5d835002db074abea3d5b87e0ce72618", + "8b79b01a42614f4e9ae6550703561236", + "a9f65983f1f24d7c9cceaf65c2191c7d", + "560be4516ac74cd5a29a0b8304976810", + "679a9d5ae6fb4916a2261f556969f3a0", + "09095674ac234d19be3f0454146201c2", + "225b460bd91b4995b81cb967a7f8c42c", + "04b79a83f42745449910b1733a8496c7", + "36f85ae64a1e440b8b15d0c5625bd23f", + "fd3643434d0f477f90a59dc8e0bf64f2" + ] + }, + "id": "LjY75GoYUCB8", + "outputId": "35602bba-6cdf-4cb5-ac87-967679f10350" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + }, + "text/plain": [ + "'Below is an instruction that describes a task, paired with a question that provides further context. \\nWrite a response that appropriately answer the question. \\nBefore answering, think carefully but concisely about the question and create a step-by-step chain of thoughts to ensure a logical and accurate response.\\n\\n### Instruction:\\nYou are an expert programmer with advanced knowledge in Python. Your task is to provide concise and easy-to-understand solutions. Please answer the following python question. \\n\\n### Question:\\nHow can I solve a Rubik\\'s Cube? \\n\\n\\n\\n### Response:\\nOkay, so I want to solve a Rubik\\'s Cube, but I\\'m not really sure where to start. I remember seeing people solve them quickly, but it looks so complicated. Let me try to break it down.\\n\\nFirst, I think I need to understand the structure of the cube. It has six faces, each with nine smaller squares of different colors. The goal is to have each face all one color. But how do the pieces move?\\n\\nI\\'ve heard about algorithms before. Maybe that\\'s the key. I guess algorithms are specific sequences of moves that solve certain parts of the cube. But I\\'m not sure which ones to use or in what order.\\n\\nI remember someone mentioning something called the cross. That\\'s probably the first step. So, I should start by making a cross on one face. Let\\'s pick the white face for the cross. I need to get all the white edges aligned with their corresponding center colors.\\n\\nOnce the cross is done, the next step might be to solve the corners of that face. Each corner has three colors, so I need to make sure they match the adjacent center colors. Maybe there\\'s a specific algorithm for inserting the corners correctly without messing up the cross.\\n\\nAfter the first layer is done, I think the next part is the middle layer. This involves moving the edge pieces between the first and last layers. I\\'ve heard terms like F, R, U, etc., which stand for front, right, up, etc. Maybe the algorithm for the middle layer involves moving a piece from the top to the correct position.\\n\\nThen comes the last layer, which is the trickiest part. I think this involves orienting the edges so they all face the right way, and then permuting the corners. I remember something about the \"OLL\" and \"PLL\" steps. OLL is orienting the last layer, and PLL is permuting it. There are a lot of algorithms for each, so it\\'s important to learn the common ones first.\\n\\nI\\'m a bit confused about how to recognize when to use each algorithm. Maybe I should start with the most common ones, like the cross, then F2L, OLL, and PLL. Each step builds on the previous one, so I shouldn\\'t skip ahead.\\n\\nI also wonder about the notation. F means moving the front face clockwise, F\\' is counterclockwise, and F2 is turning it twice. Understanding this notation is crucial for following the algorithms.\\n\\nI should probably practice each step separately. Start with solving the cross, then move on to the corners, and so on. It might take a while to get each step right, but with practice, it should become easier.\\n\\nWait, what if I get stuck? Maybe I should look up some tutorials or guides that break it down step by step. There are probably detailed explanations and videos that can help me visualize the moves better.\\n\\nIn summary, solving a Rubik\\'s Cube seems to involve a series of structured steps, each with specific algorithms. I need to learn each step, practice the moves, and gradually build up to solving the entire cube. It might be challenging, but breaking it down into smaller parts makes it manageable.\\n\\n\\nTo solve a Rubik\\'s Cube, follow this structured approach:\\n\\n1. **Understand the Structure**: Familiarize yourself with the cube\\'s layout, noting that each face has nine smaller squares and six faces in total.\\n\\n2. **Learn Notation**: Understand the basic move notations (F, R, U, etc.) and their directions (clockwise, counterclockwise, and 180-degree turns).\\n\\n3. **Step 1: Solve the Cross**:\\n - Begin with the white face.\\n - Align the white edges with their corresponding center colors.\\n\\n4. **Step 2: Solve the Corners**:\\n - Position the corners so they match adjacent center colors, using specific algorithms to insert them correctly without disrupting the cross.\\n\\n5. **Step 3: Solve the Middle Layer**:\\n - Move edge pieces between the first and last layers, using algorithms to place them correctly.\\n\\n6. **Step 4: Orient the Last Layer (OLL)**:\\n - Use algorithms to orient the last layer\\'s edges so they all face the correct way.\\n\\n7. **Step 5: Permute the Last Layer (PLL)**:\\n - Apply algorithms to permute the corners, ensuring they are in the correct positions.\\n\\n8. **Practice and Resources**:\\n - Practice each step separately, gradually building up skills.\\n - Use tutorials or guides for detailed explanations and visual aids.\\n\\nBy following these steps and practicing each algorithm, you can systematically solve the Rubik\\'s Cube.\\n<|end▁of▁sentence|>'" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Prepare the dataset\n", + "\n", + "prompt_style = \"\"\"Below is an instruction that describes a task, paired with a question that provides further context.\n", + "Write a response that appropriately answer the question.\n", + "Before answering, think carefully but concisely about the question and create a step-by-step chain of thoughts to ensure a logical and accurate response.\n", + "\n", + "### Instruction:\n", + "You are an expert programmer with advanced knowledge in Python. Your task is to provide concise and easy-to-understand solutions. Please answer the following python question.\n", + "\n", + "### Question:\n", + "{}\n", + "\n", + "### Response:\n", + "{}\n", + "\"\"\"\n", + "\n", + "EOS_TOKEN = tokenizer.eos_token\n", + "\n", + "\n", + "def formatting_prompts_func(examples):\n", + " prompts = examples[\"prompt\"]\n", + " completions = examples[\"completion\"]\n", + " texts = []\n", + " for prompt,completion in zip(prompts, completions):\n", + " text = prompt_style.format(prompt, completion) + EOS_TOKEN\n", + " texts.append(text)\n", + " return {\n", + " \"text\": texts,\n", + " }\n", + "\n", + "\n", + "dataset = load_dataset(\"sdiazlor/python-reasoning-dataset\", split=\"train\")\n", + "dataset = dataset.map(formatting_prompts_func, batched = True,)\n", + "dataset[\"text\"][0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Train the Model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 49, + "referenced_widgets": [ + "e865b621b4704786998d9e5511bcb522", + "08220a32e37f4b1dab636ea06a786a1f", + "2a76087509dd482a81c297ba44e2ae2e", + "1b7f8aad80c0464b819ee74b7f76d40e", + "6849f7a48eff4ab8a7e01a3e26da7645", + "6b9552cc29ab4ac7936618bf1f0b1c5c", + "706d0954642a4ef5b8e3d4ece2fa556e", + "9eea1e4a483b4298a6ad67dfca0ff122", + "2f1ede630a654aeebe7d80640ee9674a", + "e411f85b5a0047c4b510565585215493", + "fb6566ed643a473e892e68b55fa3ef29" + ] + }, + "id": "95_Nn-89DhsL", + "outputId": "9d245291-dc8e-48be-d05c-beeb65b3769f" + }, + "outputs": [], + "source": [ + "# Configure the trainer\n", + "trainer = SFTTrainer(\n", + " model=model,\n", + " tokenizer=tokenizer,\n", + " train_dataset=dataset,\n", + " dataset_text_field=\"text\",\n", + " max_seq_length=2048,\n", + " dataset_num_proc=2,\n", + " packing=False,\n", + " args=TrainingArguments(\n", + " per_device_train_batch_size=2,\n", + " gradient_accumulation_steps=4,\n", + " warmup_steps=5,\n", + " num_train_epochs=3,\n", + " learning_rate=2e-4,\n", + " fp16=not is_bfloat16_supported(),\n", + " bf16=is_bfloat16_supported(),\n", + " logging_steps=1,\n", + " optim=\"adamw_8bit\",\n", + " weight_decay=0.01,\n", + " lr_scheduler_type=\"linear\",\n", + " seed=3407,\n", + " output_dir=\"outputs\",\n", + " report_to=\"none\",\n", + " ),\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "yqxqAZ7KJ4oL", + "outputId": "bb329be2-eced-4843-cb86-00ed8395e992" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1\n", + " \\\\ /| Num examples = 500 | Num Epochs = 3\n", + "O^O/ \\_/ \\ Batch size per device = 2 | Gradient Accumulation steps = 4\n", + "\\ / Total batch size = 8 | Total steps = 186\n", + " \"-____-\" Number of trainable parameters = 18,464,768\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [186/186 17:48, Epoch 2/3]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StepTraining Loss
10.828400
20.784400
30.838800
40.849500
50.732300
60.670100
70.709900
80.688500
90.613600
100.626500
110.729400
120.682100
130.540100
140.591000
150.604800
160.611600
170.604000
180.617800
190.610100
200.651400
210.580700
220.620100
230.664400
240.675600
250.513200
260.498600
270.646800
280.501700
290.537800
300.592300
310.488400
320.533100
330.567700
340.565900
350.638700
360.564400
370.479600
380.644000
390.486400
400.598800
410.595200
420.508000
430.504900
440.613700
450.517800
460.571700
470.568900
480.507400
490.536600
500.681900
510.469500
520.530200
530.601400
540.531000
550.470400
560.535800
570.615800
580.557500
590.620600
600.497700
610.556100
620.561300
630.607200
640.556200
650.538400
660.529800
670.580100
680.573100
690.466100
700.498400
710.590800
720.632500
730.472400
740.523400
750.562500
760.552200
770.548400
780.523300
790.593300
800.483600
810.585400
820.554700
830.413900
840.589400
850.484100
860.461000
870.570700
880.545900
890.542300
900.502100
910.554100
920.554000
930.468700
940.535800
950.539100
960.479600
970.499100
980.518300
990.593800
1000.573200
1010.546400
1020.599600
1030.465200
1040.472400
1050.556100
1060.498800
1070.486900
1080.529000
1090.480100
1100.525900
1110.489700
1120.510600
1130.628300
1140.413200
1150.577800
1160.515000
1170.539300
1180.459200
1190.533700
1200.501700
1210.528400
1220.475900
1230.437600
1240.551700
1250.464600
1260.442300
1270.611100
1280.425300
1290.516900
1300.469100
1310.486200
1320.492100
1330.511100
1340.559500
1350.537600
1360.426800
1370.474200
1380.543500
1390.539800
1400.481500
1410.481400
1420.562000
1430.409100
1440.440900
1450.437700
1460.427300
1470.393100
1480.480300
1490.509300
1500.450200
1510.530500
1520.475300
1530.521300
1540.519500
1550.539400
1560.433300
1570.495400
1580.415200
1590.608800
1600.524700
1610.438700
1620.504800
1630.455700
1640.455100
1650.592300
1660.565700
1670.480800
1680.546100
1690.463100
1700.573400
1710.500700
1720.516700
1730.572000
1740.411700
1750.452700
1760.424900
1770.489200
1780.574300
1790.479700
1800.487800
1810.513700
1820.492800
1830.535100
1840.501100
1850.450400
1860.484500

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Train the model\n", + "trainer_stats = trainer.train()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 501, + "referenced_widgets": [ + "75dc3defc03044d5a3d5327f982f4ad9", + "69a1c928a91b485e899218b4c48bbd0f", + "2cd1ab0231be43078bf2b0861c66756b", + "7d6ef80065f2457ca6a584dea0ee193a", + "8deac706db694fd9af003a52d9e65c18", + "d1fdaab3815b4beebd51e5240208c14c", + "0c677a8b3f234e0480995a3f3f511cfc", + "bf95bf76909b418db87bed807a8fcd2e", + "60362ddf26274bbda10f888cae24b527", + "cf64d3a6baf545bebc84c62b2863a2a3", + "a023e723ac13430087c8f019e7bd2946", + "37b277adce0f47f58ce4f153ebbf9885", + "ae4269c9c5434ee79eaa31d197e382c0", + "d7ef28d78e19450e82bd3e42a9fab928", + "0b0ce59c58f947c5ab6b456c4b2b8fd8", + "c05b434f65a04a07880f82d5dda991e3", + "aa8a0d882d1047e8a6a08b04df1214ea", + "344f6b55db5e43c7b98750e4cbf907d1", + "58aa7a36dbd14511a43268242bf3486c", + "9b0488d548f3446d8d20af6d3ac56739", + "2c966a7792594a9bace7cada70bc6e20", + "eb694d1a1a674598bccff290c5c96077", + "343312cb90c84c6bbfec606bed32765a", + "4cbc59fddff34f44a0e99e15ff1ae102", + "932c5742442b421389363d2e216626d7", + "f57fce9a80e549609474d84b7d935b33", + "53f6ce3049474fbda959fd52fe9b5890", + "71cc82a978664061b4778a73ac25afdb", + "d4f41624cbea494f803bd76cd78f315f", + "8f02d26e18614cd38e891d5ee019bc3d", + "fefdd42e29544fdba8ba1dd7f28cc85d", + "ca279528c62c41559fff7d150a229567", + "3abc1f45407c4c8c9c6b6d676246aa3b", + "7b9eed20c6554407afb846170e2d946d", + "27cacb0adaa944c19d80cd9cb0ddffa9", + "b5037ef5dcdc43a9850bb073addc947f", + "cc7ce94c244548c8954b35bb92936bdd", + "3bcfc01fccce49ef87f62b0046d54059", + "4be3ffa40ad14461adeb5bfafad806f6", + "b3f9eb630a6a4b88857e4d9e1869ffca", + "91a556fcd64843fe877a580eb3e21826", + "6d93c3a9f44342bdbf840b6ce3d04ab6", + "ea83b9bb0b134206a99628d3fe66503a", + "a018604c1f624fb49e1064696a5533fd", + "8b9066519c9546a5b8ad95b239828b89", + "9ec9215968024471a69fa7a9a62db7bb", + "901c6eca0c4a40e7a9ed9fa968874787", + "687438cfca3140d4bc132b6b91ab616c", + "c16a355a4e2443509f3362504882ab7c", + "0e372476bcc04cd5a89a7b0626742c7e", + "56aac0b6cad64e7a9d672583c633c8bf", + "f2da104837ae4a3289e24a1bd7de2415", + "95a67d05e14c40c2a5bdcb322bc61af8", + "f8d6262c216f4226b6d26ad9961b9622", + "00b6d832a0c546c2afb059bd29e54991", + "76af8b2071e8453794f432a7c0bf63d0", + "51730e19fe0c4ead871b9b6cf7895e05", + "2c1cdcb9a80446539b3e229c5cc8ce33", + "7b1889d55328460fbd9c348a2a72e3c8", + "8bb5bfadd1984e5a8c0b27dfbb16bf9a", + "624a5a04f510474e90ac9aaf7ed264b1", + "405277a1c6944a35b1cb082de3b9dbdb", + "32b541d4aa6d4dac8a9dc0e5cdf9ba44", + "2cf66ab1c0f34d71b90ca6ac10eec6d6", + "c9ab627f27d7456d9de249610ffef4a1", + "4b5fa3674a8f467aba1089a39e2978b5", + "1cc3ff808e1543eb9716deba509c37ee", + "426ba1f107354dc78ded5f1ba400895b", + "02ddf97d03404b92a09a0b6a869847d8", + "9b22f445c87a44f9afe39de4a20f08f4", + "9f197e2d7fb54261acbb2d1ddb8b6a30", + "6d9294f45ab14b139f968dae24663783", + "bd5608c4250a4d35aca16aebd1dba7f2", + "92e84bbf66f34be3aa0da2ff046daf94", + "75a890e9c93543eeb2917c165f0d5d20", + "3d4c73330cc44748a4525c7901a281a1", + "4df8ff8e37004b53adcb9a5b32c40fb2" + ] + }, + "id": "WBeMl1mh1ArJ", + "outputId": "4e869fbe-da2b-417b-b1d3-78c913efc4cb" + }, + "outputs": [], + "source": [ + "# Save to the local directory and push it to the Hub\n", + "model.save_pretrained(MODEL_NAME)\n", + "tokenizer.save_pretrained(MODEL_NAME)\n", + "model.save_pretrained_merged(MODEL_NAME, tokenizer, save_method=\"merged_16bit\")\n", + "\n", + "fine_tuned_model = f\"{REPO_NAME}/{MODEL_NAME}\"\n", + "model.push_to_hub(fine_tuned_model, safe_serialization=None)\n", + "tokenizer.push_to_hub(fine_tuned_model, safe_serialization=None)\n", + "model.push_to_hub_merged(fine_tuned_model, tokenizer, save_method=\"merged_16bit\") # for vLLM\n", + "model.push_to_hub_gguf(\n", + " f\"{fine_tuned_model}_q4_k_m\", tokenizer, quantization_method=\"q4_k_m\"\n", + ") # as gguf" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Run Inference" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "kR3gIAX-SM2q", + "outputId": "a8416e33-b27f-4056-8886-ddfec6c891d9" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Okay, so I need to find all the prime numbers between 0 and 125. Hmm, primes are numbers greater than 1 that have no divisors other than 1 and themselves. So, first, I should probably start by listing all numbers from 0 to 125 and then eliminate the non-primes.\n", + "\n", + "Wait, but 0 and 1 aren't primes. So I can ignore them. The smallest prime is 2. So maybe I should start checking from 2 onwards.\n", + "\n", + "I remember that one method to check for primes is the Sieve of Eratosthenes. That's an efficient algorithm for finding all primes up to a certain limit. Let me think about how that works. The idea is to create a list of all numbers up to the limit and then iteratively mark the multiples of each prime starting from 2. The numbers that remain unmarked are primes.\n", + "\n", + "So, applying this to the range 0-125. I'll create a list of booleans from 0 to 125, initializing them all to True except index 0 and 1 which are False. Then, for each number starting from 2, if it's still marked as prime, I'll mark all its multiples as not prime.\n", + "\n", + "Let me outline the steps:\n", + "\n", + "1. Create a list of size 126 (since it's up to 125) and initialize all to True.\n", + "2. Set the indices 0 and 1 to False.\n", + "3. For each number i starting from 2 up to the square root of 125 (which is around 11.18), if the number is still True, mark all multiples of i as False.\n", + "4. After processing, the indices that are still True are primes.\n", + "\n", + "Wait, but the square root is a bit more precise. The Sieve of Eratosthenes only needs to check up to the square root of the limit because any factor larger than that would have a corresponding factor smaller than the square root.\n", + "\n", + "So, for 125, the square root is about 11.18, so I'll loop i from 2 to 11.\n", + "\n", + "Let me try to simulate this:\n", + "\n", + "- Start with all True except 0 and 1.\n", + "- i=2: mark multiples 4,6,8,... up to 124.\n", + "- i=3: mark multiples 9,12,15,... up to 123.\n", + "- i=4: already marked, so skip.\n", + "- i=5: mark 25,30, etc., but since 5 is a prime, it should only mark multiples beyond 25.\n", + "- And so on until i=11.\n", + "\n", + "After this, the indices that are True are the primes.\n", + "\n", + "Once I have the list of primes, I can collect them into a list and return that list.\n", + "\n", + "So, putting this into Python code, I'll create the sieve, then extract the primes.\n", + "\n", + "Let me think about how to implement this. I'll write a function called get_primes_up_to_n(n) which returns the list of primes up to n.\n", + "\n", + "Wait, but the user wants primes from 0 to 125. So the function should handle that.\n", + "\n", + "Alternatively, I can create a function that takes a number and returns the primes up to that number.\n", + "\n", + "So, the steps in code:\n", + "\n", + "1. Define a function get_primes(n) that returns primes up to n.\n", + "2. Inside the function, create a list of booleans from 0 to n, initializing to True, then setting 0 and 1 to False.\n", + "3. For each i from 2 to sqrt(n) + 1, check if it's still True. If so, mark all multiples of i as False.\n", + "4. Collect all indices that are still True and return them as a list.\n", + "\n", + "Wait, but in Python, the square root can be calculated using math.sqrt, but since n is an integer, I should take the integer part. Or, better, loop up to int(math.sqrt(n)) + 1.\n", + "\n", + "Wait, no. The sieve only needs to check up to sqrt(n) because any composite number would have a factor less than or equal to sqrt(n). So for n=125, sqrt is ~11.18, so i should go up to 11.\n", + "\n", + "So, in code:\n", + "\n", + "import math\n", + "\n", + "def get_primes_up_to_n(n):\n", + " if n < 2:\n", + " return []\n", + " sieve = [True] * (n + 1)\n", + " sieve[0] = sieve[1] = False\n", + " for i in range(2, int(math.sqrt(n)) + 1):\n", + " if sieve[i]:\n", + " for j in range(i * i, n + 1, i):\n", + " sieve[j] = False\n", + " primes = [i for i, is_prime in enumerate(sieve) if is_prime]\n", + " return primes\n", + "\n", + "Then, call get_primes_up_to_n(125) to get the primes.\n", + "\n", + "Testing this function with n=125 should give me all primes from 2 up to 125.\n", + "\n", + "Let me see, for example, 2 is a prime, 3,5,7, etc., up to 125.\n", + "\n", + "I think this should work. So the code is straightforward.\n", + "\n", + "\n", + "To find all prime numbers from 0 to 125, we can use the Sieve of Eratosthenes algorithm, which efficiently identifies primes by marking non-prime numbers. Here's a concise Python solution:\n", + "\n", + "```python\n", + "import math\n", + "\n", + "def get_primes_up_to_n(n):\n", + " if n < 2:\n", + " return []\n", + " sieve = [True] * (n + 1)\n", + " sieve[0] = sieve[1] = False\n", + " for i in range(2, int(math.sqrt(n)) + 1):\n", + " if sieve[i]:\n", + " for j in range(i * i, n + 1, i):\n", + " sieve[j] = False\n", + " primes = [i for i, is_prime in enumerate(sieve) if is_prime]\n", + " return primes\n", + "\n", + "primes = get_primes_up_to_n(125)\n", + "print(primes)\n", + "```\n", + "\n", + "This code initializes a boolean list for numbers up to 125, marks non-primes, and returns the primes. The result is a list of primes from 2 to 125.\n", + "<|end▁of▁sentence|>\n" + ] + } + ], + "source": [ + "# Run inference\n", + "question = \"How can I get the prime numbers from 0 to 125?\"\n", + "\n", + "FastLanguageModel.for_inference(model)\n", + "inputs = tokenizer([prompt_style.format(question, \"\")], return_tensors=\"pt\").to(\"cuda\")\n", + "\n", + "outputs = model.generate(\n", + " input_ids=inputs.input_ids,\n", + " attention_mask=inputs.attention_mask,\n", + " max_new_tokens=2048,\n", + " use_cache=True,\n", + ")\n", + "response = tokenizer.batch_decode(outputs)\n", + "print(response[0].split(\"### Response:\")[1])\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "007ba2f3f37c48f8a5e7e21a4a2e5a71": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "00b6d832a0c546c2afb059bd29e54991": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0142b4aeab9b4d87819b86c26a908f7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "02302f414c384422920e3e310f597063": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "02db395a497443adad709a5a5b2ee463": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "02ddf97d03404b92a09a0b6a869847d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_92e84bbf66f34be3aa0da2ff046daf94", + "max": 3554214416, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_75a890e9c93543eeb2917c165f0d5d20", + "value": 3554214416 + } + }, + "03ea6c67112843c9933b3e1a768b77f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "04b79a83f42745449910b1733a8496c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "08220a32e37f4b1dab636ea06a786a1f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6b9552cc29ab4ac7936618bf1f0b1c5c", + "placeholder": "​", + "style": "IPY_MODEL_706d0954642a4ef5b8e3d4ece2fa556e", + "value": "Map (num_proc=2): 100%" + } + }, + "09095674ac234d19be3f0454146201c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0b0ce59c58f947c5ab6b456c4b2b8fd8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2c966a7792594a9bace7cada70bc6e20", + "placeholder": "​", + "style": "IPY_MODEL_eb694d1a1a674598bccff290c5c96077", + "value": " 1/1 [00:01<00:00,  1.39s/it]" + } + }, + "0b722c2760634ce3856dbf2f3ac329fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5094f58022ca4565873196fde589bec8", + "placeholder": "​", + "style": "IPY_MODEL_d180a951e872463c8c39f28f61b3b734", + "value": "special_tokens_map.json: 100%" + } + }, + "0b7b5a1ecb964a9cbd035b559438fb52": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_31abf79b170443fabbbb924ca4220e4c", + "placeholder": "​", + "style": "IPY_MODEL_0142b4aeab9b4d87819b86c26a908f7a", + "value": " 1.81G/1.81G [00:09<00:00, 508MB/s]" + } + }, + "0c677a8b3f234e0480995a3f3f511cfc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0e372476bcc04cd5a89a7b0626742c7e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "178df7b3c6b74583b70b6ebfd2272336": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2bdd42e1bb57415584d2a38edfe8ea6b", + "placeholder": "​", + "style": "IPY_MODEL_398508c460594d22b7fdbf3be15d761b", + "value": "generation_config.json: 100%" + } + }, + "19b6b7f26e394d9fb7c2992d71b1fc14": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1a0a4ae3d6c147c3bbb72e703858aedc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5e51b3b8054d477fa3af1cf1682d4304", + "placeholder": "​", + "style": "IPY_MODEL_213c0e1e238849f7a071b2f9bcf9c433", + "value": "tokenizer_config.json: 100%" + } + }, + "1b216f51a8714e9dab82dc844fed17bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5718ee0ebe1f4cadaf79c14d2a8e5339", + "placeholder": "​", + "style": "IPY_MODEL_a03e6373939e489c87c8ed6546dc03d6", + "value": "model.safetensors: 100%" + } + }, + "1b7f8aad80c0464b819ee74b7f76d40e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e411f85b5a0047c4b510565585215493", + "placeholder": "​", + "style": "IPY_MODEL_fb6566ed643a473e892e68b55fa3ef29", + "value": " 500/500 [00:07<00:00, 85.94 examples/s]" + } + }, + "1cc3ff808e1543eb9716deba509c37ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_426ba1f107354dc78ded5f1ba400895b", + "IPY_MODEL_02ddf97d03404b92a09a0b6a869847d8", + "IPY_MODEL_9b22f445c87a44f9afe39de4a20f08f4" + ], + "layout": "IPY_MODEL_9f197e2d7fb54261acbb2d1ddb8b6a30" + } + }, + "210d0c13cbec434097f0a9b6b68d456d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "213c0e1e238849f7a071b2f9bcf9c433": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "225b460bd91b4995b81cb967a7f8c42c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "24dfeff577da4393bdaa5de47bf5d096": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0b722c2760634ce3856dbf2f3ac329fe", + "IPY_MODEL_8d652113d0964829a65fbbcab211e141", + "IPY_MODEL_d0eb3820302646e9a848da2f936aa9eb" + ], + "layout": "IPY_MODEL_d089d26bfd1a4a8488133f0f82b120c3" + } + }, + "27cacb0adaa944c19d80cd9cb0ddffa9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4be3ffa40ad14461adeb5bfafad806f6", + "placeholder": "​", + "style": "IPY_MODEL_b3f9eb630a6a4b88857e4d9e1869ffca", + "value": "100%" + } + }, + "28b224e830e24bbdb9abf547b3789769": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "29d52353241742bf882ade4bc4eeb402": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2a76087509dd482a81c297ba44e2ae2e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9eea1e4a483b4298a6ad67dfca0ff122", + "max": 500, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2f1ede630a654aeebe7d80640ee9674a", + "value": 500 + } + }, + "2bdd42e1bb57415584d2a38edfe8ea6b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2c1cdcb9a80446539b3e229c5cc8ce33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_32b541d4aa6d4dac8a9dc0e5cdf9ba44", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2cf66ab1c0f34d71b90ca6ac10eec6d6", + "value": 1 + } + }, + "2c966a7792594a9bace7cada70bc6e20": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2cd1ab0231be43078bf2b0861c66756b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bf95bf76909b418db87bed807a8fcd2e", + "max": 629, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_60362ddf26274bbda10f888cae24b527", + "value": 629 + } + }, + "2cf66ab1c0f34d71b90ca6ac10eec6d6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2f1ede630a654aeebe7d80640ee9674a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "31abf79b170443fabbbb924ca4220e4c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "32b541d4aa6d4dac8a9dc0e5cdf9ba44": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "343312cb90c84c6bbfec606bed32765a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4cbc59fddff34f44a0e99e15ff1ae102", + "IPY_MODEL_932c5742442b421389363d2e216626d7", + "IPY_MODEL_f57fce9a80e549609474d84b7d935b33" + ], + "layout": "IPY_MODEL_53f6ce3049474fbda959fd52fe9b5890" + } + }, + "344f6b55db5e43c7b98750e4cbf907d1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "36f85ae64a1e440b8b15d0c5625bd23f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "37b277adce0f47f58ce4f153ebbf9885": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ae4269c9c5434ee79eaa31d197e382c0", + "IPY_MODEL_d7ef28d78e19450e82bd3e42a9fab928", + "IPY_MODEL_0b0ce59c58f947c5ab6b456c4b2b8fd8" + ], + "layout": "IPY_MODEL_c05b434f65a04a07880f82d5dda991e3" + } + }, + "38e3a03149754b048a0459f4e5d00e2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "398508c460594d22b7fdbf3be15d761b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3abc1f45407c4c8c9c6b6d676246aa3b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3bcfc01fccce49ef87f62b0046d54059": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3d4c73330cc44748a4525c7901a281a1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "405277a1c6944a35b1cb082de3b9dbdb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "40f0399f117845b08eff5c5ed84f137d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "426ba1f107354dc78ded5f1ba400895b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6d9294f45ab14b139f968dae24663783", + "placeholder": "​", + "style": "IPY_MODEL_bd5608c4250a4d35aca16aebd1dba7f2", + "value": "model.safetensors: " + } + }, + "453b1c07c5e345fbac74856842c28784": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4b5fa3674a8f467aba1089a39e2978b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4b8d88e2c0634338affb3b4d81e77974": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b7c04ccedc1c48adb34f615f24b8c424", + "placeholder": "​", + "style": "IPY_MODEL_db31df39f56546b6a64a55f97b91a8f2", + "value": " 236/236 [00:00<00:00, 19.1kB/s]" + } + }, + "4be3ffa40ad14461adeb5bfafad806f6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4cbc59fddff34f44a0e99e15ff1ae102": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_71cc82a978664061b4778a73ac25afdb", + "placeholder": "​", + "style": "IPY_MODEL_d4f41624cbea494f803bd76cd78f315f", + "value": "adapter_model.bin: " + } + }, + "4ddc8e1a851c4e9da6ede032d40908f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4df8ff8e37004b53adcb9a5b32c40fb2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5094f58022ca4565873196fde589bec8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "51730e19fe0c4ead871b9b6cf7895e05": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_624a5a04f510474e90ac9aaf7ed264b1", + "placeholder": "​", + "style": "IPY_MODEL_405277a1c6944a35b1cb082de3b9dbdb", + "value": "100%" + } + }, + "52b547101e8848cb9e5881c3e63eca3c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_02db395a497443adad709a5a5b2ee463", + "max": 11422778, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_28b224e830e24bbdb9abf547b3789769", + "value": 11422778 + } + }, + "53f6ce3049474fbda959fd52fe9b5890": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "560be4516ac74cd5a29a0b8304976810": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "56aac0b6cad64e7a9d672583c633c8bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5718ee0ebe1f4cadaf79c14d2a8e5339": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "58aa7a36dbd14511a43268242bf3486c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5b30f4877b554974bb8cdfc9814bb967": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1b216f51a8714e9dab82dc844fed17bf", + "IPY_MODEL_a87fd32f965c41e68249ba9bf4234691", + "IPY_MODEL_0b7b5a1ecb964a9cbd035b559438fb52" + ], + "layout": "IPY_MODEL_453b1c07c5e345fbac74856842c28784" + } + }, + "5d835002db074abea3d5b87e0ce72618": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_679a9d5ae6fb4916a2261f556969f3a0", + "placeholder": "​", + "style": "IPY_MODEL_09095674ac234d19be3f0454146201c2", + "value": "Map: 100%" + } + }, + "5e51b3b8054d477fa3af1cf1682d4304": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "60362ddf26274bbda10f888cae24b527": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "624a5a04f510474e90ac9aaf7ed264b1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "65a71e24010b4ba4884dc0bb2fe37e1f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_99831f0a5b204b24923d5ca3d30c42a9", + "IPY_MODEL_52b547101e8848cb9e5881c3e63eca3c", + "IPY_MODEL_b6e67b2b00be4835962dc5939e25a289" + ], + "layout": "IPY_MODEL_747b3c80a240453c986bc8db01072394" + } + }, + "679a9d5ae6fb4916a2261f556969f3a0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "67dfa13c01f64b589e04c053f89ec671": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6849f7a48eff4ab8a7e01a3e26da7645": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "687438cfca3140d4bc132b6b91ab616c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f8d6262c216f4226b6d26ad9961b9622", + "placeholder": "​", + "style": "IPY_MODEL_00b6d832a0c546c2afb059bd29e54991", + "value": " 11.4M/11.4M [00:00<00:00, 29.2MB/s]" + } + }, + "6904076b530c44ae8a34b2fd424b89c0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "69a1c928a91b485e899218b4c48bbd0f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d1fdaab3815b4beebd51e5240208c14c", + "placeholder": "​", + "style": "IPY_MODEL_0c677a8b3f234e0480995a3f3f511cfc", + "value": "README.md: 100%" + } + }, + "6b9552cc29ab4ac7936618bf1f0b1c5c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6d9294f45ab14b139f968dae24663783": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6d93c3a9f44342bdbf840b6ce3d04ab6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "706d0954642a4ef5b8e3d4ece2fa556e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "71cc82a978664061b4778a73ac25afdb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "747b3c80a240453c986bc8db01072394": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "75a890e9c93543eeb2917c165f0d5d20": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "75dc3defc03044d5a3d5327f982f4ad9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_69a1c928a91b485e899218b4c48bbd0f", + "IPY_MODEL_2cd1ab0231be43078bf2b0861c66756b", + "IPY_MODEL_7d6ef80065f2457ca6a584dea0ee193a" + ], + "layout": "IPY_MODEL_8deac706db694fd9af003a52d9e65c18" + } + }, + "76af8b2071e8453794f432a7c0bf63d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_51730e19fe0c4ead871b9b6cf7895e05", + "IPY_MODEL_2c1cdcb9a80446539b3e229c5cc8ce33", + "IPY_MODEL_7b1889d55328460fbd9c348a2a72e3c8" + ], + "layout": "IPY_MODEL_8bb5bfadd1984e5a8c0b27dfbb16bf9a" + } + }, + "7b1889d55328460fbd9c348a2a72e3c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c9ab627f27d7456d9de249610ffef4a1", + "placeholder": "​", + "style": "IPY_MODEL_4b5fa3674a8f467aba1089a39e2978b5", + "value": " 1/1 [00:31<00:00, 31.56s/it]" + } + }, + "7b9eed20c6554407afb846170e2d946d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_27cacb0adaa944c19d80cd9cb0ddffa9", + "IPY_MODEL_b5037ef5dcdc43a9850bb073addc947f", + "IPY_MODEL_cc7ce94c244548c8954b35bb92936bdd" + ], + "layout": "IPY_MODEL_3bcfc01fccce49ef87f62b0046d54059" + } + }, + "7d6ef80065f2457ca6a584dea0ee193a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cf64d3a6baf545bebc84c62b2863a2a3", + "placeholder": "​", + "style": "IPY_MODEL_a023e723ac13430087c8f019e7bd2946", + "value": " 629/629 [00:00<00:00, 54.2kB/s]" + } + }, + "84a304df3ea4459ebcd3706f57404eba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f74d4bc9f00b4cac8de83792f405ad5a", + "placeholder": "​", + "style": "IPY_MODEL_4ddc8e1a851c4e9da6ede032d40908f0", + "value": " 6.77k/6.77k [00:00<00:00, 610kB/s]" + } + }, + "8b79b01a42614f4e9ae6550703561236": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_225b460bd91b4995b81cb967a7f8c42c", + "max": 500, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_04b79a83f42745449910b1733a8496c7", + "value": 500 + } + }, + "8b9066519c9546a5b8ad95b239828b89": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9ec9215968024471a69fa7a9a62db7bb", + "IPY_MODEL_901c6eca0c4a40e7a9ed9fa968874787", + "IPY_MODEL_687438cfca3140d4bc132b6b91ab616c" + ], + "layout": "IPY_MODEL_c16a355a4e2443509f3362504882ab7c" + } + }, + "8bb5bfadd1984e5a8c0b27dfbb16bf9a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8d652113d0964829a65fbbcab211e141": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_02302f414c384422920e3e310f597063", + "max": 472, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a8001e449dca4533bd56918d8da1a69d", + "value": 472 + } + }, + "8deac706db694fd9af003a52d9e65c18": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8f02d26e18614cd38e891d5ee019bc3d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "901c6eca0c4a40e7a9ed9fa968874787": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f2da104837ae4a3289e24a1bd7de2415", + "max": 11422778, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_95a67d05e14c40c2a5bdcb322bc61af8", + "value": 11422778 + } + }, + "91a556fcd64843fe877a580eb3e21826": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "921c02b29a564833ae10ac54f220c1d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a383ed5654194fefa9312b747d5d6ed6", + "max": 236, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_03ea6c67112843c9933b3e1a768b77f6", + "value": 236 + } + }, + "92e84bbf66f34be3aa0da2ff046daf94": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "932c5742442b421389363d2e216626d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8f02d26e18614cd38e891d5ee019bc3d", + "max": 74000170, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_fefdd42e29544fdba8ba1dd7f28cc85d", + "value": 74000170 + } + }, + "95a67d05e14c40c2a5bdcb322bc61af8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "99831f0a5b204b24923d5ca3d30c42a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_29d52353241742bf882ade4bc4eeb402", + "placeholder": "​", + "style": "IPY_MODEL_c2cd6a947bda4a09ad56b0c2069a9166", + "value": "tokenizer.json: 100%" + } + }, + "9b0488d548f3446d8d20af6d3ac56739": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9b22f445c87a44f9afe39de4a20f08f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3d4c73330cc44748a4525c7901a281a1", + "placeholder": "​", + "style": "IPY_MODEL_4df8ff8e37004b53adcb9a5b32c40fb2", + "value": " 3.57G/? [00:31<00:00, 905MB/s]" + } + }, + "9ec9215968024471a69fa7a9a62db7bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0e372476bcc04cd5a89a7b0626742c7e", + "placeholder": "​", + "style": "IPY_MODEL_56aac0b6cad64e7a9d672583c633c8bf", + "value": "tokenizer.json: 100%" + } + }, + "9eea1e4a483b4298a6ad67dfca0ff122": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9f197e2d7fb54261acbb2d1ddb8b6a30": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a018604c1f624fb49e1064696a5533fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a023e723ac13430087c8f019e7bd2946": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a03e6373939e489c87c8ed6546dc03d6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a383ed5654194fefa9312b747d5d6ed6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a4362f76cffa45a89675d66f8f51d440": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_178df7b3c6b74583b70b6ebfd2272336", + "IPY_MODEL_921c02b29a564833ae10ac54f220c1d4", + "IPY_MODEL_4b8d88e2c0634338affb3b4d81e77974" + ], + "layout": "IPY_MODEL_67dfa13c01f64b589e04c053f89ec671" + } + }, + "a76024ba39194881b63302a11383e84e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a8001e449dca4533bd56918d8da1a69d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a87fd32f965c41e68249ba9bf4234691": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "danger", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b9974277d199419699e9b2a584f6198f", + "max": 1805551084, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_210d0c13cbec434097f0a9b6b68d456d", + "value": 1805550912 + } + }, + "a9f65983f1f24d7c9cceaf65c2191c7d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_36f85ae64a1e440b8b15d0c5625bd23f", + "placeholder": "​", + "style": "IPY_MODEL_fd3643434d0f477f90a59dc8e0bf64f2", + "value": " 500/500 [00:00<00:00, 7480.53 examples/s]" + } + }, + "aa8a0d882d1047e8a6a08b04df1214ea": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ae4269c9c5434ee79eaa31d197e382c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_aa8a0d882d1047e8a6a08b04df1214ea", + "placeholder": "​", + "style": "IPY_MODEL_344f6b55db5e43c7b98750e4cbf907d1", + "value": "100%" + } + }, + "b3f9eb630a6a4b88857e4d9e1869ffca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b5037ef5dcdc43a9850bb073addc947f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_91a556fcd64843fe877a580eb3e21826", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6d93c3a9f44342bdbf840b6ce3d04ab6", + "value": 1 + } + }, + "b6e67b2b00be4835962dc5939e25a289": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a76024ba39194881b63302a11383e84e", + "placeholder": "​", + "style": "IPY_MODEL_40f0399f117845b08eff5c5ed84f137d", + "value": " 11.4M/11.4M [00:00<00:00, 34.1MB/s]" + } + }, + "b7c04ccedc1c48adb34f615f24b8c424": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b9974277d199419699e9b2a584f6198f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bd5608c4250a4d35aca16aebd1dba7f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bf95bf76909b418db87bed807a8fcd2e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c05b434f65a04a07880f82d5dda991e3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c16a355a4e2443509f3362504882ab7c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c2cd6a947bda4a09ad56b0c2069a9166": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c9ab627f27d7456d9de249610ffef4a1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ca279528c62c41559fff7d150a229567": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cc7ce94c244548c8954b35bb92936bdd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ea83b9bb0b134206a99628d3fe66503a", + "placeholder": "​", + "style": "IPY_MODEL_a018604c1f624fb49e1064696a5533fd", + "value": " 1/1 [00:01<00:00,  1.12s/it]" + } + }, + "cf64d3a6baf545bebc84c62b2863a2a3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d089d26bfd1a4a8488133f0f82b120c3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d0eb3820302646e9a848da2f936aa9eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_19b6b7f26e394d9fb7c2992d71b1fc14", + "placeholder": "​", + "style": "IPY_MODEL_007ba2f3f37c48f8a5e7e21a4a2e5a71", + "value": " 472/472 [00:00<00:00, 23.2kB/s]" + } + }, + "d180a951e872463c8c39f28f61b3b734": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d1fdaab3815b4beebd51e5240208c14c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d3de80a9bafa4b4b9c13c4361d6213db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dc84dfd9af984f02a09770dffc8f3001", + "max": 6768, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_38e3a03149754b048a0459f4e5d00e2a", + "value": 6768 + } + }, + "d4f41624cbea494f803bd76cd78f315f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d7ef28d78e19450e82bd3e42a9fab928": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_58aa7a36dbd14511a43268242bf3486c", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9b0488d548f3446d8d20af6d3ac56739", + "value": 1 + } + }, + "db31df39f56546b6a64a55f97b91a8f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "dc84dfd9af984f02a09770dffc8f3001": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e411f85b5a0047c4b510565585215493": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e6ffb622331241239867b1477d3da76b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5d835002db074abea3d5b87e0ce72618", + "IPY_MODEL_8b79b01a42614f4e9ae6550703561236", + "IPY_MODEL_a9f65983f1f24d7c9cceaf65c2191c7d" + ], + "layout": "IPY_MODEL_560be4516ac74cd5a29a0b8304976810" + } + }, + "e865b621b4704786998d9e5511bcb522": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_08220a32e37f4b1dab636ea06a786a1f", + "IPY_MODEL_2a76087509dd482a81c297ba44e2ae2e", + "IPY_MODEL_1b7f8aad80c0464b819ee74b7f76d40e" + ], + "layout": "IPY_MODEL_6849f7a48eff4ab8a7e01a3e26da7645" + } + }, + "ea83b9bb0b134206a99628d3fe66503a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eb694d1a1a674598bccff290c5c96077": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f187dd6f0dbf4f49bca90bd394f27e23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1a0a4ae3d6c147c3bbb72e703858aedc", + "IPY_MODEL_d3de80a9bafa4b4b9c13c4361d6213db", + "IPY_MODEL_84a304df3ea4459ebcd3706f57404eba" + ], + "layout": "IPY_MODEL_6904076b530c44ae8a34b2fd424b89c0" + } + }, + "f2da104837ae4a3289e24a1bd7de2415": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f57fce9a80e549609474d84b7d935b33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ca279528c62c41559fff7d150a229567", + "placeholder": "​", + "style": "IPY_MODEL_3abc1f45407c4c8c9c6b6d676246aa3b", + "value": " 80.0M/? [00:01<00:00, 79.9MB/s]" + } + }, + "f74d4bc9f00b4cac8de83792f405ad5a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f8d6262c216f4226b6d26ad9961b9622": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fb6566ed643a473e892e68b55fa3ef29": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fd3643434d0f477f90a59dc8e0bf64f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fefdd42e29544fdba8ba1dd7f28cc85d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/examples/fine-tune-modernbert-classifier.ipynb b/examples/fine-tune-modernbert-classifier.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..f123cf1b804a818feb86a7560315474800b8dbc0 --- /dev/null +++ b/examples/fine-tune-modernbert-classifier.ipynb @@ -0,0 +1,538 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fine-tune ModernBERT for text classification using synthetic data\n", + "\n", + "LLMs are great general purpose models, but they are not always the best choice for a specific task. Therefore, smaller and more specialized models are important for sustainable, efficient, and cheaper AI.\n", + "A lack of domain sepcific datasets is a common problem for smaller and more specialized models. This is because it is difficult to find a dataset that is both representative and diverse enough for a specific task. We solve this problem by generating a synthetic dataset from an LLM using the `synthetic-data-generator`, which is available as a [Hugging Face Space](https://huggingface.co/spaces/argilla/synthetic-data-generator) or on [GitHub](https://github.com/argilla-io/synthetic-data-generator).\n", + "\n", + "In this example, we will fine-tune a ModernBERT model on a synthetic dataset generated from the synthetic-data-generator. This demonstrates the effectiveness of synthetic data and the novel ModernBERT model, which is a new and improved version of BERT models, with an 8192 token context length, significantly better downstream performance, and much faster processing speeds.\n", + "\n", + "## Install the dependencies" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Install Pytorch & other libraries\n", + "%pip install \"torch==2.5.0\" \"torchvision==0.20.0\" \n", + "%pip install \"setuptools<71.0.0\" scikit-learn \n", + " \n", + "# Install Hugging Face libraries\n", + "%pip install --upgrade \\\n", + " \"datasets==3.1.0\" \\\n", + " \"accelerate==1.2.1\" \\\n", + " \"hf-transfer==0.1.8\"\n", + " \n", + "# ModernBERT is not yet available in an official release, so we need to install it from github\n", + "%pip install \"git+https://github.com/huggingface/transformers.git@6e0515e99c39444caae39472ee1b2fd76ece32f1\" --upgrade" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The problem\n", + "\n", + "The [nvidia/domain-classifier](https://huggingface.co/nvidia/domain-classifier), is a model that can classify the domain of a text which can help with curating data. This model is cool but is based on the Deberta V3 Base, which is an outdated architecture that requires custom code to run, has a context length of 512 tokens, and is not as fast as the ModernBERT model. The labels for the model are:\n", + "\n", + "```\n", + "'Adult', 'Arts_and_Entertainment', 'Autos_and_Vehicles', 'Beauty_and_Fitness', 'Books_and_Literature', 'Business_and_Industrial', 'Computers_and_Electronics', 'Finance', 'Food_and_Drink', 'Games', 'Health', 'Hobbies_and_Leisure', 'Home_and_Garden', 'Internet_and_Telecom', 'Jobs_and_Education', 'Law_and_Government', 'News', 'Online_Communities', 'People_and_Society', 'Pets_and_Animals', 'Real_Estate', 'Science', 'Sensitive_Subjects', 'Shopping', 'Sports', 'Travel_and_Transportation'\n", + "```\n", + "\n", + "The data on which the model was trained is not available, so we cannot use it for our purposes. We can however generate a synthetic data to solve this problem." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "vscode": { + "languageId": "plaintext" + } + }, + "source": [ + "## Let's generate some data\n", + "\n", + "Let's go to the [hosted Hugging Face Space](https://huggingface.co/spaces/argilla/synthetic-data-generator) to generate the data. This is done in three steps 1) we come up with a dataset description, 2) iterate on the task configuration, and 3) generate and push the data to Hugging Face. A more detailed flow can be found in [this blogpost](https://huggingface.co/blog/synthetic-data-generator). \n", + "\n", + "\n", + "\n", + "For this example, we will generate 1000 examples with a temperature of 1. After some iteration, we come up with the following system prompt:\n", + "\n", + "```\n", + "Long texts (at least 2000 words) from various media sources like Wikipedia, Reddit, Common Crawl, websites, commercials, online forums, books, newspapers and folders that cover multiple topics. Classify the text based on its main subject matter into one of the following categories\n", + "```\n", + "\n", + "We press the \"Push to Hub\" button and wait for the data to be generated. This takes a few minutes and we end up with a dataset with 1000 examples. The labels are nicely distributed across the categories, varied in length, and the texts look diverse and interesting.\n", + "\n", + "\n", + "\n", + "The data is pushed to Argilla to so we recommend inspecting and validating the labels before finetuning the model." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Finetuning the ModernBERT model\n", + "\n", + "We mostly rely on the blog from [Phillip Schmid](https://www.philschmid.de/fine-tune-modern-bert-in-2025). I will basic consumer hardware, my Apple M1 Max with 32GB of shared memory. We will use the `datasets` library to load the data and the `transformers` library to finetune the model." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/davidberenstein/Documents/programming/argilla/synthetic-data-generator/.venv/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + }, + { + "data": { + "text/plain": [ + "{'text': 'Recently, there has been an increase in property values within the suburban areas of several cities due to improvements in infrastructure and lifestyle amenities such as parks, retail stores, and educational institutions nearby. Additionally, new housing developments are emerging, catering to different family needs with varying sizes and price ranges. These changes have influenced investment decisions for many looking to buy or sell properties.',\n", + " 'label': 14}" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from datasets import load_dataset\n", + "from datasets.arrow_dataset import Dataset\n", + "from datasets.dataset_dict import DatasetDict, IterableDatasetDict\n", + "from datasets.iterable_dataset import IterableDataset\n", + " \n", + "# Dataset id from huggingface.co/dataset\n", + "dataset_id = \"argilla/synthetic-domain-text-classification\"\n", + " \n", + "# Load raw dataset\n", + "train_dataset = load_dataset(dataset_id, split='train')\n", + "\n", + "split_dataset = train_dataset.train_test_split(test_size=0.1)\n", + "split_dataset['train'][0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, we need to tokenize the data. We will use the `AutoTokenizer` class from the `transformers` library to load the tokenizer." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Map: 100%|██████████| 900/900 [00:00<00:00, 4787.61 examples/s]\n", + "Map: 100%|██████████| 100/100 [00:00<00:00, 4163.70 examples/s]\n" + ] + }, + { + "data": { + "text/plain": [ + "dict_keys(['labels', 'input_ids', 'attention_mask'])" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from transformers import AutoTokenizer\n", + " \n", + "# Model id to load the tokenizer\n", + "model_id = \"answerdotai/ModernBERT-base\"\n", + "\n", + "# Load Tokenizer\n", + "tokenizer = AutoTokenizer.from_pretrained(model_id)\n", + " \n", + "# Tokenize helper function\n", + "def tokenize(batch):\n", + " return tokenizer(batch['text'], padding=True, truncation=True, return_tensors=\"pt\")\n", + " \n", + "# Tokenize dataset\n", + "if \"label\" in split_dataset[\"train\"].features.keys():\n", + " split_dataset = split_dataset.rename_column(\"label\", \"labels\") # to match Trainer\n", + "tokenized_dataset = split_dataset.map(tokenize, batched=True, remove_columns=[\"text\"])\n", + " \n", + "tokenized_dataset[\"train\"].features.keys()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we need to prepare the model. We will use the `AutoModelForSequenceClassification` class from the `transformers` library to load the model." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of ModernBertForSequenceClassification were not initialized from the model checkpoint at answerdotai/ModernBERT-base and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + } + ], + "source": [ + "from transformers import AutoModelForSequenceClassification\n", + " \n", + "# Model id to load the tokenizer\n", + "model_id = \"answerdotai/ModernBERT-base\"\n", + " \n", + "# Prepare model labels - useful for inference\n", + "labels = tokenized_dataset[\"train\"].features[\"labels\"].names\n", + "num_labels = len(labels)\n", + "label2id, id2label = dict(), dict()\n", + "for i, label in enumerate(labels):\n", + " label2id[label] = str(i)\n", + " id2label[str(i)] = label\n", + " \n", + "# Download the model from huggingface.co/models\n", + "model = AutoModelForSequenceClassification.from_pretrained(\n", + " model_id, num_labels=num_labels, label2id=label2id, id2label=id2label,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will use a simple F1 score as the evaluation metric." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from sklearn.metrics import f1_score\n", + " \n", + "# Metric helper method\n", + "def compute_metrics(eval_pred):\n", + " predictions, labels = eval_pred\n", + " predictions = np.argmax(predictions, axis=1)\n", + " score = f1_score(\n", + " labels, predictions, labels=labels, pos_label=1, average=\"weighted\"\n", + " )\n", + " return {\"f1\": float(score) if score == 1 else score}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we need to define the training arguments. We will use the `TrainingArguments` class from the `transformers` library to define the training arguments." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/davidberenstein/Documents/programming/argilla/synthetic-data-generator/.venv/lib/python3.11/site-packages/transformers/training_args.py:2241: UserWarning: `use_mps_device` is deprecated and will be removed in version 5.0 of 🤗 Transformers. `mps` device will be used by default if available similar to the way `cuda` device is used.Therefore, no action from user is required. \n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "from huggingface_hub import HfFolder\n", + "from transformers import Trainer, TrainingArguments\n", + " \n", + "# Define training args\n", + "training_args = TrainingArguments(\n", + " output_dir= \"ModernBERT-domain-classifier\",\n", + " per_device_train_batch_size=32,\n", + " per_device_eval_batch_size=16,\n", + " learning_rate=5e-5,\n", + "\t\tnum_train_epochs=5,\n", + " bf16=True, # bfloat16 training \n", + " optim=\"adamw_torch_fused\", # improved optimizer \n", + " # logging & evaluation strategies\n", + " logging_strategy=\"steps\",\n", + " logging_steps=100,\n", + " eval_strategy=\"epoch\",\n", + " save_strategy=\"epoch\",\n", + " save_total_limit=2,\n", + " load_best_model_at_end=True,\n", + " use_mps_device=True,\n", + " metric_for_best_model=\"f1\",\n", + " # push to hub parameters\n", + " push_to_hub=True,\n", + " hub_strategy=\"every_save\",\n", + " hub_token=HfFolder.get_token(),\n", + ")\n", + " \n", + "# Create a Trainer instance\n", + "trainer = Trainer(\n", + " model=model,\n", + " args=training_args,\n", + " train_dataset=tokenized_dataset[\"train\"],\n", + " eval_dataset=tokenized_dataset[\"test\"],\n", + " compute_metrics=compute_metrics,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \n", + " 20%|██ | 29/145 [11:32<33:16, 17.21s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.729780912399292, 'eval_f1': 0.7743598318036522, 'eval_runtime': 3.5337, 'eval_samples_per_second': 28.299, 'eval_steps_per_second': 1.981, 'epoch': 1.0}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \n", + " 40%|████ | 58/145 [22:57<25:56, 17.89s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.4369044005870819, 'eval_f1': 0.8310764765820946, 'eval_runtime': 3.3266, 'eval_samples_per_second': 30.061, 'eval_steps_per_second': 2.104, 'epoch': 2.0}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \n", + " 60%|██████ | 87/145 [35:16<17:06, 17.70s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.6091340184211731, 'eval_f1': 0.8399274488570763, 'eval_runtime': 3.2772, 'eval_samples_per_second': 30.514, 'eval_steps_per_second': 2.136, 'epoch': 3.0}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 69%|██████▉ | 100/145 [41:03<18:02, 24.06s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'loss': 0.7663, 'grad_norm': 7.232136249542236, 'learning_rate': 1.5517241379310346e-05, 'epoch': 3.45}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \n", + " 80%|████████ | 116/145 [47:23<08:50, 18.30s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.43516409397125244, 'eval_f1': 0.8797674004703547, 'eval_runtime': 3.2975, 'eval_samples_per_second': 30.326, 'eval_steps_per_second': 2.123, 'epoch': 4.0}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " \n", + "100%|██████████| 145/145 [1:00:40<00:00, 19.18s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.39272159337997437, 'eval_f1': 0.8914389523348718, 'eval_runtime': 3.5564, 'eval_samples_per_second': 28.118, 'eval_steps_per_second': 1.968, 'epoch': 5.0}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 145/145 [1:00:42<00:00, 25.12s/it]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'train_runtime': 3642.7783, 'train_samples_per_second': 1.235, 'train_steps_per_second': 0.04, 'train_loss': 0.535627057634551, 'epoch': 5.0}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "events.out.tfevents.1735555878.Davids-MacBook-Pro.local.23438.0: 100%|██████████| 9.32k/9.32k [00:00<00:00, 55.0kB/s]\n" + ] + }, + { + "data": { + "text/plain": [ + "CommitInfo(commit_url='https://huggingface.co/davidberenstein1957/domain-classifier/commit/915f4b03c230cc8f376f13729728f14347400041', commit_message='End of training', commit_description='', oid='915f4b03c230cc8f376f13729728f14347400041', pr_url=None, repo_url=RepoUrl('https://huggingface.co/davidberenstein1957/domain-classifier', endpoint='https://huggingface.co', repo_type='model', repo_id='davidberenstein1957/domain-classifier'), pr_revision=None, pr_num=None)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trainer.train()\n", + "# Save processor and create model card\n", + "tokenizer.save_pretrained(\"ModernBERT-domain-classifier\")\n", + "trainer.create_model_card()\n", + "trainer.push_to_hub()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We get an F1 score of 0.89 on the test set, which is pretty good for the small dataset and time spent." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Run inference\n", + "\n", + "We can now load the model and run inference." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Device set to use mps:0\n" + ] + }, + { + "data": { + "text/plain": [ + "[{'label': 'health', 'score': 0.6779336333274841}]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from transformers import pipeline\n", + " \n", + "# load model from huggingface.co/models using our repository id\n", + "classifier = pipeline(\n", + " task=\"text-classification\", \n", + " model=\"argilla/ModernBERT-domain-classifier\", \n", + " device=0,\n", + ")\n", + " \n", + "sample = \"Smoking is bad for your health.\"\n", + " \n", + "classifier(sample)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conclusion\n", + "\n", + "We have shown that we can generate a synthetic dataset from an LLM and finetune a ModernBERT model on it. This the effectiveness of synthetic data and the novel ModernBERT model, which is new and improved version of BERT models, with 8192 token context length, significantly better downstream performance, and much faster processing speeds. \n", + "\n", + "Pretty cool for 20 minutes of generating data, and an hour of fine-tuning on consumer hardware." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/fine-tune-modernbert-rag.ipynb b/examples/fine-tune-modernbert-rag.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..457addb286f4cf157f6ad9855a5c6baf7c6ac451 --- /dev/null +++ b/examples/fine-tune-modernbert-rag.ipynb @@ -0,0 +1,980 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fine-tune ModernBERT with Synthetic Data for RAG\n", + "\n", + "This notebook demonstrates the fine-tuning process of `modernbert-embed-base` using synthetic data tailored for the Retrieval-Augmented Generation (RAG) model.\n", + "\n", + "It provides a complete walkthrough of the fine-tuning process after generating synthetic data using the Synthetic Data Generator. For a comprehensive explanation of the methodology and additional details, refer to the blog post: [Fine-tune ModernBERT for RAG with Synthetic Data](https://huggingface.co/blog/fine-tune-modernbert-for-rag-with-synthetic-data)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Getting Started" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Install the Dependencies" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!pip install torch\n", + "!pip install datasets\n", + "!pip install sentence-transformers\n", + "!pip install haystack-ai\n", + "!pip install git+https://github.com/huggingface/transformers.git # for the latest version of transformers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import the Required Libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "from torch.utils.data import DataLoader\n", + "\n", + "from datasets import load_dataset, concatenate_datasets, Dataset, DatasetDict\n", + "\n", + "\n", + "from sentence_transformers import (\n", + " SentenceTransformer,\n", + " SentenceTransformerModelCardData,\n", + " CrossEncoder,\n", + " InputExample,\n", + " SentenceTransformerTrainer,\n", + ")\n", + "from sentence_transformers.losses import TripletLoss\n", + "from sentence_transformers.training_args import (\n", + " SentenceTransformerTrainingArguments,\n", + " BatchSamplers,\n", + ")\n", + "from sentence_transformers.evaluation import TripletEvaluator\n", + "from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator\n", + "\n", + "\n", + "from haystack import Document, Pipeline\n", + "from haystack.document_stores.in_memory import InMemoryDocumentStore\n", + "from haystack.components.embedders import (\n", + " SentenceTransformersDocumentEmbedder,\n", + " SentenceTransformersTextEmbedder,\n", + ")\n", + "from haystack.components.rankers import SentenceTransformersDiversityRanker\n", + "from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever\n", + "from haystack.components.builders import ChatPromptBuilder\n", + "from haystack.components.generators.chat import HuggingFaceAPIChatGenerator\n", + "from haystack.dataclasses import ChatMessage\n", + "from haystack.utils import Secret\n", + "from haystack.utils.hf import HFGenerationAPIType" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Configure the Environment" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "MODEL = \"nomic-ai/modernbert-embed-base\"\n", + "REPO_NAME = \"sdiazlor\" # your HF username here\n", + "MODEL_NAME_BIENCODER = \"modernbert-embed-base-biencoder-human-rights\"\n", + "MODEL_NAME_CROSSENCODER = \"modernbert-embed-base-crossencoder-human-rights\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using device: mps\n" + ] + } + ], + "source": [ + "if torch.backends.mps.is_available():\n", + " device = \"mps\"\n", + "elif torch.cuda.is_available():\n", + " device = \"cuda\"\n", + "else:\n", + " device = \"cpu\"\n", + "\n", + "print(f\"Using device: {device}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pre-process the Synthetic Data" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Dataset({\n", + " features: ['context', 'question', 'response', 'positive_retrieval', 'negative_retrieval', 'positive_reranking', 'negative_reranking'],\n", + " num_rows: 1000\n", + "})" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Combine the generated datasets from files and prompts\n", + "\n", + "dataset_rag_from_file = load_dataset(f\"{REPO_NAME}/rag-human-rights-from-files\", split=\"train\")\n", + "dataset_rag_from_prompt = load_dataset(f\"{REPO_NAME}/rag-human-rights-from-prompt\", split=\"train\")\n", + "\n", + "combined_rag_dataset = concatenate_datasets(\n", + " [dataset_rag_from_file, dataset_rag_from_prompt]\n", + ")\n", + "\n", + "combined_rag_dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Dataset({\n", + " features: ['context', 'question', 'response', 'positive_retrieval', 'negative_retrieval', 'positive_reranking', 'negative_reranking'],\n", + " num_rows: 828\n", + "})" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Filter out examples with empty or NaN values\n", + "\n", + "def filter_empty_or_nan(example):\n", + " return all(\n", + " value is not None and str(value).strip() != \"\" for value in example.values()\n", + " )\n", + "\n", + "filtered_rag_dataset = combined_rag_dataset.filter(filter_empty_or_nan).shuffle(seed=42)\n", + "filtered_rag_dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dataset({\n", + " features: ['anchor', 'positive', 'negative'],\n", + " num_rows: 828\n", + "})\n", + "Dataset({\n", + " features: ['anchor', 'positive'],\n", + " num_rows: 828\n", + "})\n" + ] + } + ], + "source": [ + "# Rename, select and reorder columns according to the expected format for the SentenceTransformer and CrossEncoder models\n", + "\n", + "def rename_and_reorder_columns(dataset, rename_map, selected_columns):\n", + " for old_name, new_name in rename_map.items():\n", + " if old_name in dataset.column_names:\n", + " dataset = dataset.rename_column(old_name, new_name)\n", + " dataset = dataset.select_columns(selected_columns)\n", + " return dataset\n", + "\n", + "clean_rag_dataset_biencoder = rename_and_reorder_columns(\n", + " filtered_rag_dataset,\n", + " rename_map={\"context\": \"anchor\", \"positive_retrieval\": \"positive\", \"negative_retrieval\": \"negative\"},\n", + " selected_columns=[\"anchor\", \"positive\", \"negative\"],\n", + ")\n", + "\n", + "clean_rag_dataset_crossencoder = rename_and_reorder_columns(\n", + " filtered_rag_dataset,\n", + " rename_map={\"context\": \"anchor\", \"positive_retrieval\": \"positive\"}, #TODO\n", + " selected_columns=[\"anchor\", \"positive\"],\n", + ")\n", + "\n", + "print(clean_rag_dataset_biencoder)\n", + "print(clean_rag_dataset_crossencoder)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of BertForSequenceClassification were not initialized from the model checkpoint at Snowflake/snowflake-arctic-embed-m-v1.5 and are newly initialized: ['classifier.bias', 'classifier.weight', 'pooler.dense.bias', 'pooler.dense.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "406c4d22f43f41d592d3b94da2955444", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Map: 0%| | 0/828 [00:00\n", + " \n", + " \n", + " [123/123 25:34, Epoch 2/3]\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation LossCosine Accuracy
1No log3.6559290.969880
214.3740003.4983950.981928

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "faad6e9752f34babadff7a966ae55d87", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Computing widget examples: 0%| | 0/1 [00:00\n", + "🚅 Components\n", + " - text_embedder: SentenceTransformersTextEmbedder\n", + " - retriever: InMemoryEmbeddingRetriever\n", + " - ranker: SentenceTransformersDiversityRanker\n", + " - prompt_builder: ChatPromptBuilder\n", + " - llm: HuggingFaceAPIChatGenerator\n", + "🛤️ Connections\n", + " - text_embedder.embedding -> retriever.query_embedding (List[float])\n", + " - retriever.documents -> ranker.documents (List[Document])\n", + " - ranker.documents -> prompt_builder.documents (List[Document])\n", + " - prompt_builder.prompt -> llm.messages (List[ChatMessage])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Connect the components to each other\n", + "\n", + "rag_pipeline.connect(\"text_embedder.embedding\", \"retriever.query_embedding\")\n", + "rag_pipeline.connect(\"retriever.documents\", \"ranker.documents\")\n", + "rag_pipeline.connect(\"ranker\", \"prompt_builder\")\n", + "rag_pipeline.connect(\"prompt_builder.prompt\", \"llm.messages\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "80c813c847524f1493067f6dbe65c725", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Batches: 0%| | 0/1 [00:00\n", + "\n", + "For this example, we will generate 5000 chat data examples for a single turn in the conversation. All examples have been generated with a temperature of 1. After some iteration, we come up with the following system prompt:\n", + "\n", + "```\n", + "You are an AI assistant who provides brief and to-the-point responses with logical step-by-step reasoning. Your purpose is to offer straightforward explanations and answers so that you can get to the heart of the issue. Respond with extremely concise, direct justifications and evidence-based conclusions. User questions are direct and concise.\n", + "```\n", + "\n", + "We press the \"Push to Hub\" button and wait for the data to be generated. This takes a few hours and we end up with a dataset with 5000 examples, which is the maximum number of examples we can generate in a single run. You can scale this by deploying a private instance of the Synthetic Data Generator. \n", + "\n", + "\n", + "\n", + "The data is pushed to Argilla too so we recommend inspecting and validating the the data before finetuning the actual model. We applied some basic filters and transformations to the data to make it more suitable for fine-tuning.\n", + "\n", + "## Fine-tune the model\n", + "\n", + "We will use TRL to fine-tune the model. It is part of the Hugging Face ecosystem and works seamlessly on top of datasets generated by the synthetic data generator without needing to do any data transformations.\n", + "\n", + "### Load the model\n", + "\n", + "We will first load the model and tokenizer and set up the chat format." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Import necessary libraries\n", + "from transformers import AutoModelForCausalLM, AutoTokenizer\n", + "from datasets import load_dataset\n", + "from trl import SFTConfig, SFTTrainer, setup_chat_format\n", + "import torch\n", + "import os\n", + "\n", + "device = (\n", + " \"cuda\"\n", + " if torch.cuda.is_available()\n", + " else \"mps\" if torch.backends.mps.is_available() else \"cpu\"\n", + ")\n", + "\n", + "# Load the model and tokenizer\n", + "model_name = \"HuggingFaceTB/SmolLM2-360M\"\n", + "model = AutoModelForCausalLM.from_pretrained(\n", + " pretrained_model_name_or_path=model_name\n", + ")\n", + "tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=model_name)\n", + "\n", + "# Set up the chat format\n", + "model, tokenizer = setup_chat_format(model=model, tokenizer=tokenizer)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Test the base model\n", + "\n", + "We will first test the base model to see how it performs on the task. During this step we will also generate a prompt for the model to respond to, to see how it performs on the task." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Device set to use mps:0\n" + ] + }, + { + "data": { + "text/plain": [ + "[{'generated_text': 'What is the primary function of mitochondria within a cell?\\n\\nMitochondria are the powerhouses of the cell. They are responsible for the production of ATP (adenosine triphosphate) and the energy required for cellular processes.\\n\\nWhat is the function of the mitochondria in the cell?\\n\\nThe mitochondria are the powerhouses of the cell. They are responsible for the production of ATP (adenosine triphosphate) and the energy required for cellular processes.\\n\\nWhat is the function of the mitochondria in the cell?\\n\\nThe'}]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from transformers import pipeline\n", + "\n", + "prompt = \"What is the primary function of mitochondria within a cell?\"\n", + "\n", + "pipe = pipeline(\"text-generation\", model=model, tokenizer=tokenizer, device=device)\n", + "pipe(prompt, max_new_tokens=100)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load the dataset\n", + "\n", + "For fine-tuning, we need to load the dataset and tokenize it. We will use the `synthetic-concise-reasoning-sft-filtered` dataset that we generated in the previous step." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Map: 100%|██████████| 4133/4133 [00:00<00:00, 18478.53 examples/s]\n" + ] + } + ], + "source": [ + "from datasets import load_dataset\n", + "\n", + "ds = load_dataset(\"argilla/synthetic-concise-reasoning-sft-filtered\")\n", + "def tokenize_function(examples):\n", + " examples[\"text\"] = tokenizer.apply_chat_template([{\"role\": \"user\", \"content\": examples[\"prompt\"].strip()}, {\"role\": \"assistant\", \"content\": examples[\"completion\"].strip()}], tokenize=False)\n", + " return examples\n", + "ds = ds.map(tokenize_function)\n", + "ds = ds.shuffle()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fine-tune the model\n", + "\n", + "We will now fine-tune the model. We will use the `SFTTrainer` from the `trl` library to fine-tune the model. We will use a batch size of 4 and a learning rate of 5e-5. We will also use the `use_mps_device` flag to use the MPS device if available." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "os.environ[\"PYTORCH_MPS_HIGH_WATERMARK_RATIO\"] = \"0.0\"\n", + "\n", + "# Configure the SFTTrainer\n", + "sft_config = SFTConfig(\n", + " output_dir=\"./sft_output\",\n", + " num_train_epochs=1,\n", + " per_device_train_batch_size=4, # Set according to your GPU memory capacity\n", + " learning_rate=5e-5, # Common starting point for fine-tuning\n", + " logging_steps=100, # Frequency of logging training metrics\n", + " use_mps_device= True if device == \"mps\" else False,\n", + " hub_model_id=\"argilla/SmolLM2-360M-synthetic-concise-reasoning\", # Set a unique name for your model\n", + " push_to_hub=True,\n", + ")\n", + "\n", + "# Initialize the SFTTrainer\n", + "trainer = SFTTrainer(\n", + " model=model,\n", + " args=sft_config,\n", + " train_dataset=ds[\"train\"],\n", + " tokenizer=tokenizer,\n", + ")\n", + "trainer.train()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```\n", + "# {'loss': 1.4498, 'grad_norm': 2.3919131755828857, 'learning_rate': 4e-05, 'epoch': 0.1}\n", + "# {'loss': 1.362, 'grad_norm': 1.6650595664978027, 'learning_rate': 3e-05, 'epoch': 0.19}\n", + "# {'loss': 1.3778, 'grad_norm': 1.4778285026550293, 'learning_rate': 2e-05, 'epoch': 0.29}\n", + "# {'loss': 1.3735, 'grad_norm': 2.1424977779388428, 'learning_rate': 1e-05, 'epoch': 0.39}\n", + "# {'loss': 1.3512, 'grad_norm': 2.3498542308807373, 'learning_rate': 0.0, 'epoch': 0.48}\n", + "# {'train_runtime': 1911.514, 'train_samples_per_second': 1.046, 'train_steps_per_second': 0.262, 'train_loss': 1.3828572998046875, 'epoch': 0.48}\n", + "```\n", + "\n", + "For the example, we did not use a specific validation set but we can see the loss is decreasing, so we assume the model is generalsing well to the training data. To get a better understanding of the model's performance, let's test it again with the same prompt.\n", + "\n", + "### Run inference\n", + "\n", + "We can now run inference with [the fine-tuned model](https://huggingface.co/argilla/SmolLM2-360M-synthetic-concise-reasoning/blob/main/README.md)." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Device set to use mps\n" + ] + }, + { + "data": { + "text/plain": [ + "'The primary function of mitochondria is to generate energy for the cell. They are organelles found in eukaryotic cells that convert nutrients into ATP (adenosine triphosphate), which is the primary source of energy for cellular processes.\\nMitochondria are responsible for:\\n\\nEnergy production: Mitochondria produce ATP through a process called oxidative phosphorylation, which involves the transfer of electrons from food molecules to oxygen.\\nEnergy storage: Mitochondria store energy in the form of adenosine triphosphate (ATP), which is used by the cell for various cellular processes.\\nCellular respiration: Mitochondria also participate in cellular respiration, a'" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "prompt = \"What is the primary function of mitochondria within a cell?\"\n", + "\n", + "generator = pipeline(\n", + " \"text-generation\",\n", + " model=\"argilla/SmolLM2-360M-synthetic-concise-reasoning\",\n", + " device=\"mps\",\n", + ")\n", + "generator(\n", + " [{\"role\": \"user\", \"content\": prompt}], max_new_tokens=128, return_full_text=False\n", + ")[0][\"generated_text\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conclusion\n", + "\n", + "We have fine-tuned a SmolLM2 model on a synthetic dataset generated from a large language model. We have seen that the model performs well on the task and that the synthetic data is a great way to generate diverse and representative data for supervised fine-tuning. \n", + "\n", + "In practice, you would likely want to spend more time on the data quality and fine-tuning the model but the flow shows the Synthetic Data Generator is a great tool to generate synthetic data for any task.\n", + "\n", + "Overall, I think it is pretty cool for a couple of hours of generation and fine-tuning on consumer hardware.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/hf-dedicated-or-tgi-deployment.py b/examples/hf-dedicated-or-tgi-deployment.py new file mode 100644 index 0000000000000000000000000000000000000000..0c726db15b6d7da081b57c56227576d8354780f4 --- /dev/null +++ b/examples/hf-dedicated-or-tgi-deployment.py @@ -0,0 +1,19 @@ +# /// script +# requires-python = ">=3.11,<3.12" +# dependencies = [ +# "synthetic-dataset-generator", +# ] +# /// +import os + +from synthetic_dataset_generator import launch + +os.environ["HF_TOKEN"] = "hf_..." # push the data to huggingface +os.environ["HUGGINGFACE_BASE_URL"] = "http://127.0.0.1:3000/" # dedicated endpoint/TGI +os.environ["MAGPIE_PRE_QUERY_TEMPLATE"] = "llama3" # magpie template +os.environ["TOKENIZER_ID"] = ( + "meta-llama/Llama-3.1-8B-Instruct" # tokenizer for model hosted on endpoint +) +os.environ["MODEL"] = None # model is linked to endpoint + +launch() diff --git a/examples/hf-serverless-deployment-deepseek.py b/examples/hf-serverless-deployment-deepseek.py new file mode 100644 index 0000000000000000000000000000000000000000..e4c7097235ac6437497a08983bc0856c88ae7b6c --- /dev/null +++ b/examples/hf-serverless-deployment-deepseek.py @@ -0,0 +1,16 @@ +# /// script +# requires-python = ">=3.11,<3.12" +# dependencies = [ +# "synthetic-dataset-generator", +# ] +# /// +import os + +from synthetic_dataset_generator import launch + +os.environ["HF_TOKEN"] = "hf_..." # push the data to huggingface +os.environ["MODEL"] = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" # use model for instructions +os.environ["MAGPIE_PRE_QUERY_TEMPLATE"] = "<|begin▁of▁sentence|>User: " # use the custom template for the model + + +launch() diff --git a/examples/hf-serverless-deployment.py b/examples/hf-serverless-deployment.py new file mode 100644 index 0000000000000000000000000000000000000000..ba7550d3a4005543bec3092c4838b9cb77a09197 --- /dev/null +++ b/examples/hf-serverless-deployment.py @@ -0,0 +1,15 @@ +# /// script +# requires-python = ">=3.11,<3.12" +# dependencies = [ +# "synthetic-dataset-generator", +# ] +# /// +import os + +from synthetic_dataset_generator import launch + +os.environ["HF_TOKEN"] = "hf_..." # push the data to huggingface +os.environ["MODEL"] = "meta-llama/Llama-3.1-8B-Instruct" # use model for generation +os.environ["MAGPIE_PRE_QUERY_TEMPLATE"] = "llama3" # use the template for the model + +launch() diff --git a/examples/hf-serverless-different-model-for-completion.py b/examples/hf-serverless-different-model-for-completion.py new file mode 100644 index 0000000000000000000000000000000000000000..28d06db099d2aac6923affc7eebe5958813b3765 --- /dev/null +++ b/examples/hf-serverless-different-model-for-completion.py @@ -0,0 +1,16 @@ +# /// script +# requires-python = ">=3.11,<3.12" +# dependencies = [ +# "synthetic-dataset-generator", +# ] +# /// +import os + +from synthetic_dataset_generator import launch + +os.environ["HF_TOKEN"] = "hf_..." # push the data to huggingface +os.environ["MODEL"] = "meta-llama/Llama-3.1-8B-Instruct" # use model for instruction generation +os.environ["MODEL_COMPLETION"] = "meta-llama/Llama-3.1-70B-Instruct" # use model for completion generation +os.environ["MAGPIE_PRE_QUERY_TEMPLATE"] = "llama3" # use the template for the model + +launch() diff --git a/examples/ollama-deployment.py b/examples/ollama-deployment.py new file mode 100644 index 0000000000000000000000000000000000000000..bd32be1ee3abfe4148c138727276bbf3ad9f22d4 --- /dev/null +++ b/examples/ollama-deployment.py @@ -0,0 +1,22 @@ +# /// script +# requires-python = ">=3.11,<3.12" +# dependencies = [ +# "synthetic-dataset-generator", +# ] +# /// +# ollama serve +# ollama run qwen2.5:32b-instruct-q5_K_S +import os + +from synthetic_dataset_generator import launch + +os.environ["HF_TOKEN"] = "hf_..." # push the data to huggingface +os.environ["OLLAMA_BASE_URL"] = "http://127.0.0.1:11434/" # ollama base url +os.environ["MODEL"] = "qwen2.5:32b-instruct-q5_K_S" # model id +os.environ["TOKENIZER_ID"] = "Qwen/Qwen2.5-32B-Instruct" # tokenizer id +os.environ["MAGPIE_PRE_QUERY_TEMPLATE"] = "qwen2" +os.environ["MAX_NUM_ROWS"] = "10000" +os.environ["DEFAULT_BATCH_SIZE"] = "2" +os.environ["MAX_NUM_TOKENS"] = "1024" + +launch() diff --git a/examples/ollama-different-model-for-completion.py b/examples/ollama-different-model-for-completion.py new file mode 100644 index 0000000000000000000000000000000000000000..4efb9919b1052d14e53a06832a112d6f521a33bb --- /dev/null +++ b/examples/ollama-different-model-for-completion.py @@ -0,0 +1,26 @@ +# /// script +# requires-python = ">=3.11,<3.12" +# dependencies = [ +# "synthetic-dataset-generator", +# ] +# /// +# ollama serve +# ollama run llama3.2 +# ollama run llama3.2:1b +import os + +from synthetic_dataset_generator import launch + +os.environ["OLLAMA_BASE_URL"] = ( + "http://127.0.0.1:11434/" # in this case, the same base url for both models +) + +os.environ["MODEL"] = "llama3.2" # model for instruction generation +os.environ["MODEL_COMPLETION"] = "llama3.2:1b" # model for completion generation + +os.environ["TOKENIZER_ID"] = "meta-llama/Llama-3.2-3B-Instruct" # tokenizer for instruction generation +os.environ["TOKENIZER_ID_COMPLETION"] = "meta-llama/Llama-3.2-1B-Instruct" # tokenizer for completion generation + +os.environ["MAGPIE_PRE_QUERY_TEMPLATE"] = "llama3" # magpie template required for instruction generation + +launch() diff --git a/examples/openai-deployment.py b/examples/openai-deployment.py new file mode 100644 index 0000000000000000000000000000000000000000..a3a1bf8d2db1b3adc221b1f9d679dffe660d9f87 --- /dev/null +++ b/examples/openai-deployment.py @@ -0,0 +1,18 @@ +# /// script +# requires-python = ">=3.11,<3.12" +# dependencies = [ +# "synthetic-dataset-generator", +# ] +# /// + +import os + +from synthetic_dataset_generator import launch + +os.environ["HF_TOKEN"] = "hf_..." # push the data to huggingface +os.environ["OPENAI_BASE_URL"] = "https://api.openai.com/v1/" # openai base url +os.environ["API_KEY"] = os.getenv("OPENAI_API_KEY") # openai api key +os.environ["MODEL"] = "gpt-4o" # model id +os.environ["MAGPIE_PRE_QUERY_TEMPLATE"] = None # chat data not supported with OpenAI + +launch() diff --git a/examples/vllm-deployment.py b/examples/vllm-deployment.py new file mode 100644 index 0000000000000000000000000000000000000000..bdaee631706ec7b0555c8d0e0eff0c8fb297b64b --- /dev/null +++ b/examples/vllm-deployment.py @@ -0,0 +1,21 @@ +# /// script +# requires-python = ">=3.11,<3.12" +# dependencies = [ +# "synthetic-dataset-generator", +# ] +# /// +# vllm serve Qwen/Qwen2.5-1.5B-Instruct +import os + +from synthetic_dataset_generator import launch + +os.environ["HF_TOKEN"] = "hf_..." # push the data to huggingface +os.environ["VLLM_BASE_URL"] = "http://127.0.0.1:8000/" # vllm base url +os.environ["MODEL"] = "Qwen/Qwen2.5-1.5B-Instruct" # model id +os.environ["TOKENIZER_ID"] = "Qwen/Qwen2.5-1.5B-Instruct" # tokenizer id +os.environ["MAGPIE_PRE_QUERY_TEMPLATE"] = "qwen2" +os.environ["MAX_NUM_ROWS"] = "10000" +os.environ["DEFAULT_BATCH_SIZE"] = "2" +os.environ["MAX_NUM_TOKENS"] = "1024" + +launch() diff --git a/packages.txt b/packages.txt new file mode 100644 index 0000000000000000000000000000000000000000..15f6a51cbff6603c1d8c3d80135eb9c9f469afdb --- /dev/null +++ b/packages.txt @@ -0,0 +1,2 @@ +poppler-utils +tesseract-ocr \ No newline at end of file diff --git a/pdm.lock b/pdm.lock new file mode 100644 index 0000000000000000000000000000000000000000..ad969f7fb96e6c248cd6614c54e27c4bd119defa --- /dev/null +++ b/pdm.lock @@ -0,0 +1,3158 @@ +# This file is @generated by PDM. +# It is not intended for manual editing. + +[metadata] +groups = ["default"] +strategy = ["inherit_metadata"] +lock_version = "4.5.0" +content_hash = "sha256:e95140895657d62ad438ff1815ddf1798abbb342ddd2649ae462620b8b3f5350" + +[[metadata.targets]] +requires_python = ">=3.10,<3.13" + +[[package]] +name = "aiofiles" +version = "23.2.1" +requires_python = ">=3.7" +summary = "File support for asyncio." +groups = ["default"] +files = [ + {file = "aiofiles-23.2.1-py3-none-any.whl", hash = "sha256:19297512c647d4b27a2cf7c34caa7e405c0d60b5560618a29a9fe027b18b0107"}, + {file = "aiofiles-23.2.1.tar.gz", hash = "sha256:84ec2218d8419404abcb9f0c02df3f34c6e0a68ed41072acfb1cef5cbc29051a"}, +] + +[[package]] +name = "aiohappyeyeballs" +version = "2.4.4" +requires_python = ">=3.8" +summary = "Happy Eyeballs for asyncio" +groups = ["default"] +files = [ + {file = "aiohappyeyeballs-2.4.4-py3-none-any.whl", hash = "sha256:a980909d50efcd44795c4afeca523296716d50cd756ddca6af8c65b996e27de8"}, + {file = "aiohappyeyeballs-2.4.4.tar.gz", hash = "sha256:5fdd7d87889c63183afc18ce9271f9b0a7d32c2303e394468dd45d514a757745"}, +] + +[[package]] +name = "aiohttp" +version = "3.11.10" +requires_python = ">=3.9" +summary = "Async http client/server framework (asyncio)" +groups = ["default"] +dependencies = [ + "aiohappyeyeballs>=2.3.0", + "aiosignal>=1.1.2", + "async-timeout<6.0,>=4.0; python_version < \"3.11\"", + "attrs>=17.3.0", + "frozenlist>=1.1.1", + "multidict<7.0,>=4.5", + "propcache>=0.2.0", + "yarl<2.0,>=1.17.0", +] +files = [ + {file = "aiohttp-3.11.10-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:cbad88a61fa743c5d283ad501b01c153820734118b65aee2bd7dbb735475ce0d"}, + {file = "aiohttp-3.11.10-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:80886dac673ceaef499de2f393fc80bb4481a129e6cb29e624a12e3296cc088f"}, + {file = "aiohttp-3.11.10-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:61b9bae80ed1f338c42f57c16918853dc51775fb5cb61da70d590de14d8b5fb4"}, + {file = "aiohttp-3.11.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9e2e576caec5c6a6b93f41626c9c02fc87cd91538b81a3670b2e04452a63def6"}, + {file = "aiohttp-3.11.10-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:02c13415b5732fb6ee7ff64583a5e6ed1c57aa68f17d2bda79c04888dfdc2769"}, + {file = "aiohttp-3.11.10-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4cfce37f31f20800a6a6620ce2cdd6737b82e42e06e6e9bd1b36f546feb3c44f"}, + {file = "aiohttp-3.11.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3bbbfff4c679c64e6e23cb213f57cc2c9165c9a65d63717108a644eb5a7398df"}, + {file = "aiohttp-3.11.10-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:49c7dbbc1a559ae14fc48387a115b7d4bbc84b4a2c3b9299c31696953c2a5219"}, + {file = "aiohttp-3.11.10-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:68386d78743e6570f054fe7949d6cb37ef2b672b4d3405ce91fafa996f7d9b4d"}, + {file = "aiohttp-3.11.10-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:9ef405356ba989fb57f84cac66f7b0260772836191ccefbb987f414bcd2979d9"}, + {file = "aiohttp-3.11.10-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:5d6958671b296febe7f5f859bea581a21c1d05430d1bbdcf2b393599b1cdce77"}, + {file = "aiohttp-3.11.10-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:99b7920e7165be5a9e9a3a7f1b680f06f68ff0d0328ff4079e5163990d046767"}, + {file = "aiohttp-3.11.10-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:0dc49f42422163efb7e6f1df2636fe3db72713f6cd94688e339dbe33fe06d61d"}, + {file = "aiohttp-3.11.10-cp310-cp310-win32.whl", hash = "sha256:40d1c7a7f750b5648642586ba7206999650208dbe5afbcc5284bcec6579c9b91"}, + {file = "aiohttp-3.11.10-cp310-cp310-win_amd64.whl", hash = "sha256:68ff6f48b51bd78ea92b31079817aff539f6c8fc80b6b8d6ca347d7c02384e33"}, + {file = "aiohttp-3.11.10-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:77c4aa15a89847b9891abf97f3d4048f3c2d667e00f8a623c89ad2dccee6771b"}, + {file = "aiohttp-3.11.10-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:909af95a72cedbefe5596f0bdf3055740f96c1a4baa0dd11fd74ca4de0b4e3f1"}, + {file = "aiohttp-3.11.10-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:386fbe79863eb564e9f3615b959e28b222259da0c48fd1be5929ac838bc65683"}, + {file = "aiohttp-3.11.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3de34936eb1a647aa919655ff8d38b618e9f6b7f250cc19a57a4bf7fd2062b6d"}, + {file = "aiohttp-3.11.10-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0c9527819b29cd2b9f52033e7fb9ff08073df49b4799c89cb5754624ecd98299"}, + {file = "aiohttp-3.11.10-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65a96e3e03300b41f261bbfd40dfdbf1c301e87eab7cd61c054b1f2e7c89b9e8"}, + {file = "aiohttp-3.11.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98f5635f7b74bcd4f6f72fcd85bea2154b323a9f05226a80bc7398d0c90763b0"}, + {file = "aiohttp-3.11.10-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:03b6002e20938fc6ee0918c81d9e776bebccc84690e2b03ed132331cca065ee5"}, + {file = "aiohttp-3.11.10-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6362cc6c23c08d18ddbf0e8c4d5159b5df74fea1a5278ff4f2c79aed3f4e9f46"}, + {file = "aiohttp-3.11.10-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:3691ed7726fef54e928fe26344d930c0c8575bc968c3e239c2e1a04bd8cf7838"}, + {file = "aiohttp-3.11.10-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:31d5093d3acd02b31c649d3a69bb072d539d4c7659b87caa4f6d2bcf57c2fa2b"}, + {file = "aiohttp-3.11.10-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:8b3cf2dc0f0690a33f2d2b2cb15db87a65f1c609f53c37e226f84edb08d10f52"}, + {file = "aiohttp-3.11.10-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:fbbaea811a2bba171197b08eea288b9402faa2bab2ba0858eecdd0a4105753a3"}, + {file = "aiohttp-3.11.10-cp311-cp311-win32.whl", hash = "sha256:4b2c7ac59c5698a7a8207ba72d9e9c15b0fc484a560be0788b31312c2c5504e4"}, + {file = "aiohttp-3.11.10-cp311-cp311-win_amd64.whl", hash = "sha256:974d3a2cce5fcfa32f06b13ccc8f20c6ad9c51802bb7f829eae8a1845c4019ec"}, + {file = "aiohttp-3.11.10-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:b78f053a7ecfc35f0451d961dacdc671f4bcbc2f58241a7c820e9d82559844cf"}, + {file = "aiohttp-3.11.10-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:ab7485222db0959a87fbe8125e233b5a6f01f4400785b36e8a7878170d8c3138"}, + {file = "aiohttp-3.11.10-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:cf14627232dfa8730453752e9cdc210966490992234d77ff90bc8dc0dce361d5"}, + {file = "aiohttp-3.11.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:076bc454a7e6fd646bc82ea7f98296be0b1219b5e3ef8a488afbdd8e81fbac50"}, + {file = "aiohttp-3.11.10-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:482cafb7dc886bebeb6c9ba7925e03591a62ab34298ee70d3dd47ba966370d2c"}, + {file = "aiohttp-3.11.10-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bf3d1a519a324af764a46da4115bdbd566b3c73fb793ffb97f9111dbc684fc4d"}, + {file = "aiohttp-3.11.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24213ba85a419103e641e55c27dc7ff03536c4873470c2478cce3311ba1eee7b"}, + {file = "aiohttp-3.11.10-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b99acd4730ad1b196bfb03ee0803e4adac371ae8efa7e1cbc820200fc5ded109"}, + {file = "aiohttp-3.11.10-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:14cdb5a9570be5a04eec2ace174a48ae85833c2aadc86de68f55541f66ce42ab"}, + {file = "aiohttp-3.11.10-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:7e97d622cb083e86f18317282084bc9fbf261801b0192c34fe4b1febd9f7ae69"}, + {file = "aiohttp-3.11.10-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:012f176945af138abc10c4a48743327a92b4ca9adc7a0e078077cdb5dbab7be0"}, + {file = "aiohttp-3.11.10-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:44224d815853962f48fe124748227773acd9686eba6dc102578defd6fc99e8d9"}, + {file = "aiohttp-3.11.10-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c87bf31b7fdab94ae3adbe4a48e711bfc5f89d21cf4c197e75561def39e223bc"}, + {file = "aiohttp-3.11.10-cp312-cp312-win32.whl", hash = "sha256:06a8e2ee1cbac16fe61e51e0b0c269400e781b13bcfc33f5425912391a542985"}, + {file = "aiohttp-3.11.10-cp312-cp312-win_amd64.whl", hash = "sha256:be2b516f56ea883a3e14dda17059716593526e10fb6303189aaf5503937db408"}, + {file = "aiohttp-3.11.10.tar.gz", hash = "sha256:b1fc6b45010a8d0ff9e88f9f2418c6fd408c99c211257334aff41597ebece42e"}, +] + +[[package]] +name = "aiosignal" +version = "1.3.2" +requires_python = ">=3.9" +summary = "aiosignal: a list of registered asynchronous callbacks" +groups = ["default"] +dependencies = [ + "frozenlist>=1.1.0", +] +files = [ + {file = "aiosignal-1.3.2-py2.py3-none-any.whl", hash = "sha256:45cde58e409a301715980c2b01d0c28bdde3770d8290b5eb2173759d9acb31a5"}, + {file = "aiosignal-1.3.2.tar.gz", hash = "sha256:a8c255c66fafb1e499c9351d0bf32ff2d8a0321595ebac3b93713656d2436f54"}, +] + +[[package]] +name = "airportsdata" +version = "20241001" +requires_python = ">=3.9" +summary = "Extensive database of location and timezone data for nearly every airport and landing strip in the world." +groups = ["default"] +files = [ + {file = "airportsdata-20241001-py3-none-any.whl", hash = "sha256:67d71cf2c5378cc17ff66b62b1e11aa2444043949c894543ac8fd8dafce192fd"}, + {file = "airportsdata-20241001.tar.gz", hash = "sha256:fa0bd143b4f4be3557cb892fa0612ef210fd91a92bd720b4d8221de576a4fa00"}, +] + +[[package]] +name = "annotated-types" +version = "0.7.0" +requires_python = ">=3.8" +summary = "Reusable constraint types to use with typing.Annotated" +groups = ["default"] +dependencies = [ + "typing-extensions>=4.0.0; python_version < \"3.9\"", +] +files = [ + {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"}, + {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, +] + +[[package]] +name = "anyio" +version = "4.7.0" +requires_python = ">=3.9" +summary = "High level compatibility layer for multiple asynchronous event loop implementations" +groups = ["default"] +dependencies = [ + "exceptiongroup>=1.0.2; python_version < \"3.11\"", + "idna>=2.8", + "sniffio>=1.1", + "typing-extensions>=4.5; python_version < \"3.13\"", +] +files = [ + {file = "anyio-4.7.0-py3-none-any.whl", hash = "sha256:ea60c3723ab42ba6fff7e8ccb0488c898ec538ff4df1f1d5e642c3601d07e352"}, + {file = "anyio-4.7.0.tar.gz", hash = "sha256:2f834749c602966b7d456a7567cafcb309f96482b5081d14ac93ccd457f9dd48"}, +] + +[[package]] +name = "argilla" +version = "2.5.0" +requires_python = ">=3.9" +summary = "The Argilla python server SDK" +groups = ["default"] +dependencies = [ + "datasets>=2.0.0", + "httpx>=0.26.0", + "huggingface-hub>=0.22.0", + "pillow>=9.5.0", + "pydantic<3.0.0,>=2.6.0", + "rich>=10.0.0", + "standardwebhooks>=1.0.0", + "tqdm>=4.60.0", +] +files = [ + {file = "argilla-2.5.0-py3-none-any.whl", hash = "sha256:039a713a996e1d9ebb96a54788068d09d677f76da1009a2da56d5decb5f57ce8"}, + {file = "argilla-2.5.0.tar.gz", hash = "sha256:24ac24d3236741556238dfa343cf95cb43df024bcb54e838a4898422ab2e11e5"}, +] + +[[package]] +name = "asttokens" +version = "3.0.0" +requires_python = ">=3.8" +summary = "Annotate AST trees with source code positions" +groups = ["default"] +files = [ + {file = "asttokens-3.0.0-py3-none-any.whl", hash = "sha256:e3078351a059199dd5138cb1c706e6430c05eff2ff136af5eb4790f9d28932e2"}, + {file = "asttokens-3.0.0.tar.gz", hash = "sha256:0dcd8baa8d62b0c1d118b399b2ddba3c4aff271d0d7a9e0d4c1681c79035bbc7"}, +] + +[[package]] +name = "async-timeout" +version = "5.0.1" +requires_python = ">=3.8" +summary = "Timeout context manager for asyncio programs" +groups = ["default"] +marker = "python_version < \"3.11\"" +files = [ + {file = "async_timeout-5.0.1-py3-none-any.whl", hash = "sha256:39e3809566ff85354557ec2398b55e096c8364bacac9405a7a1fa429e77fe76c"}, + {file = "async_timeout-5.0.1.tar.gz", hash = "sha256:d9321a7a3d5a6a5e187e824d2fa0793ce379a202935782d555d6e9d2735677d3"}, +] + +[[package]] +name = "attrs" +version = "24.3.0" +requires_python = ">=3.8" +summary = "Classes Without Boilerplate" +groups = ["default"] +files = [ + {file = "attrs-24.3.0-py3-none-any.whl", hash = "sha256:ac96cd038792094f438ad1f6ff80837353805ac950cd2aa0e0625ef19850c308"}, + {file = "attrs-24.3.0.tar.gz", hash = "sha256:8f5c07333d543103541ba7be0e2ce16eeee8130cb0b3f9238ab904ce1e85baff"}, +] + +[[package]] +name = "authlib" +version = "1.3.2" +requires_python = ">=3.8" +summary = "The ultimate Python library in building OAuth and OpenID Connect servers and clients." +groups = ["default"] +dependencies = [ + "cryptography", +] +files = [ + {file = "Authlib-1.3.2-py2.py3-none-any.whl", hash = "sha256:ede026a95e9f5cdc2d4364a52103f5405e75aa156357e831ef2bfd0bc5094dfc"}, + {file = "authlib-1.3.2.tar.gz", hash = "sha256:4b16130117f9eb82aa6eec97f6dd4673c3f960ac0283ccdae2897ee4bc030ba2"}, +] + +[[package]] +name = "certifi" +version = "2024.12.14" +requires_python = ">=3.6" +summary = "Python package for providing Mozilla's CA Bundle." +groups = ["default"] +files = [ + {file = "certifi-2024.12.14-py3-none-any.whl", hash = "sha256:1275f7a45be9464efc1173084eaa30f866fe2e47d389406136d332ed4967ec56"}, + {file = "certifi-2024.12.14.tar.gz", hash = "sha256:b650d30f370c2b724812bee08008be0c4163b163ddaec3f2546c1caf65f191db"}, +] + +[[package]] +name = "cffi" +version = "1.17.1" +requires_python = ">=3.8" +summary = "Foreign Function Interface for Python calling C code." +groups = ["default"] +marker = "platform_python_implementation != \"PyPy\"" +dependencies = [ + "pycparser", +] +files = [ + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, +] + +[[package]] +name = "charset-normalizer" +version = "3.4.0" +requires_python = ">=3.7.0" +summary = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +groups = ["default"] +files = [ + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:4f9fc98dad6c2eaa32fc3af1417d95b5e3d08aff968df0cd320066def971f9a6"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0de7b687289d3c1b3e8660d0741874abe7888100efe14bd0f9fd7141bcbda92b"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5ed2e36c3e9b4f21dd9422f6893dec0abf2cca553af509b10cd630f878d3eb99"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40d3ff7fc90b98c637bda91c89d51264a3dcf210cade3a2c6f838c7268d7a4ca"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1110e22af8ca26b90bd6364fe4c763329b0ebf1ee213ba32b68c73de5752323d"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:86f4e8cca779080f66ff4f191a685ced73d2f72d50216f7112185dc02b90b9b7"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f683ddc7eedd742e2889d2bfb96d69573fde1d92fcb811979cdb7165bb9c7d3"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:27623ba66c183eca01bf9ff833875b459cad267aeeb044477fedac35e19ba907"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f606a1881d2663630ea5b8ce2efe2111740df4b687bd78b34a8131baa007f79b"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0b309d1747110feb25d7ed6b01afdec269c647d382c857ef4663bbe6ad95a912"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:136815f06a3ae311fae551c3df1f998a1ebd01ddd424aa5603a4336997629e95"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:14215b71a762336254351b00ec720a8e85cada43b987da5a042e4ce3e82bd68e"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:79983512b108e4a164b9c8d34de3992f76d48cadc9554c9e60b43f308988aabe"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-win32.whl", hash = "sha256:c94057af19bc953643a33581844649a7fdab902624d2eb739738a30e2b3e60fc"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:55f56e2ebd4e3bc50442fbc0888c9d8c94e4e06a933804e2af3e89e2f9c1c749"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:0d99dd8ff461990f12d6e42c7347fd9ab2532fb70e9621ba520f9e8637161d7c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c57516e58fd17d03ebe67e181a4e4e2ccab1168f8c2976c6a334d4f819fe5944"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6dba5d19c4dfab08e58d5b36304b3f92f3bd5d42c1a3fa37b5ba5cdf6dfcbcee"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf4475b82be41b07cc5e5ff94810e6a01f276e37c2d55571e3fe175e467a1a1c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ce031db0408e487fd2775d745ce30a7cd2923667cf3b69d48d219f1d8f5ddeb6"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ff4e7cdfdb1ab5698e675ca622e72d58a6fa2a8aa58195de0c0061288e6e3ea"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3710a9751938947e6327ea9f3ea6332a09bf0ba0c09cae9cb1f250bd1f1549bc"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82357d85de703176b5587dbe6ade8ff67f9f69a41c0733cf2425378b49954de5"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:47334db71978b23ebcf3c0f9f5ee98b8d65992b65c9c4f2d34c2eaf5bcaf0594"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8ce7fd6767a1cc5a92a639b391891bf1c268b03ec7e021c7d6d902285259685c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f1a2f519ae173b5b6a2c9d5fa3116ce16e48b3462c8b96dfdded11055e3d6365"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:63bc5c4ae26e4bc6be6469943b8253c0fd4e4186c43ad46e713ea61a0ba49129"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:bcb4f8ea87d03bc51ad04add8ceaf9b0f085ac045ab4d74e73bbc2dc033f0236"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-win32.whl", hash = "sha256:9ae4ef0b3f6b41bad6366fb0ea4fc1d7ed051528e113a60fa2a65a9abb5b1d99"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cee4373f4d3ad28f1ab6290684d8e2ebdb9e7a1b74fdc39e4c211995f77bec27"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:0713f3adb9d03d49d365b70b84775d0a0d18e4ab08d12bc46baa6132ba78aaf6"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:de7376c29d95d6719048c194a9cf1a1b0393fbe8488a22008610b0361d834ecf"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a51b48f42d9358460b78725283f04bddaf44a9358197b889657deba38f329db"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b295729485b06c1a0683af02a9e42d2caa9db04a373dc38a6a58cdd1e8abddf1"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee803480535c44e7f5ad00788526da7d85525cfefaf8acf8ab9a310000be4b03"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d59d125ffbd6d552765510e3f31ed75ebac2c7470c7274195b9161a32350284"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8cda06946eac330cbe6598f77bb54e690b4ca93f593dee1568ad22b04f347c15"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07afec21bbbbf8a5cc3651aa96b980afe2526e7f048fdfb7f1014d84acc8b6d8"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6b40e8d38afe634559e398cc32b1472f376a4099c75fe6299ae607e404c033b2"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b8dcd239c743aa2f9c22ce674a145e0a25cb1566c495928440a181ca1ccf6719"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:84450ba661fb96e9fd67629b93d2941c871ca86fc38d835d19d4225ff946a631"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:44aeb140295a2f0659e113b31cfe92c9061622cadbc9e2a2f7b8ef6b1e29ef4b"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1db4e7fefefd0f548d73e2e2e041f9df5c59e178b4c72fbac4cc6f535cfb1565"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-win32.whl", hash = "sha256:5726cf76c982532c1863fb64d8c6dd0e4c90b6ece9feb06c9f202417a31f7dd7"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:b197e7094f232959f8f20541ead1d9862ac5ebea1d58e9849c1bf979255dfac9"}, + {file = "charset_normalizer-3.4.0-py3-none-any.whl", hash = "sha256:fe9f97feb71aa9896b81973a7bbada8c49501dc73e58a10fcef6663af95e5079"}, + {file = "charset_normalizer-3.4.0.tar.gz", hash = "sha256:223217c3d4f82c3ac5e29032b3f1c2eb0fb591b72161f86d93f5719079dae93e"}, +] + +[[package]] +name = "click" +version = "8.1.7" +requires_python = ">=3.7" +summary = "Composable command line interface toolkit" +groups = ["default"] +dependencies = [ + "colorama; platform_system == \"Windows\"", + "importlib-metadata; python_version < \"3.8\"", +] +files = [ + {file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"}, + {file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"}, +] + +[[package]] +name = "cloudpickle" +version = "3.1.0" +requires_python = ">=3.8" +summary = "Pickler class to extend the standard pickle.Pickler functionality" +groups = ["default"] +files = [ + {file = "cloudpickle-3.1.0-py3-none-any.whl", hash = "sha256:fe11acda67f61aaaec473e3afe030feb131d78a43461b718185363384f1ba12e"}, + {file = "cloudpickle-3.1.0.tar.gz", hash = "sha256:81a929b6e3c7335c863c771d673d105f02efdb89dfaba0c90495d1c64796601b"}, +] + +[[package]] +name = "colorama" +version = "0.4.6" +requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +summary = "Cross-platform colored terminal text." +groups = ["default"] +marker = "platform_system == \"Windows\" or sys_platform == \"win32\"" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "cryptography" +version = "44.0.0" +requires_python = "!=3.9.0,!=3.9.1,>=3.7" +summary = "cryptography is a package which provides cryptographic recipes and primitives to Python developers." +groups = ["default"] +dependencies = [ + "cffi>=1.12; platform_python_implementation != \"PyPy\"", +] +files = [ + {file = "cryptography-44.0.0-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:84111ad4ff3f6253820e6d3e58be2cc2a00adb29335d4cacb5ab4d4d34f2a123"}, + {file = "cryptography-44.0.0-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15492a11f9e1b62ba9d73c210e2416724633167de94607ec6069ef724fad092"}, + {file = "cryptography-44.0.0-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:831c3c4d0774e488fdc83a1923b49b9957d33287de923d58ebd3cec47a0ae43f"}, + {file = "cryptography-44.0.0-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:761817a3377ef15ac23cd7834715081791d4ec77f9297ee694ca1ee9c2c7e5eb"}, + {file = "cryptography-44.0.0-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:3c672a53c0fb4725a29c303be906d3c1fa99c32f58abe008a82705f9ee96f40b"}, + {file = "cryptography-44.0.0-cp37-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:4ac4c9f37eba52cb6fbeaf5b59c152ea976726b865bd4cf87883a7e7006cc543"}, + {file = "cryptography-44.0.0-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:ed3534eb1090483c96178fcb0f8893719d96d5274dfde98aa6add34614e97c8e"}, + {file = "cryptography-44.0.0-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:f3f6fdfa89ee2d9d496e2c087cebef9d4fcbb0ad63c40e821b39f74bf48d9c5e"}, + {file = "cryptography-44.0.0-cp37-abi3-win32.whl", hash = "sha256:eb33480f1bad5b78233b0ad3e1b0be21e8ef1da745d8d2aecbb20671658b9053"}, + {file = "cryptography-44.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:abc998e0c0eee3c8a1904221d3f67dcfa76422b23620173e28c11d3e626c21bd"}, + {file = "cryptography-44.0.0-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:660cb7312a08bc38be15b696462fa7cc7cd85c3ed9c576e81f4dc4d8b2b31591"}, + {file = "cryptography-44.0.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1923cb251c04be85eec9fda837661c67c1049063305d6be5721643c22dd4e2b7"}, + {file = "cryptography-44.0.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:404fdc66ee5f83a1388be54300ae978b2efd538018de18556dde92575e05defc"}, + {file = "cryptography-44.0.0-cp39-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:c5eb858beed7835e5ad1faba59e865109f3e52b3783b9ac21e7e47dc5554e289"}, + {file = "cryptography-44.0.0-cp39-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:f53c2c87e0fb4b0c00fa9571082a057e37690a8f12233306161c8f4b819960b7"}, + {file = "cryptography-44.0.0-cp39-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:9e6fc8a08e116fb7c7dd1f040074c9d7b51d74a8ea40d4df2fc7aa08b76b9e6c"}, + {file = "cryptography-44.0.0-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:d2436114e46b36d00f8b72ff57e598978b37399d2786fd39793c36c6d5cb1c64"}, + {file = "cryptography-44.0.0-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a01956ddfa0a6790d594f5b34fc1bfa6098aca434696a03cfdbe469b8ed79285"}, + {file = "cryptography-44.0.0-cp39-abi3-win32.whl", hash = "sha256:eca27345e1214d1b9f9490d200f9db5a874479be914199194e746c893788d417"}, + {file = "cryptography-44.0.0-cp39-abi3-win_amd64.whl", hash = "sha256:708ee5f1bafe76d041b53a4f95eb28cdeb8d18da17e597d46d7833ee59b97ede"}, + {file = "cryptography-44.0.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:37d76e6863da3774cd9db5b409a9ecfd2c71c981c38788d3fcfaf177f447b731"}, + {file = "cryptography-44.0.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:f677e1268c4e23420c3acade68fac427fffcb8d19d7df95ed7ad17cdef8404f4"}, + {file = "cryptography-44.0.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f5e7cb1e5e56ca0933b4873c0220a78b773b24d40d186b6738080b73d3d0a756"}, + {file = "cryptography-44.0.0-pp310-pypy310_pp73-manylinux_2_34_aarch64.whl", hash = "sha256:8b3e6eae66cf54701ee7d9c83c30ac0a1e3fa17be486033000f2a73a12ab507c"}, + {file = "cryptography-44.0.0-pp310-pypy310_pp73-manylinux_2_34_x86_64.whl", hash = "sha256:be4ce505894d15d5c5037167ffb7f0ae90b7be6f2a98f9a5c3442395501c32fa"}, + {file = "cryptography-44.0.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:62901fb618f74d7d81bf408c8719e9ec14d863086efe4185afd07c352aee1d2c"}, + {file = "cryptography-44.0.0.tar.gz", hash = "sha256:cd4e834f340b4293430701e772ec543b0fbe6c2dea510a5286fe0acabe153a02"}, +] + +[[package]] +name = "datasets" +version = "3.2.0" +requires_python = ">=3.9.0" +summary = "HuggingFace community-driven open-source library of datasets" +groups = ["default"] +dependencies = [ + "aiohttp", + "dill<0.3.9,>=0.3.0", + "filelock", + "fsspec[http]<=2024.9.0,>=2023.1.0", + "huggingface-hub>=0.23.0", + "multiprocess<0.70.17", + "numpy>=1.17", + "packaging", + "pandas", + "pyarrow>=15.0.0", + "pyyaml>=5.1", + "requests>=2.32.2", + "tqdm>=4.66.3", + "xxhash", +] +files = [ + {file = "datasets-3.2.0-py3-none-any.whl", hash = "sha256:f3d2ba2698b7284a4518019658596a6a8bc79f31e51516524249d6c59cf0fe2a"}, + {file = "datasets-3.2.0.tar.gz", hash = "sha256:9a6e1a356052866b5dbdd9c9eedb000bf3fc43d986e3584d9b028f4976937229"}, +] + +[[package]] +name = "decorator" +version = "5.1.1" +requires_python = ">=3.5" +summary = "Decorators for Humans" +groups = ["default"] +files = [ + {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, + {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, +] + +[[package]] +name = "deprecated" +version = "1.2.15" +requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,>=2.7" +summary = "Python @deprecated decorator to deprecate old python classes, functions or methods." +groups = ["default"] +dependencies = [ + "wrapt<2,>=1.10", +] +files = [ + {file = "Deprecated-1.2.15-py2.py3-none-any.whl", hash = "sha256:353bc4a8ac4bfc96800ddab349d89c25dec1079f65fd53acdcc1e0b975b21320"}, + {file = "deprecated-1.2.15.tar.gz", hash = "sha256:683e561a90de76239796e6b6feac66b99030d2dd3fcf61ef996330f14bbb9b0d"}, +] + +[[package]] +name = "dill" +version = "0.3.8" +requires_python = ">=3.8" +summary = "serialize all of Python" +groups = ["default"] +files = [ + {file = "dill-0.3.8-py3-none-any.whl", hash = "sha256:c36ca9ffb54365bdd2f8eb3eff7d2a21237f8452b57ace88b1ac615b7e815bd7"}, + {file = "dill-0.3.8.tar.gz", hash = "sha256:3ebe3c479ad625c4553aca177444d89b486b1d84982eeacded644afc0cf797ca"}, +] + +[[package]] +name = "diskcache" +version = "5.6.3" +requires_python = ">=3" +summary = "Disk Cache -- Disk and file backed persistent cache." +groups = ["default"] +files = [ + {file = "diskcache-5.6.3-py3-none-any.whl", hash = "sha256:5e31b2d5fbad117cc363ebaf6b689474db18a1f6438bc82358b024abd4c2ca19"}, + {file = "diskcache-5.6.3.tar.gz", hash = "sha256:2c3a3fa2743d8535d832ec61c2054a1641f41775aa7c556758a109941e33e4fc"}, +] + +[[package]] +name = "distilabel" +version = "1.5.0" +requires_python = ">=3.9" +git = "https://github.com/argilla-io/distilabel.git" +ref = "feat/add-magpie-support-llama-cpp-ollama" +revision = "4e291e7bf1c27b734a683a3af1fefe58965d77d6" +summary = "Distilabel is an AI Feedback (AIF) framework for building datasets with and for LLMs." +groups = ["default"] +dependencies = [ + "datasets>=2.16.0", + "httpx>=0.25.2", + "importlib-resources>=6.1.1; python_version < \"3.9\"", + "jinja2>=3.1.2", + "multiprocess>=0.70", + "nest-asyncio>=1.6.0", + "networkx>=3.0", + "orjson>=3.10.0", + "portalocker>=2.8.2", + "pydantic>=2.0", + "rich>=13.5.0", + "scipy>=1.10.0", + "tblib>=3.0.0", + "typer>=0.9.0", + "universal-pathlib>=0.2.2", +] + +[[package]] +name = "distilabel" +version = "1.5.0" +extras = ["argilla", "hf-inference-endpoints", "hf-transformers", "instructor", "llama-cpp", "ollama", "openai", "outlines"] +requires_python = ">=3.9" +git = "https://github.com/argilla-io/distilabel.git" +ref = "feat/add-magpie-support-llama-cpp-ollama" +revision = "4e291e7bf1c27b734a683a3af1fefe58965d77d6" +summary = "Distilabel is an AI Feedback (AIF) framework for building datasets with and for LLMs." +groups = ["default"] +dependencies = [ + "argilla>=2.0.0", + "distilabel @ git+https://github.com/argilla-io/distilabel.git@feat/add-magpie-support-llama-cpp-ollama", + "huggingface-hub>=0.22.0", + "instructor>=1.2.3", + "ipython", + "llama-cpp-python>=0.2.0", + "numba>=0.54.0", + "ollama>=0.1.7", + "openai>=1.0.0", + "outlines>=0.0.40", + "torch>=2.0.0", + "transformers>=4.34.1", +] + +[[package]] +name = "distro" +version = "1.9.0" +requires_python = ">=3.6" +summary = "Distro - an OS platform information API" +groups = ["default"] +files = [ + {file = "distro-1.9.0-py3-none-any.whl", hash = "sha256:7bffd925d65168f85027d8da9af6bddab658135b840670a223589bc0c8ef02b2"}, + {file = "distro-1.9.0.tar.gz", hash = "sha256:2fa77c6fd8940f116ee1d6b94a2f90b13b5ea8d019b98bc8bafdcabcdd9bdbed"}, +] + +[[package]] +name = "docstring-parser" +version = "0.16" +requires_python = ">=3.6,<4.0" +summary = "Parse Python docstrings in reST, Google and Numpydoc format" +groups = ["default"] +files = [ + {file = "docstring_parser-0.16-py3-none-any.whl", hash = "sha256:bf0a1387354d3691d102edef7ec124f219ef639982d096e26e3b60aeffa90637"}, + {file = "docstring_parser-0.16.tar.gz", hash = "sha256:538beabd0af1e2db0146b6bd3caa526c35a34d61af9fd2887f3a8a27a739aa6e"}, +] + +[[package]] +name = "exceptiongroup" +version = "1.2.2" +requires_python = ">=3.7" +summary = "Backport of PEP 654 (exception groups)" +groups = ["default"] +marker = "python_version < \"3.11\"" +files = [ + {file = "exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b"}, + {file = "exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc"}, +] + +[[package]] +name = "executing" +version = "2.1.0" +requires_python = ">=3.8" +summary = "Get the currently executing AST node of a frame, and other information" +groups = ["default"] +files = [ + {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, + {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, +] + +[[package]] +name = "fastapi" +version = "0.115.6" +requires_python = ">=3.8" +summary = "FastAPI framework, high performance, easy to learn, fast to code, ready for production" +groups = ["default"] +dependencies = [ + "pydantic!=1.8,!=1.8.1,!=2.0.0,!=2.0.1,!=2.1.0,<3.0.0,>=1.7.4", + "starlette<0.42.0,>=0.40.0", + "typing-extensions>=4.8.0", +] +files = [ + {file = "fastapi-0.115.6-py3-none-any.whl", hash = "sha256:e9240b29e36fa8f4bb7290316988e90c381e5092e0cbe84e7818cc3713bcf305"}, + {file = "fastapi-0.115.6.tar.gz", hash = "sha256:9ec46f7addc14ea472958a96aae5b5de65f39721a46aaf5705c480d9a8b76654"}, +] + +[[package]] +name = "ffmpy" +version = "0.4.0" +requires_python = "<4.0.0,>=3.8.1" +summary = "A simple Python wrapper for FFmpeg" +groups = ["default"] +files = [ + {file = "ffmpy-0.4.0-py3-none-any.whl", hash = "sha256:39c0f20c5b465e7f8d29a5191f3a7d7675a8c546d9d985de8921151cd9b59e14"}, + {file = "ffmpy-0.4.0.tar.gz", hash = "sha256:131b57794e802ad555f579007497f7a3d0cab0583d37496c685b8acae4837b1d"}, +] + +[[package]] +name = "filelock" +version = "3.16.1" +requires_python = ">=3.8" +summary = "A platform independent file lock." +groups = ["default"] +files = [ + {file = "filelock-3.16.1-py3-none-any.whl", hash = "sha256:2082e5703d51fbf98ea75855d9d5527e33d8ff23099bec374a134febee6946b0"}, + {file = "filelock-3.16.1.tar.gz", hash = "sha256:c249fbfcd5db47e5e2d6d62198e565475ee65e4831e2561c8e313fa7eb961435"}, +] + +[[package]] +name = "frozenlist" +version = "1.5.0" +requires_python = ">=3.8" +summary = "A list-like structure which implements collections.abc.MutableSequence" +groups = ["default"] +files = [ + {file = "frozenlist-1.5.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:5b6a66c18b5b9dd261ca98dffcb826a525334b2f29e7caa54e182255c5f6a65a"}, + {file = "frozenlist-1.5.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d1b3eb7b05ea246510b43a7e53ed1653e55c2121019a97e60cad7efb881a97bb"}, + {file = "frozenlist-1.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:15538c0cbf0e4fa11d1e3a71f823524b0c46299aed6e10ebb4c2089abd8c3bec"}, + {file = "frozenlist-1.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e79225373c317ff1e35f210dd5f1344ff31066ba8067c307ab60254cd3a78ad5"}, + {file = "frozenlist-1.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9272fa73ca71266702c4c3e2d4a28553ea03418e591e377a03b8e3659d94fa76"}, + {file = "frozenlist-1.5.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:498524025a5b8ba81695761d78c8dd7382ac0b052f34e66939c42df860b8ff17"}, + {file = "frozenlist-1.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:92b5278ed9d50fe610185ecd23c55d8b307d75ca18e94c0e7de328089ac5dcba"}, + {file = "frozenlist-1.5.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f3c8c1dacd037df16e85227bac13cca58c30da836c6f936ba1df0c05d046d8d"}, + {file = "frozenlist-1.5.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f2ac49a9bedb996086057b75bf93538240538c6d9b38e57c82d51f75a73409d2"}, + {file = "frozenlist-1.5.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:e66cc454f97053b79c2ab09c17fbe3c825ea6b4de20baf1be28919460dd7877f"}, + {file = "frozenlist-1.5.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:5a3ba5f9a0dfed20337d3e966dc359784c9f96503674c2faf015f7fe8e96798c"}, + {file = "frozenlist-1.5.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:6321899477db90bdeb9299ac3627a6a53c7399c8cd58d25da094007402b039ab"}, + {file = "frozenlist-1.5.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:76e4753701248476e6286f2ef492af900ea67d9706a0155335a40ea21bf3b2f5"}, + {file = "frozenlist-1.5.0-cp310-cp310-win32.whl", hash = "sha256:977701c081c0241d0955c9586ffdd9ce44f7a7795df39b9151cd9a6fd0ce4cfb"}, + {file = "frozenlist-1.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:189f03b53e64144f90990d29a27ec4f7997d91ed3d01b51fa39d2dbe77540fd4"}, + {file = "frozenlist-1.5.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:fd74520371c3c4175142d02a976aee0b4cb4a7cc912a60586ffd8d5929979b30"}, + {file = "frozenlist-1.5.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2f3f7a0fbc219fb4455264cae4d9f01ad41ae6ee8524500f381de64ffaa077d5"}, + {file = "frozenlist-1.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f47c9c9028f55a04ac254346e92977bf0f166c483c74b4232bee19a6697e4778"}, + {file = "frozenlist-1.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0996c66760924da6e88922756d99b47512a71cfd45215f3570bf1e0b694c206a"}, + {file = "frozenlist-1.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a2fe128eb4edeabe11896cb6af88fca5346059f6c8d807e3b910069f39157869"}, + {file = "frozenlist-1.5.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1a8ea951bbb6cacd492e3948b8da8c502a3f814f5d20935aae74b5df2b19cf3d"}, + {file = "frozenlist-1.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:de537c11e4aa01d37db0d403b57bd6f0546e71a82347a97c6a9f0dcc532b3a45"}, + {file = "frozenlist-1.5.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c2623347b933fcb9095841f1cc5d4ff0b278addd743e0e966cb3d460278840d"}, + {file = "frozenlist-1.5.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:cee6798eaf8b1416ef6909b06f7dc04b60755206bddc599f52232606e18179d3"}, + {file = "frozenlist-1.5.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:f5f9da7f5dbc00a604fe74aa02ae7c98bcede8a3b8b9666f9f86fc13993bc71a"}, + {file = "frozenlist-1.5.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:90646abbc7a5d5c7c19461d2e3eeb76eb0b204919e6ece342feb6032c9325ae9"}, + {file = "frozenlist-1.5.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:bdac3c7d9b705d253b2ce370fde941836a5f8b3c5c2b8fd70940a3ea3af7f4f2"}, + {file = "frozenlist-1.5.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:03d33c2ddbc1816237a67f66336616416e2bbb6beb306e5f890f2eb22b959cdf"}, + {file = "frozenlist-1.5.0-cp311-cp311-win32.whl", hash = "sha256:237f6b23ee0f44066219dae14c70ae38a63f0440ce6750f868ee08775073f942"}, + {file = "frozenlist-1.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:0cc974cc93d32c42e7b0f6cf242a6bd941c57c61b618e78b6c0a96cb72788c1d"}, + {file = "frozenlist-1.5.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:31115ba75889723431aa9a4e77d5f398f5cf976eea3bdf61749731f62d4a4a21"}, + {file = "frozenlist-1.5.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7437601c4d89d070eac8323f121fcf25f88674627505334654fd027b091db09d"}, + {file = "frozenlist-1.5.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7948140d9f8ece1745be806f2bfdf390127cf1a763b925c4a805c603df5e697e"}, + {file = "frozenlist-1.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:feeb64bc9bcc6b45c6311c9e9b99406660a9c05ca8a5b30d14a78555088b0b3a"}, + {file = "frozenlist-1.5.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:683173d371daad49cffb8309779e886e59c2f369430ad28fe715f66d08d4ab1a"}, + {file = "frozenlist-1.5.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7d57d8f702221405a9d9b40f9da8ac2e4a1a8b5285aac6100f3393675f0a85ee"}, + {file = "frozenlist-1.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:30c72000fbcc35b129cb09956836c7d7abf78ab5416595e4857d1cae8d6251a6"}, + {file = "frozenlist-1.5.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:000a77d6034fbad9b6bb880f7ec073027908f1b40254b5d6f26210d2dab1240e"}, + {file = "frozenlist-1.5.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:5d7f5a50342475962eb18b740f3beecc685a15b52c91f7d975257e13e029eca9"}, + {file = "frozenlist-1.5.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:87f724d055eb4785d9be84e9ebf0f24e392ddfad00b3fe036e43f489fafc9039"}, + {file = "frozenlist-1.5.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:6e9080bb2fb195a046e5177f10d9d82b8a204c0736a97a153c2466127de87784"}, + {file = "frozenlist-1.5.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:9b93d7aaa36c966fa42efcaf716e6b3900438632a626fb09c049f6a2f09fc631"}, + {file = "frozenlist-1.5.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:52ef692a4bc60a6dd57f507429636c2af8b6046db8b31b18dac02cbc8f507f7f"}, + {file = "frozenlist-1.5.0-cp312-cp312-win32.whl", hash = "sha256:29d94c256679247b33a3dc96cce0f93cbc69c23bf75ff715919332fdbb6a32b8"}, + {file = "frozenlist-1.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:8969190d709e7c48ea386db202d708eb94bdb29207a1f269bab1196ce0dcca1f"}, + {file = "frozenlist-1.5.0-py3-none-any.whl", hash = "sha256:d994863bba198a4a518b467bb971c56e1db3f180a25c6cf7bb1949c267f748c3"}, + {file = "frozenlist-1.5.0.tar.gz", hash = "sha256:81d5af29e61b9c8348e876d442253723928dce6433e0e76cd925cd83f1b4b817"}, +] + +[[package]] +name = "fsspec" +version = "2024.9.0" +requires_python = ">=3.8" +summary = "File-system specification" +groups = ["default"] +files = [ + {file = "fsspec-2024.9.0-py3-none-any.whl", hash = "sha256:a0947d552d8a6efa72cc2c730b12c41d043509156966cca4fb157b0f2a0c574b"}, + {file = "fsspec-2024.9.0.tar.gz", hash = "sha256:4b0afb90c2f21832df142f292649035d80b421f60a9e1c027802e5a0da2b04e8"}, +] + +[[package]] +name = "fsspec" +version = "2024.9.0" +extras = ["http"] +requires_python = ">=3.8" +summary = "File-system specification" +groups = ["default"] +dependencies = [ + "aiohttp!=4.0.0a0,!=4.0.0a1", + "fsspec==2024.9.0", +] +files = [ + {file = "fsspec-2024.9.0-py3-none-any.whl", hash = "sha256:a0947d552d8a6efa72cc2c730b12c41d043509156966cca4fb157b0f2a0c574b"}, + {file = "fsspec-2024.9.0.tar.gz", hash = "sha256:4b0afb90c2f21832df142f292649035d80b421f60a9e1c027802e5a0da2b04e8"}, +] + +[[package]] +name = "gradio" +version = "5.9.1" +requires_python = ">=3.10" +summary = "Python library for easily interacting with trained machine learning models" +groups = ["default"] +dependencies = [ + "aiofiles<24.0,>=22.0", + "anyio<5.0,>=3.0", + "audioop-lts<1.0; python_version >= \"3.13\"", + "fastapi<1.0,>=0.115.2", + "ffmpy", + "gradio-client==1.5.2", + "httpx>=0.24.1", + "huggingface-hub>=0.25.1", + "jinja2<4.0", + "markupsafe~=2.0", + "numpy<3.0,>=1.0", + "orjson~=3.0", + "packaging", + "pandas<3.0,>=1.0", + "pillow<12.0,>=8.0", + "pydantic>=2.0", + "pydub", + "python-multipart>=0.0.18", + "pyyaml<7.0,>=5.0", + "ruff>=0.2.2; sys_platform != \"emscripten\"", + "safehttpx<0.2.0,>=0.1.6", + "semantic-version~=2.0", + "starlette<1.0,>=0.40.0; sys_platform != \"emscripten\"", + "tomlkit<0.14.0,>=0.12.0", + "typer<1.0,>=0.12; sys_platform != \"emscripten\"", + "typing-extensions~=4.0", + "urllib3~=2.0; sys_platform == \"emscripten\"", + "uvicorn>=0.14.0; sys_platform != \"emscripten\"", +] +files = [ + {file = "gradio-5.9.1-py3-none-any.whl", hash = "sha256:de5e522d39b804c448e9ee4d19c92cd8864233390638b54c0c5daa1ba6d0da61"}, +] + +[[package]] +name = "gradio-client" +version = "1.5.2" +requires_python = ">=3.10" +summary = "Python library for easily interacting with trained machine learning models" +groups = ["default"] +dependencies = [ + "fsspec", + "httpx>=0.24.1", + "huggingface-hub>=0.19.3", + "packaging", + "typing-extensions~=4.0", + "websockets<15.0,>=10.0", +] +files = [ + {file = "gradio_client-1.5.2-py3-none-any.whl", hash = "sha256:e25615059e540247724856fef15b3974cc9290b158356d4e541b0105c0342514"}, + {file = "gradio_client-1.5.2.tar.gz", hash = "sha256:96693ed7d28558ad730ada1045c50182bfc49987aa2104f56c168886d4ad2635"}, +] + +[[package]] +name = "gradio-huggingfacehub-search" +version = "0.0.12" +requires_python = ">=3.10" +summary = "Gradio component for searching Hugging Face Hub models, datasets, Spaces, and more" +groups = ["default"] +dependencies = [ + "gradio<6.0,>=4.0", +] +files = [ + {file = "gradio_huggingfacehub_search-0.0.12-py3-none-any.whl", hash = "sha256:41d8870fa6b2b715848fcadb5e773eab4da0b9fe431c463a7cce2d616ad8f743"}, + {file = "gradio_huggingfacehub_search-0.0.12.tar.gz", hash = "sha256:9da6b7b7c97f2ff8fcfad8d5789a68c79e995e0d39163bccfded422135df7288"}, +] + +[[package]] +name = "gradio" +version = "5.9.1" +extras = ["oauth"] +requires_python = ">=3.10" +summary = "Python library for easily interacting with trained machine learning models" +groups = ["default"] +dependencies = [ + "authlib", + "gradio==5.9.1", + "itsdangerous", +] +files = [ + {file = "gradio-5.9.1-py3-none-any.whl", hash = "sha256:de5e522d39b804c448e9ee4d19c92cd8864233390638b54c0c5daa1ba6d0da61"}, +] + +[[package]] +name = "h11" +version = "0.14.0" +requires_python = ">=3.7" +summary = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" +groups = ["default"] +dependencies = [ + "typing-extensions; python_version < \"3.8\"", +] +files = [ + {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, + {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, +] + +[[package]] +name = "httpcore" +version = "1.0.7" +requires_python = ">=3.8" +summary = "A minimal low-level HTTP client." +groups = ["default"] +dependencies = [ + "certifi", + "h11<0.15,>=0.13", +] +files = [ + {file = "httpcore-1.0.7-py3-none-any.whl", hash = "sha256:a3fff8f43dc260d5bd363d9f9cf1830fa3a458b332856f34282de498ed420edd"}, + {file = "httpcore-1.0.7.tar.gz", hash = "sha256:8551cb62a169ec7162ac7be8d4817d561f60e08eaa485234898414bb5a8a0b4c"}, +] + +[[package]] +name = "httpx" +version = "0.27.2" +requires_python = ">=3.8" +summary = "The next generation HTTP client." +groups = ["default"] +dependencies = [ + "anyio", + "certifi", + "httpcore==1.*", + "idna", + "sniffio", +] +files = [ + {file = "httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0"}, + {file = "httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2"}, +] + +[[package]] +name = "huggingface-hub" +version = "0.27.0" +requires_python = ">=3.8.0" +summary = "Client library to download and publish models, datasets and other repos on the huggingface.co hub" +groups = ["default"] +dependencies = [ + "filelock", + "fsspec>=2023.5.0", + "packaging>=20.9", + "pyyaml>=5.1", + "requests", + "tqdm>=4.42.1", + "typing-extensions>=3.7.4.3", +] +files = [ + {file = "huggingface_hub-0.27.0-py3-none-any.whl", hash = "sha256:8f2e834517f1f1ddf1ecc716f91b120d7333011b7485f665a9a412eacb1a2a81"}, + {file = "huggingface_hub-0.27.0.tar.gz", hash = "sha256:902cce1a1be5739f5589e560198a65a8edcfd3b830b1666f36e4b961f0454fac"}, +] + +[[package]] +name = "idna" +version = "3.10" +requires_python = ">=3.6" +summary = "Internationalized Domain Names in Applications (IDNA)" +groups = ["default"] +files = [ + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, +] + +[[package]] +name = "instructor" +version = "1.7.0" +requires_python = "<4.0,>=3.9" +summary = "structured outputs for llm" +groups = ["default"] +dependencies = [ + "aiohttp<4.0.0,>=3.9.1", + "docstring-parser<0.17,>=0.16", + "jinja2<4.0.0,>=3.1.4", + "jiter<0.7,>=0.6.1", + "openai<2.0.0,>=1.52.0", + "pydantic-core<3.0.0,>=2.18.0", + "pydantic<3.0.0,>=2.8.0", + "requests<3.0.0,>=2.32.3", + "rich<14.0.0,>=13.7.0", + "tenacity<10.0.0,>=9.0.0", + "typer<1.0.0,>=0.9.0", +] +files = [ + {file = "instructor-1.7.0-py3-none-any.whl", hash = "sha256:0bff965d71a5398aed9d3f728e07ffb7b5050569c81f306c0e5a8d022071fe29"}, + {file = "instructor-1.7.0.tar.gz", hash = "sha256:51b308ae9c5e4d56096514be785ac4f28f710c91bed80af74412fc21593431b3"}, +] + +[[package]] +name = "interegular" +version = "0.3.3" +requires_python = ">=3.7" +summary = "a regex intersection checker" +groups = ["default"] +files = [ + {file = "interegular-0.3.3.tar.gz", hash = "sha256:d9b697b21b34884711399ba0f0376914b81899ce670032486d0d048344a76600"}, +] + +[[package]] +name = "ipython" +version = "8.30.0" +requires_python = ">=3.10" +summary = "IPython: Productive Interactive Computing" +groups = ["default"] +dependencies = [ + "colorama; sys_platform == \"win32\"", + "decorator", + "exceptiongroup; python_version < \"3.11\"", + "jedi>=0.16", + "matplotlib-inline", + "pexpect>4.3; sys_platform != \"win32\" and sys_platform != \"emscripten\"", + "prompt-toolkit<3.1.0,>=3.0.41", + "pygments>=2.4.0", + "stack-data", + "traitlets>=5.13.0", + "typing-extensions>=4.6; python_version < \"3.12\"", +] +files = [ + {file = "ipython-8.30.0-py3-none-any.whl", hash = "sha256:85ec56a7e20f6c38fce7727dcca699ae4ffc85985aa7b23635a8008f918ae321"}, + {file = "ipython-8.30.0.tar.gz", hash = "sha256:cb0a405a306d2995a5cbb9901894d240784a9f341394c6ba3f4fe8c6eb89ff6e"}, +] + +[[package]] +name = "itsdangerous" +version = "2.2.0" +requires_python = ">=3.8" +summary = "Safely pass data to untrusted environments and back." +groups = ["default"] +files = [ + {file = "itsdangerous-2.2.0-py3-none-any.whl", hash = "sha256:c6242fc49e35958c8b15141343aa660db5fc54d4f13a1db01a3f5891b98700ef"}, + {file = "itsdangerous-2.2.0.tar.gz", hash = "sha256:e0050c0b7da1eea53ffaf149c0cfbb5c6e2e2b69c4bef22c81fa6eb73e5f6173"}, +] + +[[package]] +name = "jedi" +version = "0.19.2" +requires_python = ">=3.6" +summary = "An autocompletion tool for Python that can be used for text editors." +groups = ["default"] +dependencies = [ + "parso<0.9.0,>=0.8.4", +] +files = [ + {file = "jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9"}, + {file = "jedi-0.19.2.tar.gz", hash = "sha256:4770dc3de41bde3966b02eb84fbcf557fb33cce26ad23da12c742fb50ecb11f0"}, +] + +[[package]] +name = "jinja2" +version = "3.1.4" +requires_python = ">=3.7" +summary = "A very fast and expressive template engine." +groups = ["default"] +dependencies = [ + "MarkupSafe>=2.0", +] +files = [ + {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"}, + {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"}, +] + +[[package]] +name = "jiter" +version = "0.6.1" +requires_python = ">=3.8" +summary = "Fast iterable JSON parser." +groups = ["default"] +files = [ + {file = "jiter-0.6.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:d08510593cb57296851080018006dfc394070178d238b767b1879dc1013b106c"}, + {file = "jiter-0.6.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:adef59d5e2394ebbad13b7ed5e0306cceb1df92e2de688824232a91588e77aa7"}, + {file = "jiter-0.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b3e02f7a27f2bcc15b7d455c9df05df8ffffcc596a2a541eeda9a3110326e7a3"}, + {file = "jiter-0.6.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed69a7971d67b08f152c17c638f0e8c2aa207e9dd3a5fcd3cba294d39b5a8d2d"}, + {file = "jiter-0.6.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b2019d966e98f7c6df24b3b8363998575f47d26471bfb14aade37630fae836a1"}, + {file = "jiter-0.6.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:36c0b51a285b68311e207a76c385650322734c8717d16c2eb8af75c9d69506e7"}, + {file = "jiter-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:220e0963b4fb507c525c8f58cde3da6b1be0bfddb7ffd6798fb8f2531226cdb1"}, + {file = "jiter-0.6.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:aa25c7a9bf7875a141182b9c95aed487add635da01942ef7ca726e42a0c09058"}, + {file = "jiter-0.6.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e90552109ca8ccd07f47ca99c8a1509ced93920d271bb81780a973279974c5ab"}, + {file = "jiter-0.6.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:67723a011964971864e0b484b0ecfee6a14de1533cff7ffd71189e92103b38a8"}, + {file = "jiter-0.6.1-cp310-none-win32.whl", hash = "sha256:33af2b7d2bf310fdfec2da0177eab2fedab8679d1538d5b86a633ebfbbac4edd"}, + {file = "jiter-0.6.1-cp310-none-win_amd64.whl", hash = "sha256:7cea41c4c673353799906d940eee8f2d8fd1d9561d734aa921ae0f75cb9732f4"}, + {file = "jiter-0.6.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:b03c24e7da7e75b170c7b2b172d9c5e463aa4b5c95696a368d52c295b3f6847f"}, + {file = "jiter-0.6.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:47fee1be677b25d0ef79d687e238dc6ac91a8e553e1a68d0839f38c69e0ee491"}, + {file = "jiter-0.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25f0d2f6e01a8a0fb0eab6d0e469058dab2be46ff3139ed2d1543475b5a1d8e7"}, + {file = "jiter-0.6.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:0b809e39e342c346df454b29bfcc7bca3d957f5d7b60e33dae42b0e5ec13e027"}, + {file = "jiter-0.6.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e9ac7c2f092f231f5620bef23ce2e530bd218fc046098747cc390b21b8738a7a"}, + {file = "jiter-0.6.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e51a2d80d5fe0ffb10ed2c82b6004458be4a3f2b9c7d09ed85baa2fbf033f54b"}, + {file = "jiter-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3343d4706a2b7140e8bd49b6c8b0a82abf9194b3f0f5925a78fc69359f8fc33c"}, + {file = "jiter-0.6.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:82521000d18c71e41c96960cb36e915a357bc83d63a8bed63154b89d95d05ad1"}, + {file = "jiter-0.6.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:3c843e7c1633470708a3987e8ce617ee2979ee18542d6eb25ae92861af3f1d62"}, + {file = "jiter-0.6.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a2e861658c3fe849efc39b06ebb98d042e4a4c51a8d7d1c3ddc3b1ea091d0784"}, + {file = "jiter-0.6.1-cp311-none-win32.whl", hash = "sha256:7d72fc86474862c9c6d1f87b921b70c362f2b7e8b2e3c798bb7d58e419a6bc0f"}, + {file = "jiter-0.6.1-cp311-none-win_amd64.whl", hash = "sha256:3e36a320634f33a07794bb15b8da995dccb94f944d298c8cfe2bd99b1b8a574a"}, + {file = "jiter-0.6.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:1fad93654d5a7dcce0809aff66e883c98e2618b86656aeb2129db2cd6f26f867"}, + {file = "jiter-0.6.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4e6e340e8cd92edab7f6a3a904dbbc8137e7f4b347c49a27da9814015cc0420c"}, + {file = "jiter-0.6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:691352e5653af84ed71763c3c427cff05e4d658c508172e01e9c956dfe004aba"}, + {file = "jiter-0.6.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:defee3949313c1f5b55e18be45089970cdb936eb2a0063f5020c4185db1b63c9"}, + {file = "jiter-0.6.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:26d2bdd5da097e624081c6b5d416d3ee73e5b13f1703bcdadbb1881f0caa1933"}, + {file = "jiter-0.6.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18aa9d1626b61c0734b973ed7088f8a3d690d0b7f5384a5270cd04f4d9f26c86"}, + {file = "jiter-0.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a3567c8228afa5ddcce950631c6b17397ed178003dc9ee7e567c4c4dcae9fa0"}, + {file = "jiter-0.6.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e5c0507131c922defe3f04c527d6838932fcdfd69facebafd7d3574fa3395314"}, + {file = "jiter-0.6.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:540fcb224d7dc1bcf82f90f2ffb652df96f2851c031adca3c8741cb91877143b"}, + {file = "jiter-0.6.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:e7b75436d4fa2032b2530ad989e4cb0ca74c655975e3ff49f91a1a3d7f4e1df2"}, + {file = "jiter-0.6.1-cp312-none-win32.whl", hash = "sha256:883d2ced7c21bf06874fdeecab15014c1c6d82216765ca6deef08e335fa719e0"}, + {file = "jiter-0.6.1-cp312-none-win_amd64.whl", hash = "sha256:91e63273563401aadc6c52cca64a7921c50b29372441adc104127b910e98a5b6"}, + {file = "jiter-0.6.1.tar.gz", hash = "sha256:e19cd21221fc139fb032e4112986656cb2739e9fe6d84c13956ab30ccc7d4449"}, +] + +[[package]] +name = "joblib" +version = "1.4.2" +requires_python = ">=3.8" +summary = "Lightweight pipelining with Python functions" +groups = ["default"] +files = [ + {file = "joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6"}, + {file = "joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e"}, +] + +[[package]] +name = "jsonschema" +version = "4.23.0" +requires_python = ">=3.8" +summary = "An implementation of JSON Schema validation for Python" +groups = ["default"] +dependencies = [ + "attrs>=22.2.0", + "importlib-resources>=1.4.0; python_version < \"3.9\"", + "jsonschema-specifications>=2023.03.6", + "pkgutil-resolve-name>=1.3.10; python_version < \"3.9\"", + "referencing>=0.28.4", + "rpds-py>=0.7.1", +] +files = [ + {file = "jsonschema-4.23.0-py3-none-any.whl", hash = "sha256:fbadb6f8b144a8f8cf9f0b89ba94501d143e50411a1278633f56a7acf7fd5566"}, + {file = "jsonschema-4.23.0.tar.gz", hash = "sha256:d71497fef26351a33265337fa77ffeb82423f3ea21283cd9467bb03999266bc4"}, +] + +[[package]] +name = "jsonschema-specifications" +version = "2024.10.1" +requires_python = ">=3.9" +summary = "The JSON Schema meta-schemas and vocabularies, exposed as a Registry" +groups = ["default"] +dependencies = [ + "referencing>=0.31.0", +] +files = [ + {file = "jsonschema_specifications-2024.10.1-py3-none-any.whl", hash = "sha256:a09a0680616357d9a0ecf05c12ad234479f549239d0f5b55f3deea67475da9bf"}, + {file = "jsonschema_specifications-2024.10.1.tar.gz", hash = "sha256:0f38b83639958ce1152d02a7f062902c41c8fd20d558b0c34344292d417ae272"}, +] + +[[package]] +name = "lark" +version = "1.2.2" +requires_python = ">=3.8" +summary = "a modern parsing library" +groups = ["default"] +files = [ + {file = "lark-1.2.2-py3-none-any.whl", hash = "sha256:c2276486b02f0f1b90be155f2c8ba4a8e194d42775786db622faccd652d8e80c"}, + {file = "lark-1.2.2.tar.gz", hash = "sha256:ca807d0162cd16cef15a8feecb862d7319e7a09bdb13aef927968e45040fed80"}, +] + +[[package]] +name = "llama-cpp-python" +version = "0.3.5" +requires_python = ">=3.8" +summary = "Python bindings for the llama.cpp library" +groups = ["default"] +dependencies = [ + "diskcache>=5.6.1", + "jinja2>=2.11.3", + "numpy>=1.20.0", + "typing-extensions>=4.5.0", +] +files = [ + {file = "llama_cpp_python-0.3.5.tar.gz", hash = "sha256:f5ce47499d53d3973e28ca5bdaf2dfe820163fa3fb67e3050f98e2e9b58d2cf6"}, +] + +[[package]] +name = "llvmlite" +version = "0.43.0" +requires_python = ">=3.9" +summary = "lightweight wrapper around basic LLVM functionality" +groups = ["default"] +files = [ + {file = "llvmlite-0.43.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a289af9a1687c6cf463478f0fa8e8aa3b6fb813317b0d70bf1ed0759eab6f761"}, + {file = "llvmlite-0.43.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6d4fd101f571a31acb1559ae1af30f30b1dc4b3186669f92ad780e17c81e91bc"}, + {file = "llvmlite-0.43.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7d434ec7e2ce3cc8f452d1cd9a28591745de022f931d67be688a737320dfcead"}, + {file = "llvmlite-0.43.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6912a87782acdff6eb8bf01675ed01d60ca1f2551f8176a300a886f09e836a6a"}, + {file = "llvmlite-0.43.0-cp310-cp310-win_amd64.whl", hash = "sha256:14f0e4bf2fd2d9a75a3534111e8ebeb08eda2f33e9bdd6dfa13282afacdde0ed"}, + {file = "llvmlite-0.43.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3e8d0618cb9bfe40ac38a9633f2493d4d4e9fcc2f438d39a4e854f39cc0f5f98"}, + {file = "llvmlite-0.43.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e0a9a1a39d4bf3517f2af9d23d479b4175ead205c592ceeb8b89af48a327ea57"}, + {file = "llvmlite-0.43.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c1da416ab53e4f7f3bc8d4eeba36d801cc1894b9fbfbf2022b29b6bad34a7df2"}, + {file = "llvmlite-0.43.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:977525a1e5f4059316b183fb4fd34fa858c9eade31f165427a3977c95e3ee749"}, + {file = "llvmlite-0.43.0-cp311-cp311-win_amd64.whl", hash = "sha256:d5bd550001d26450bd90777736c69d68c487d17bf371438f975229b2b8241a91"}, + {file = "llvmlite-0.43.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f99b600aa7f65235a5a05d0b9a9f31150c390f31261f2a0ba678e26823ec38f7"}, + {file = "llvmlite-0.43.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:35d80d61d0cda2d767f72de99450766250560399edc309da16937b93d3b676e7"}, + {file = "llvmlite-0.43.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eccce86bba940bae0d8d48ed925f21dbb813519169246e2ab292b5092aba121f"}, + {file = "llvmlite-0.43.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:df6509e1507ca0760787a199d19439cc887bfd82226f5af746d6977bd9f66844"}, + {file = "llvmlite-0.43.0-cp312-cp312-win_amd64.whl", hash = "sha256:7a2872ee80dcf6b5dbdc838763d26554c2a18aa833d31a2635bff16aafefb9c9"}, + {file = "llvmlite-0.43.0.tar.gz", hash = "sha256:ae2b5b5c3ef67354824fb75517c8db5fbe93bc02cd9671f3c62271626bc041d5"}, +] + +[[package]] +name = "markdown-it-py" +version = "3.0.0" +requires_python = ">=3.8" +summary = "Python port of markdown-it. Markdown parsing, done right!" +groups = ["default"] +dependencies = [ + "mdurl~=0.1", +] +files = [ + {file = "markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb"}, + {file = "markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1"}, +] + +[[package]] +name = "markupsafe" +version = "2.1.5" +requires_python = ">=3.7" +summary = "Safely add untrusted strings to HTML/XML markup." +groups = ["default"] +files = [ + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl", hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win32.whl", hash = "sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win_amd64.whl", hash = "sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"}, + {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"}, +] + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +requires_python = ">=3.8" +summary = "Inline Matplotlib backend for Jupyter" +groups = ["default"] +dependencies = [ + "traitlets", +] +files = [ + {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, + {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, +] + +[[package]] +name = "mdurl" +version = "0.1.2" +requires_python = ">=3.7" +summary = "Markdown URL utilities" +groups = ["default"] +files = [ + {file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"}, + {file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"}, +] + +[[package]] +name = "model2vec" +version = "0.3.3" +requires_python = ">=3.9" +summary = "The Fastest State-of-the-Art Static Embeddings in the World" +groups = ["default"] +dependencies = [ + "jinja2", + "numpy", + "rich", + "safetensors", + "setuptools", + "tokenizers>=0.20", + "tqdm", +] +files = [ + {file = "model2vec-0.3.3-py3-none-any.whl", hash = "sha256:ac24b8f6fdcfbd46ad4094ca1f598be91008fc6eb409d5a8608de91288ac7715"}, + {file = "model2vec-0.3.3.tar.gz", hash = "sha256:b4d59afe438bfc1d6d667ee30f1d38d543e129b9498f6fbae01765f32a63ae36"}, +] + +[[package]] +name = "mpmath" +version = "1.3.0" +summary = "Python library for arbitrary-precision floating-point arithmetic" +groups = ["default"] +marker = "python_version >= \"3.9\"" +files = [ + {file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"}, + {file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"}, +] + +[[package]] +name = "multidict" +version = "6.1.0" +requires_python = ">=3.8" +summary = "multidict implementation" +groups = ["default"] +dependencies = [ + "typing-extensions>=4.1.0; python_version < \"3.11\"", +] +files = [ + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, + {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, + {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, + {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, + {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, + {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, + {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, + {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, + {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, +] + +[[package]] +name = "multiprocess" +version = "0.70.16" +requires_python = ">=3.8" +summary = "better multiprocessing and multithreading in Python" +groups = ["default"] +dependencies = [ + "dill>=0.3.8", +] +files = [ + {file = "multiprocess-0.70.16-pp310-pypy310_pp73-macosx_10_13_x86_64.whl", hash = "sha256:476887be10e2f59ff183c006af746cb6f1fd0eadcfd4ef49e605cbe2659920ee"}, + {file = "multiprocess-0.70.16-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:d951bed82c8f73929ac82c61f01a7b5ce8f3e5ef40f5b52553b4f547ce2b08ec"}, + {file = "multiprocess-0.70.16-py310-none-any.whl", hash = "sha256:c4a9944c67bd49f823687463660a2d6daae94c289adff97e0f9d696ba6371d02"}, + {file = "multiprocess-0.70.16-py311-none-any.whl", hash = "sha256:af4cabb0dac72abfb1e794fa7855c325fd2b55a10a44628a3c1ad3311c04127a"}, + {file = "multiprocess-0.70.16-py312-none-any.whl", hash = "sha256:fc0544c531920dde3b00c29863377f87e1632601092ea2daca74e4beb40faa2e"}, + {file = "multiprocess-0.70.16.tar.gz", hash = "sha256:161af703d4652a0e1410be6abccecde4a7ddffd19341be0a7011b94aeb171ac1"}, +] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +requires_python = ">=3.5" +summary = "Patch asyncio to allow nested event loops" +groups = ["default"] +files = [ + {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, + {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, +] + +[[package]] +name = "networkx" +version = "3.4.2" +requires_python = ">=3.10" +summary = "Python package for creating and manipulating graphs and networks" +groups = ["default"] +files = [ + {file = "networkx-3.4.2-py3-none-any.whl", hash = "sha256:df5d4365b724cf81b8c6a7312509d0c22386097011ad1abe274afd5e9d3bbc5f"}, + {file = "networkx-3.4.2.tar.gz", hash = "sha256:307c3669428c5362aab27c8a1260aa8f47c4e91d3891f48be0141738d8d053e1"}, +] + +[[package]] +name = "numba" +version = "0.60.0" +requires_python = ">=3.9" +summary = "compiling Python code using LLVM" +groups = ["default"] +dependencies = [ + "llvmlite<0.44,>=0.43.0dev0", + "numpy<2.1,>=1.22", +] +files = [ + {file = "numba-0.60.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5d761de835cd38fb400d2c26bb103a2726f548dc30368853121d66201672e651"}, + {file = "numba-0.60.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:159e618ef213fba758837f9837fb402bbe65326e60ba0633dbe6c7f274d42c1b"}, + {file = "numba-0.60.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:1527dc578b95c7c4ff248792ec33d097ba6bef9eda466c948b68dfc995c25781"}, + {file = "numba-0.60.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:fe0b28abb8d70f8160798f4de9d486143200f34458d34c4a214114e445d7124e"}, + {file = "numba-0.60.0-cp310-cp310-win_amd64.whl", hash = "sha256:19407ced081d7e2e4b8d8c36aa57b7452e0283871c296e12d798852bc7d7f198"}, + {file = "numba-0.60.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a17b70fc9e380ee29c42717e8cc0bfaa5556c416d94f9aa96ba13acb41bdece8"}, + {file = "numba-0.60.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3fb02b344a2a80efa6f677aa5c40cd5dd452e1b35f8d1c2af0dfd9ada9978e4b"}, + {file = "numba-0.60.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5f4fde652ea604ea3c86508a3fb31556a6157b2c76c8b51b1d45eb40c8598703"}, + {file = "numba-0.60.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4142d7ac0210cc86432b818338a2bc368dc773a2f5cf1e32ff7c5b378bd63ee8"}, + {file = "numba-0.60.0-cp311-cp311-win_amd64.whl", hash = "sha256:cac02c041e9b5bc8cf8f2034ff6f0dbafccd1ae9590dc146b3a02a45e53af4e2"}, + {file = "numba-0.60.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7da4098db31182fc5ffe4bc42c6f24cd7d1cb8a14b59fd755bfee32e34b8404"}, + {file = "numba-0.60.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:38d6ea4c1f56417076ecf8fc327c831ae793282e0ff51080c5094cb726507b1c"}, + {file = "numba-0.60.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:62908d29fb6a3229c242e981ca27e32a6e606cc253fc9e8faeb0e48760de241e"}, + {file = "numba-0.60.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:0ebaa91538e996f708f1ab30ef4d3ddc344b64b5227b67a57aa74f401bb68b9d"}, + {file = "numba-0.60.0-cp312-cp312-win_amd64.whl", hash = "sha256:f75262e8fe7fa96db1dca93d53a194a38c46da28b112b8a4aca168f0df860347"}, + {file = "numba-0.60.0.tar.gz", hash = "sha256:5df6158e5584eece5fc83294b949fd30b9f1125df7708862205217e068aabf16"}, +] + +[[package]] +name = "numpy" +version = "2.0.2" +requires_python = ">=3.9" +summary = "Fundamental package for array computing in Python" +groups = ["default"] +files = [ + {file = "numpy-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:51129a29dbe56f9ca83438b706e2e69a39892b5eda6cedcb6b0c9fdc9b0d3ece"}, + {file = "numpy-2.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f15975dfec0cf2239224d80e32c3170b1d168335eaedee69da84fbe9f1f9cd04"}, + {file = "numpy-2.0.2-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:8c5713284ce4e282544c68d1c3b2c7161d38c256d2eefc93c1d683cf47683e66"}, + {file = "numpy-2.0.2-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:becfae3ddd30736fe1889a37f1f580e245ba79a5855bff5f2a29cb3ccc22dd7b"}, + {file = "numpy-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2da5960c3cf0df7eafefd806d4e612c5e19358de82cb3c343631188991566ccd"}, + {file = "numpy-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:496f71341824ed9f3d2fd36cf3ac57ae2e0165c143b55c3a035ee219413f3318"}, + {file = "numpy-2.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a61ec659f68ae254e4d237816e33171497e978140353c0c2038d46e63282d0c8"}, + {file = "numpy-2.0.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d731a1c6116ba289c1e9ee714b08a8ff882944d4ad631fd411106a30f083c326"}, + {file = "numpy-2.0.2-cp310-cp310-win32.whl", hash = "sha256:984d96121c9f9616cd33fbd0618b7f08e0cfc9600a7ee1d6fd9b239186d19d97"}, + {file = "numpy-2.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:c7b0be4ef08607dd04da4092faee0b86607f111d5ae68036f16cc787e250a131"}, + {file = "numpy-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:49ca4decb342d66018b01932139c0961a8f9ddc7589611158cb3c27cbcf76448"}, + {file = "numpy-2.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:11a76c372d1d37437857280aa142086476136a8c0f373b2e648ab2c8f18fb195"}, + {file = "numpy-2.0.2-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:807ec44583fd708a21d4a11d94aedf2f4f3c3719035c76a2bbe1fe8e217bdc57"}, + {file = "numpy-2.0.2-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:8cafab480740e22f8d833acefed5cc87ce276f4ece12fdaa2e8903db2f82897a"}, + {file = "numpy-2.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a15f476a45e6e5a3a79d8a14e62161d27ad897381fecfa4a09ed5322f2085669"}, + {file = "numpy-2.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:13e689d772146140a252c3a28501da66dfecd77490b498b168b501835041f951"}, + {file = "numpy-2.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9ea91dfb7c3d1c56a0e55657c0afb38cf1eeae4544c208dc465c3c9f3a7c09f9"}, + {file = "numpy-2.0.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c1c9307701fec8f3f7a1e6711f9089c06e6284b3afbbcd259f7791282d660a15"}, + {file = "numpy-2.0.2-cp311-cp311-win32.whl", hash = "sha256:a392a68bd329eafac5817e5aefeb39038c48b671afd242710b451e76090e81f4"}, + {file = "numpy-2.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:286cd40ce2b7d652a6f22efdfc6d1edf879440e53e76a75955bc0c826c7e64dc"}, + {file = "numpy-2.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:df55d490dea7934f330006d0f81e8551ba6010a5bf035a249ef61a94f21c500b"}, + {file = "numpy-2.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8df823f570d9adf0978347d1f926b2a867d5608f434a7cff7f7908c6570dcf5e"}, + {file = "numpy-2.0.2-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:9a92ae5c14811e390f3767053ff54eaee3bf84576d99a2456391401323f4ec2c"}, + {file = "numpy-2.0.2-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:a842d573724391493a97a62ebbb8e731f8a5dcc5d285dfc99141ca15a3302d0c"}, + {file = "numpy-2.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c05e238064fc0610c840d1cf6a13bf63d7e391717d247f1bf0318172e759e692"}, + {file = "numpy-2.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0123ffdaa88fa4ab64835dcbde75dcdf89c453c922f18dced6e27c90d1d0ec5a"}, + {file = "numpy-2.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:96a55f64139912d61de9137f11bf39a55ec8faec288c75a54f93dfd39f7eb40c"}, + {file = "numpy-2.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ec9852fb39354b5a45a80bdab5ac02dd02b15f44b3804e9f00c556bf24b4bded"}, + {file = "numpy-2.0.2-cp312-cp312-win32.whl", hash = "sha256:671bec6496f83202ed2d3c8fdc486a8fc86942f2e69ff0e986140339a63bcbe5"}, + {file = "numpy-2.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:cfd41e13fdc257aa5778496b8caa5e856dc4896d4ccf01841daee1d96465467a"}, + {file = "numpy-2.0.2.tar.gz", hash = "sha256:883c987dee1880e2a864ab0dc9892292582510604156762362d9326444636e78"}, +] + +[[package]] +name = "nvidia-cublas-cu12" +version = "12.4.5.8" +requires_python = ">=3" +summary = "CUBLAS native runtime libraries" +groups = ["default"] +marker = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_aarch64.whl", hash = "sha256:0f8aa1706812e00b9f19dfe0cdb3999b092ccb8ca168c0db5b8ea712456fd9b3"}, + {file = "nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl", hash = "sha256:2fc8da60df463fdefa81e323eef2e36489e1c94335b5358bcb38360adf75ac9b"}, + {file = "nvidia_cublas_cu12-12.4.5.8-py3-none-win_amd64.whl", hash = "sha256:5a796786da89203a0657eda402bcdcec6180254a8ac22d72213abc42069522dc"}, +] + +[[package]] +name = "nvidia-cuda-cupti-cu12" +version = "12.4.127" +requires_python = ">=3" +summary = "CUDA profiling tools runtime libs." +groups = ["default"] +marker = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:79279b35cf6f91da114182a5ce1864997fd52294a87a16179ce275773799458a"}, + {file = "nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:9dec60f5ac126f7bb551c055072b69d85392b13311fcc1bcda2202d172df30fb"}, + {file = "nvidia_cuda_cupti_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:5688d203301ab051449a2b1cb6690fbe90d2b372f411521c86018b950f3d7922"}, +] + +[[package]] +name = "nvidia-cuda-nvrtc-cu12" +version = "12.4.127" +requires_python = ">=3" +summary = "NVRTC native runtime libraries" +groups = ["default"] +marker = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:0eedf14185e04b76aa05b1fea04133e59f465b6f960c0cbf4e37c3cb6b0ea198"}, + {file = "nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:a178759ebb095827bd30ef56598ec182b85547f1508941a3d560eb7ea1fbf338"}, + {file = "nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:a961b2f1d5f17b14867c619ceb99ef6fcec12e46612711bcec78eb05068a60ec"}, +] + +[[package]] +name = "nvidia-cuda-runtime-cu12" +version = "12.4.127" +requires_python = ">=3" +summary = "CUDA Runtime native Libraries" +groups = ["default"] +marker = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:961fe0e2e716a2a1d967aab7caee97512f71767f852f67432d572e36cb3a11f3"}, + {file = "nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:64403288fa2136ee8e467cdc9c9427e0434110899d07c779f25b5c068934faa5"}, + {file = "nvidia_cuda_runtime_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:09c2e35f48359752dfa822c09918211844a3d93c100a715d79b59591130c5e1e"}, +] + +[[package]] +name = "nvidia-cudnn-cu12" +version = "9.1.0.70" +requires_python = ">=3" +summary = "cuDNN runtime libraries" +groups = ["default"] +marker = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +dependencies = [ + "nvidia-cublas-cu12", +] +files = [ + {file = "nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl", hash = "sha256:165764f44ef8c61fcdfdfdbe769d687e06374059fbb388b6c89ecb0e28793a6f"}, + {file = "nvidia_cudnn_cu12-9.1.0.70-py3-none-win_amd64.whl", hash = "sha256:6278562929433d68365a07a4a1546c237ba2849852c0d4b2262a486e805b977a"}, +] + +[[package]] +name = "nvidia-cufft-cu12" +version = "11.2.1.3" +requires_python = ">=3" +summary = "CUFFT native runtime libraries" +groups = ["default"] +marker = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +dependencies = [ + "nvidia-nvjitlink-cu12", +] +files = [ + {file = "nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5dad8008fc7f92f5ddfa2101430917ce2ffacd86824914c82e28990ad7f00399"}, + {file = "nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl", hash = "sha256:f083fc24912aa410be21fa16d157fed2055dab1cc4b6934a0e03cba69eb242b9"}, + {file = "nvidia_cufft_cu12-11.2.1.3-py3-none-win_amd64.whl", hash = "sha256:d802f4954291101186078ccbe22fc285a902136f974d369540fd4a5333d1440b"}, +] + +[[package]] +name = "nvidia-curand-cu12" +version = "10.3.5.147" +requires_python = ">=3" +summary = "CURAND native runtime libraries" +groups = ["default"] +marker = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_aarch64.whl", hash = "sha256:1f173f09e3e3c76ab084aba0de819c49e56614feae5c12f69883f4ae9bb5fad9"}, + {file = "nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl", hash = "sha256:a88f583d4e0bb643c49743469964103aa59f7f708d862c3ddb0fc07f851e3b8b"}, + {file = "nvidia_curand_cu12-10.3.5.147-py3-none-win_amd64.whl", hash = "sha256:f307cc191f96efe9e8f05a87096abc20d08845a841889ef78cb06924437f6771"}, +] + +[[package]] +name = "nvidia-cusolver-cu12" +version = "11.6.1.9" +requires_python = ">=3" +summary = "CUDA solver native runtime libraries" +groups = ["default"] +marker = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +dependencies = [ + "nvidia-cublas-cu12", + "nvidia-cusparse-cu12", + "nvidia-nvjitlink-cu12", +] +files = [ + {file = "nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_aarch64.whl", hash = "sha256:d338f155f174f90724bbde3758b7ac375a70ce8e706d70b018dd3375545fc84e"}, + {file = "nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl", hash = "sha256:19e33fa442bcfd085b3086c4ebf7e8debc07cfe01e11513cc6d332fd918ac260"}, + {file = "nvidia_cusolver_cu12-11.6.1.9-py3-none-win_amd64.whl", hash = "sha256:e77314c9d7b694fcebc84f58989f3aa4fb4cb442f12ca1a9bde50f5e8f6d1b9c"}, +] + +[[package]] +name = "nvidia-cusparse-cu12" +version = "12.3.1.170" +requires_python = ">=3" +summary = "CUSPARSE native runtime libraries" +groups = ["default"] +marker = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +dependencies = [ + "nvidia-nvjitlink-cu12", +] +files = [ + {file = "nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_aarch64.whl", hash = "sha256:9d32f62896231ebe0480efd8a7f702e143c98cfaa0e8a76df3386c1ba2b54df3"}, + {file = "nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl", hash = "sha256:ea4f11a2904e2a8dc4b1833cc1b5181cde564edd0d5cd33e3c168eff2d1863f1"}, + {file = "nvidia_cusparse_cu12-12.3.1.170-py3-none-win_amd64.whl", hash = "sha256:9bc90fb087bc7b4c15641521f31c0371e9a612fc2ba12c338d3ae032e6b6797f"}, +] + +[[package]] +name = "nvidia-nccl-cu12" +version = "2.21.5" +requires_python = ">=3" +summary = "NVIDIA Collective Communication Library (NCCL) Runtime" +groups = ["default"] +marker = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_nccl_cu12-2.21.5-py3-none-manylinux2014_x86_64.whl", hash = "sha256:8579076d30a8c24988834445f8d633c697d42397e92ffc3f63fa26766d25e0a0"}, +] + +[[package]] +name = "nvidia-nvjitlink-cu12" +version = "12.4.127" +requires_python = ">=3" +summary = "Nvidia JIT LTO Library" +groups = ["default"] +marker = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:4abe7fef64914ccfa909bc2ba39739670ecc9e820c83ccc7a6ed414122599b83"}, + {file = "nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:06b3b9b25bf3f8af351d664978ca26a16d2c5127dbd53c0497e28d1fb9611d57"}, + {file = "nvidia_nvjitlink_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:fd9020c501d27d135f983c6d3e244b197a7ccad769e34df53a42e276b0e25fa1"}, +] + +[[package]] +name = "nvidia-nvtx-cu12" +version = "12.4.127" +requires_python = ">=3" +summary = "NVIDIA Tools Extension" +groups = ["default"] +marker = "platform_system == \"Linux\" and platform_machine == \"x86_64\"" +files = [ + {file = "nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:7959ad635db13edf4fc65c06a6e9f9e55fc2f92596db928d169c0bb031e88ef3"}, + {file = "nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:781e950d9b9f60d8241ccea575b32f5105a5baf4c2351cab5256a24869f12a1a"}, + {file = "nvidia_nvtx_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:641dccaaa1139f3ffb0d3164b4b84f9d253397e38246a4f2f36728b48566d485"}, +] + +[[package]] +name = "ollama" +version = "0.4.4" +requires_python = "<4.0,>=3.8" +summary = "The official Python client for Ollama." +groups = ["default"] +dependencies = [ + "httpx<0.28.0,>=0.27.0", + "pydantic<3.0.0,>=2.9.0", +] +files = [ + {file = "ollama-0.4.4-py3-none-any.whl", hash = "sha256:0f466e845e2205a1cbf5a2fef4640027b90beaa3b06c574426d8b6b17fd6e139"}, + {file = "ollama-0.4.4.tar.gz", hash = "sha256:e1db064273c739babc2dde9ea84029c4a43415354741b6c50939ddd3dd0f7ffb"}, +] + +[[package]] +name = "openai" +version = "1.57.4" +requires_python = ">=3.8" +summary = "The official Python library for the openai API" +groups = ["default"] +dependencies = [ + "anyio<5,>=3.5.0", + "distro<2,>=1.7.0", + "httpx<1,>=0.23.0", + "jiter<1,>=0.4.0", + "pydantic<3,>=1.9.0", + "sniffio", + "tqdm>4", + "typing-extensions<5,>=4.11", +] +files = [ + {file = "openai-1.57.4-py3-none-any.whl", hash = "sha256:7def1ab2d52f196357ce31b9cfcf4181529ce00838286426bb35be81c035dafb"}, + {file = "openai-1.57.4.tar.gz", hash = "sha256:a8f071a3e9198e2818f63aade68e759417b9f62c0971bdb83de82504b70b77f7"}, +] + +[[package]] +name = "orjson" +version = "3.10.12" +requires_python = ">=3.8" +summary = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy" +groups = ["default"] +files = [ + {file = "orjson-3.10.12-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:ece01a7ec71d9940cc654c482907a6b65df27251255097629d0dea781f255c6d"}, + {file = "orjson-3.10.12-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c34ec9aebc04f11f4b978dd6caf697a2df2dd9b47d35aa4cc606cabcb9df69d7"}, + {file = "orjson-3.10.12-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fd6ec8658da3480939c79b9e9e27e0db31dffcd4ba69c334e98c9976ac29140e"}, + {file = "orjson-3.10.12-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f17e6baf4cf01534c9de8a16c0c611f3d94925d1701bf5f4aff17003677d8ced"}, + {file = "orjson-3.10.12-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6402ebb74a14ef96f94a868569f5dccf70d791de49feb73180eb3c6fda2ade56"}, + {file = "orjson-3.10.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0000758ae7c7853e0a4a6063f534c61656ebff644391e1f81698c1b2d2fc8cd2"}, + {file = "orjson-3.10.12-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:888442dcee99fd1e5bd37a4abb94930915ca6af4db50e23e746cdf4d1e63db13"}, + {file = "orjson-3.10.12-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c1f7a3ce79246aa0e92f5458d86c54f257fb5dfdc14a192651ba7ec2c00f8a05"}, + {file = "orjson-3.10.12-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:802a3935f45605c66fb4a586488a38af63cb37aaad1c1d94c982c40dcc452e85"}, + {file = "orjson-3.10.12-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:1da1ef0113a2be19bb6c557fb0ec2d79c92ebd2fed4cfb1b26bab93f021fb885"}, + {file = "orjson-3.10.12-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7a3273e99f367f137d5b3fecb5e9f45bcdbfac2a8b2f32fbc72129bbd48789c2"}, + {file = "orjson-3.10.12-cp310-none-win32.whl", hash = "sha256:475661bf249fd7907d9b0a2a2421b4e684355a77ceef85b8352439a9163418c3"}, + {file = "orjson-3.10.12-cp310-none-win_amd64.whl", hash = "sha256:87251dc1fb2b9e5ab91ce65d8f4caf21910d99ba8fb24b49fd0c118b2362d509"}, + {file = "orjson-3.10.12-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:a734c62efa42e7df94926d70fe7d37621c783dea9f707a98cdea796964d4cf74"}, + {file = "orjson-3.10.12-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:750f8b27259d3409eda8350c2919a58b0cfcd2054ddc1bd317a643afc646ef23"}, + {file = "orjson-3.10.12-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb52c22bfffe2857e7aa13b4622afd0dd9d16ea7cc65fd2bf318d3223b1b6252"}, + {file = "orjson-3.10.12-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:440d9a337ac8c199ff8251e100c62e9488924c92852362cd27af0e67308c16ef"}, + {file = "orjson-3.10.12-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a9e15c06491c69997dfa067369baab3bf094ecb74be9912bdc4339972323f252"}, + {file = "orjson-3.10.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:362d204ad4b0b8724cf370d0cd917bb2dc913c394030da748a3bb632445ce7c4"}, + {file = "orjson-3.10.12-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2b57cbb4031153db37b41622eac67329c7810e5f480fda4cfd30542186f006ae"}, + {file = "orjson-3.10.12-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:165c89b53ef03ce0d7c59ca5c82fa65fe13ddf52eeb22e859e58c237d4e33b9b"}, + {file = "orjson-3.10.12-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:5dee91b8dfd54557c1a1596eb90bcd47dbcd26b0baaed919e6861f076583e9da"}, + {file = "orjson-3.10.12-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:77a4e1cfb72de6f905bdff061172adfb3caf7a4578ebf481d8f0530879476c07"}, + {file = "orjson-3.10.12-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:038d42c7bc0606443459b8fe2d1f121db474c49067d8d14c6a075bbea8bf14dd"}, + {file = "orjson-3.10.12-cp311-none-win32.whl", hash = "sha256:03b553c02ab39bed249bedd4abe37b2118324d1674e639b33fab3d1dafdf4d79"}, + {file = "orjson-3.10.12-cp311-none-win_amd64.whl", hash = "sha256:8b8713b9e46a45b2af6b96f559bfb13b1e02006f4242c156cbadef27800a55a8"}, + {file = "orjson-3.10.12-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:53206d72eb656ca5ac7d3a7141e83c5bbd3ac30d5eccfe019409177a57634b0d"}, + {file = "orjson-3.10.12-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac8010afc2150d417ebda810e8df08dd3f544e0dd2acab5370cfa6bcc0662f8f"}, + {file = "orjson-3.10.12-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed459b46012ae950dd2e17150e838ab08215421487371fa79d0eced8d1461d70"}, + {file = "orjson-3.10.12-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8dcb9673f108a93c1b52bfc51b0af422c2d08d4fc710ce9c839faad25020bb69"}, + {file = "orjson-3.10.12-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:22a51ae77680c5c4652ebc63a83d5255ac7d65582891d9424b566fb3b5375ee9"}, + {file = "orjson-3.10.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:910fdf2ac0637b9a77d1aad65f803bac414f0b06f720073438a7bd8906298192"}, + {file = "orjson-3.10.12-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:24ce85f7100160936bc2116c09d1a8492639418633119a2224114f67f63a4559"}, + {file = "orjson-3.10.12-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:8a76ba5fc8dd9c913640292df27bff80a685bed3a3c990d59aa6ce24c352f8fc"}, + {file = "orjson-3.10.12-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:ff70ef093895fd53f4055ca75f93f047e088d1430888ca1229393a7c0521100f"}, + {file = "orjson-3.10.12-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:f4244b7018b5753ecd10a6d324ec1f347da130c953a9c88432c7fbc8875d13be"}, + {file = "orjson-3.10.12-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:16135ccca03445f37921fa4b585cff9a58aa8d81ebcb27622e69bfadd220b32c"}, + {file = "orjson-3.10.12-cp312-none-win32.whl", hash = "sha256:2d879c81172d583e34153d524fcba5d4adafbab8349a7b9f16ae511c2cee8708"}, + {file = "orjson-3.10.12-cp312-none-win_amd64.whl", hash = "sha256:fc23f691fa0f5c140576b8c365bc942d577d861a9ee1142e4db468e4e17094fb"}, + {file = "orjson-3.10.12.tar.gz", hash = "sha256:0a78bbda3aea0f9f079057ee1ee8a1ecf790d4f1af88dd67493c6b8ee52506ff"}, +] + +[[package]] +name = "outlines" +version = "0.1.11" +requires_python = ">=3.9" +summary = "Probabilistic Generative Model Programming" +groups = ["default"] +dependencies = [ + "airportsdata", + "cloudpickle", + "diskcache", + "interegular", + "jinja2", + "jsonschema", + "lark", + "nest-asyncio", + "numpy", + "outlines-core==0.1.26", + "pycountry", + "pydantic>=2.0", + "referencing", + "requests", + "torch", + "tqdm", + "typing-extensions", +] +files = [ + {file = "outlines-0.1.11-py3-none-any.whl", hash = "sha256:f5a5f2242ed9802d3aab7a92789bf4008d734c576be9258cc0a297f690124727"}, + {file = "outlines-0.1.11.tar.gz", hash = "sha256:0997bd9da1cc050e430bd08995dc7d4bd855918bafa4531e49d3f37110a23aba"}, +] + +[[package]] +name = "outlines-core" +version = "0.1.26" +requires_python = ">=3.8" +summary = "Structured Text Generation in Rust" +groups = ["default"] +dependencies = [ + "interegular", + "jsonschema", +] +files = [ + {file = "outlines_core-0.1.26-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:6a962a7452e7ac170fa04d405342cadae2d28fafa5b1830cef7aa610257ed32f"}, + {file = "outlines_core-0.1.26-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:15a3684fa29564da2db03934cf0097bef3e871f70d3af0ef2b52fdb886da2e09"}, + {file = "outlines_core-0.1.26-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64e01c0cfa9ba371634d7c3f6ea1862397cef98e4509fe98e3f57faa721a72d6"}, + {file = "outlines_core-0.1.26-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a3c4196148e47f455f1ace78e329d5b97e531cbc406456d681592952adae7e17"}, + {file = "outlines_core-0.1.26-cp310-cp310-win32.whl", hash = "sha256:f38d290a7f6e5e12cbfcaee03269dfc0dbda49b360024b4279d1aba251fdc346"}, + {file = "outlines_core-0.1.26-cp310-cp310-win_amd64.whl", hash = "sha256:11ff56af56cb54c563b7f25d86cd9ee77f3fed825f1d4dccd9449bb1e4e89538"}, + {file = "outlines_core-0.1.26-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:b6787b07b7c673fc3087d2b537719ecac8e03b10a47d032dd1926985c32885b0"}, + {file = "outlines_core-0.1.26-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e0ea28a76da31d25b6f53242bf13e1b59a0241badf82353c88f55e1cf81b128"}, + {file = "outlines_core-0.1.26-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a8932044a3d9329be53a226118850638f85b4d7842f9b863d0a123f23de220cd"}, + {file = "outlines_core-0.1.26-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a84b7cd2fb6268bf990dd3d479ffb4fa0bace6f571cb85b15b6cdb44b84f5b69"}, + {file = "outlines_core-0.1.26-cp311-cp311-win32.whl", hash = "sha256:f19765c151abfc970996368080aeea6d2a19e927817fe4e2af6726e639be3de4"}, + {file = "outlines_core-0.1.26-cp311-cp311-win_amd64.whl", hash = "sha256:3f59aeccea21ed6ff3cf52102fd163f26d279821c20e5127ddd18d4ea4d0c8d2"}, + {file = "outlines_core-0.1.26-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:f54633bca50055d42ea4d94ae06dcbe52d3d76a9b621b75723b1177d0d952953"}, + {file = "outlines_core-0.1.26-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9525321b48700dcaaabf60bcdc951e45f9357ba3fb3e1bfc81b662d7d4170e7c"}, + {file = "outlines_core-0.1.26-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:00f409f72c11f6ffadb57066950dd384d5388015028c1a1a615c9a64988dae3e"}, + {file = "outlines_core-0.1.26-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e86a1bb46adc5cbf6dfd7a7fe4105e0e2a4c6e041732a053126b41c521a1f223"}, + {file = "outlines_core-0.1.26-cp312-cp312-win32.whl", hash = "sha256:19f462f6b00935708677ad27cb4df55e0e17f6ffe713ab750f5f2683b090f95d"}, + {file = "outlines_core-0.1.26-cp312-cp312-win_amd64.whl", hash = "sha256:9b36bff12779e58883747116893a17b3551bbd10865878b951b03a44d112229a"}, + {file = "outlines_core-0.1.26.tar.gz", hash = "sha256:481c4301341e77cc8f1832d616784adb4d461b4fec65878e7c0d2cba7163a189"}, +] + +[[package]] +name = "packaging" +version = "24.2" +requires_python = ">=3.8" +summary = "Core utilities for Python packages" +groups = ["default"] +files = [ + {file = "packaging-24.2-py3-none-any.whl", hash = "sha256:09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759"}, + {file = "packaging-24.2.tar.gz", hash = "sha256:c228a6dc5e932d346bc5739379109d49e8853dd8223571c7c5b55260edc0b97f"}, +] + +[[package]] +name = "pandas" +version = "2.2.3" +requires_python = ">=3.9" +summary = "Powerful data structures for data analysis, time series, and statistics" +groups = ["default"] +dependencies = [ + "numpy>=1.22.4; python_version < \"3.11\"", + "numpy>=1.23.2; python_version == \"3.11\"", + "numpy>=1.26.0; python_version >= \"3.12\"", + "python-dateutil>=2.8.2", + "pytz>=2020.1", + "tzdata>=2022.7", +] +files = [ + {file = "pandas-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1948ddde24197a0f7add2bdc4ca83bf2b1ef84a1bc8ccffd95eda17fd836ecb5"}, + {file = "pandas-2.2.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:381175499d3802cde0eabbaf6324cce0c4f5d52ca6f8c377c29ad442f50f6348"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d9c45366def9a3dd85a6454c0e7908f2b3b8e9c138f5dc38fed7ce720d8453ed"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86976a1c5b25ae3f8ccae3a5306e443569ee3c3faf444dfd0f41cda24667ad57"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b8661b0238a69d7aafe156b7fa86c44b881387509653fdf857bebc5e4008ad42"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:37e0aced3e8f539eccf2e099f65cdb9c8aa85109b0be6e93e2baff94264bdc6f"}, + {file = "pandas-2.2.3-cp310-cp310-win_amd64.whl", hash = "sha256:56534ce0746a58afaf7942ba4863e0ef81c9c50d3f0ae93e9497d6a41a057645"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:66108071e1b935240e74525006034333f98bcdb87ea116de573a6a0dccb6c039"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7c2875855b0ff77b2a64a0365e24455d9990730d6431b9e0ee18ad8acee13dbd"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cd8d0c3be0515c12fed0bdbae072551c8b54b7192c7b1fda0ba56059a0179698"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c124333816c3a9b03fbeef3a9f230ba9a737e9e5bb4060aa2107a86cc0a497fc"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:63cc132e40a2e084cf01adf0775b15ac515ba905d7dcca47e9a251819c575ef3"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:29401dbfa9ad77319367d36940cd8a0b3a11aba16063e39632d98b0e931ddf32"}, + {file = "pandas-2.2.3-cp311-cp311-win_amd64.whl", hash = "sha256:3fc6873a41186404dad67245896a6e440baacc92f5b716ccd1bc9ed2995ab2c5"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b1d432e8d08679a40e2a6d8b2f9770a5c21793a6f9f47fdd52c5ce1948a5a8a9"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a5a1595fe639f5988ba6a8e5bc9649af3baf26df3998a0abe56c02609392e0a4"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5de54125a92bb4d1c051c0659e6fcb75256bf799a732a87184e5ea503965bce3"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fffb8ae78d8af97f849404f21411c95062db1496aeb3e56f146f0355c9989319"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6dfcb5ee8d4d50c06a51c2fffa6cff6272098ad6540aed1a76d15fb9318194d8"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:062309c1b9ea12a50e8ce661145c6aab431b1e99530d3cd60640e255778bd43a"}, + {file = "pandas-2.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:59ef3764d0fe818125a5097d2ae867ca3fa64df032331b7e0917cf5d7bf66b13"}, + {file = "pandas-2.2.3.tar.gz", hash = "sha256:4f18ba62b61d7e192368b84517265a99b4d7ee8912f8708660fb4a366cc82667"}, +] + +[[package]] +name = "parso" +version = "0.8.4" +requires_python = ">=3.6" +summary = "A Python Parser" +groups = ["default"] +files = [ + {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, + {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, +] + +[[package]] +name = "pexpect" +version = "4.9.0" +summary = "Pexpect allows easy control of interactive console applications." +groups = ["default"] +marker = "sys_platform != \"win32\" and sys_platform != \"emscripten\"" +dependencies = [ + "ptyprocess>=0.5", +] +files = [ + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, +] + +[[package]] +name = "pillow" +version = "11.0.0" +requires_python = ">=3.9" +summary = "Python Imaging Library (Fork)" +groups = ["default"] +files = [ + {file = "pillow-11.0.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:6619654954dc4936fcff82db8eb6401d3159ec6be81e33c6000dfd76ae189947"}, + {file = "pillow-11.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b3c5ac4bed7519088103d9450a1107f76308ecf91d6dabc8a33a2fcfb18d0fba"}, + {file = "pillow-11.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a65149d8ada1055029fcb665452b2814fe7d7082fcb0c5bed6db851cb69b2086"}, + {file = "pillow-11.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88a58d8ac0cc0e7f3a014509f0455248a76629ca9b604eca7dc5927cc593c5e9"}, + {file = "pillow-11.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:c26845094b1af3c91852745ae78e3ea47abf3dbcd1cf962f16b9a5fbe3ee8488"}, + {file = "pillow-11.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:1a61b54f87ab5786b8479f81c4b11f4d61702830354520837f8cc791ebba0f5f"}, + {file = "pillow-11.0.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:674629ff60030d144b7bca2b8330225a9b11c482ed408813924619c6f302fdbb"}, + {file = "pillow-11.0.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:598b4e238f13276e0008299bd2482003f48158e2b11826862b1eb2ad7c768b97"}, + {file = "pillow-11.0.0-cp310-cp310-win32.whl", hash = "sha256:9a0f748eaa434a41fccf8e1ee7a3eed68af1b690e75328fd7a60af123c193b50"}, + {file = "pillow-11.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:a5629742881bcbc1f42e840af185fd4d83a5edeb96475a575f4da50d6ede337c"}, + {file = "pillow-11.0.0-cp310-cp310-win_arm64.whl", hash = "sha256:ee217c198f2e41f184f3869f3e485557296d505b5195c513b2bfe0062dc537f1"}, + {file = "pillow-11.0.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:1c1d72714f429a521d8d2d018badc42414c3077eb187a59579f28e4270b4b0fc"}, + {file = "pillow-11.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:499c3a1b0d6fc8213519e193796eb1a86a1be4b1877d678b30f83fd979811d1a"}, + {file = "pillow-11.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c8b2351c85d855293a299038e1f89db92a2f35e8d2f783489c6f0b2b5f3fe8a3"}, + {file = "pillow-11.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f4dba50cfa56f910241eb7f883c20f1e7b1d8f7d91c750cd0b318bad443f4d5"}, + {file = "pillow-11.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:5ddbfd761ee00c12ee1be86c9c0683ecf5bb14c9772ddbd782085779a63dd55b"}, + {file = "pillow-11.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:45c566eb10b8967d71bf1ab8e4a525e5a93519e29ea071459ce517f6b903d7fa"}, + {file = "pillow-11.0.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:b4fd7bd29610a83a8c9b564d457cf5bd92b4e11e79a4ee4716a63c959699b306"}, + {file = "pillow-11.0.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:cb929ca942d0ec4fac404cbf520ee6cac37bf35be479b970c4ffadf2b6a1cad9"}, + {file = "pillow-11.0.0-cp311-cp311-win32.whl", hash = "sha256:006bcdd307cc47ba43e924099a038cbf9591062e6c50e570819743f5607404f5"}, + {file = "pillow-11.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:52a2d8323a465f84faaba5236567d212c3668f2ab53e1c74c15583cf507a0291"}, + {file = "pillow-11.0.0-cp311-cp311-win_arm64.whl", hash = "sha256:16095692a253047fe3ec028e951fa4221a1f3ed3d80c397e83541a3037ff67c9"}, + {file = "pillow-11.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:d2c0a187a92a1cb5ef2c8ed5412dd8d4334272617f532d4ad4de31e0495bd923"}, + {file = "pillow-11.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:084a07ef0821cfe4858fe86652fffac8e187b6ae677e9906e192aafcc1b69903"}, + {file = "pillow-11.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8069c5179902dcdce0be9bfc8235347fdbac249d23bd90514b7a47a72d9fecf4"}, + {file = "pillow-11.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f02541ef64077f22bf4924f225c0fd1248c168f86e4b7abdedd87d6ebaceab0f"}, + {file = "pillow-11.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:fcb4621042ac4b7865c179bb972ed0da0218a076dc1820ffc48b1d74c1e37fe9"}, + {file = "pillow-11.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:00177a63030d612148e659b55ba99527803288cea7c75fb05766ab7981a8c1b7"}, + {file = "pillow-11.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:8853a3bf12afddfdf15f57c4b02d7ded92c7a75a5d7331d19f4f9572a89c17e6"}, + {file = "pillow-11.0.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3107c66e43bda25359d5ef446f59c497de2b5ed4c7fdba0894f8d6cf3822dafc"}, + {file = "pillow-11.0.0-cp312-cp312-win32.whl", hash = "sha256:86510e3f5eca0ab87429dd77fafc04693195eec7fd6a137c389c3eeb4cfb77c6"}, + {file = "pillow-11.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:8ec4a89295cd6cd4d1058a5e6aec6bf51e0eaaf9714774e1bfac7cfc9051db47"}, + {file = "pillow-11.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:27a7860107500d813fcd203b4ea19b04babe79448268403172782754870dac25"}, + {file = "pillow-11.0.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:1187739620f2b365de756ce086fdb3604573337cc28a0d3ac4a01ab6b2d2a6d2"}, + {file = "pillow-11.0.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:fbbcb7b57dc9c794843e3d1258c0fbf0f48656d46ffe9e09b63bbd6e8cd5d0a2"}, + {file = "pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d203af30149ae339ad1b4f710d9844ed8796e97fda23ffbc4cc472968a47d0b"}, + {file = "pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21a0d3b115009ebb8ac3d2ebec5c2982cc693da935f4ab7bb5c8ebe2f47d36f2"}, + {file = "pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:73853108f56df97baf2bb8b522f3578221e56f646ba345a372c78326710d3830"}, + {file = "pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e58876c91f97b0952eb766123bfef372792ab3f4e3e1f1a2267834c2ab131734"}, + {file = "pillow-11.0.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:224aaa38177597bb179f3ec87eeefcce8e4f85e608025e9cfac60de237ba6316"}, + {file = "pillow-11.0.0.tar.gz", hash = "sha256:72bacbaf24ac003fea9bff9837d1eedb6088758d41e100c1552930151f677739"}, +] + +[[package]] +name = "portalocker" +version = "3.0.0" +requires_python = ">=3.8" +summary = "Wraps the portalocker recipe for easy usage" +groups = ["default"] +dependencies = [ + "pywin32>=226; platform_system == \"Windows\"", +] +files = [ + {file = "portalocker-3.0.0-py3-none-any.whl", hash = "sha256:211916b539a0dc3c128a3d9e86893ecfefec5379c4ff684e798f0a00f99db406"}, + {file = "portalocker-3.0.0.tar.gz", hash = "sha256:21f535de2e7a82c94c130c054adb5c7421d480d5619d61073996e2f89bcb879b"}, +] + +[[package]] +name = "prompt-toolkit" +version = "3.0.48" +requires_python = ">=3.7.0" +summary = "Library for building powerful interactive command lines in Python" +groups = ["default"] +dependencies = [ + "wcwidth", +] +files = [ + {file = "prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e"}, + {file = "prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90"}, +] + +[[package]] +name = "propcache" +version = "0.2.1" +requires_python = ">=3.9" +summary = "Accelerated property cache" +groups = ["default"] +files = [ + {file = "propcache-0.2.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:6b3f39a85d671436ee3d12c017f8fdea38509e4f25b28eb25877293c98c243f6"}, + {file = "propcache-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:39d51fbe4285d5db5d92a929e3e21536ea3dd43732c5b177c7ef03f918dff9f2"}, + {file = "propcache-0.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6445804cf4ec763dc70de65a3b0d9954e868609e83850a47ca4f0cb64bd79fea"}, + {file = "propcache-0.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9479aa06a793c5aeba49ce5c5692ffb51fcd9a7016e017d555d5e2b0045d212"}, + {file = "propcache-0.2.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d9631c5e8b5b3a0fda99cb0d29c18133bca1e18aea9effe55adb3da1adef80d3"}, + {file = "propcache-0.2.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3156628250f46a0895f1f36e1d4fbe062a1af8718ec3ebeb746f1d23f0c5dc4d"}, + {file = "propcache-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b6fb63ae352e13748289f04f37868099e69dba4c2b3e271c46061e82c745634"}, + {file = "propcache-0.2.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:887d9b0a65404929641a9fabb6452b07fe4572b269d901d622d8a34a4e9043b2"}, + {file = "propcache-0.2.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:a96dc1fa45bd8c407a0af03b2d5218392729e1822b0c32e62c5bf7eeb5fb3958"}, + {file = "propcache-0.2.1-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:a7e65eb5c003a303b94aa2c3852ef130230ec79e349632d030e9571b87c4698c"}, + {file = "propcache-0.2.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:999779addc413181912e984b942fbcc951be1f5b3663cd80b2687758f434c583"}, + {file = "propcache-0.2.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:19a0f89a7bb9d8048d9c4370c9c543c396e894c76be5525f5e1ad287f1750ddf"}, + {file = "propcache-0.2.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:1ac2f5fe02fa75f56e1ad473f1175e11f475606ec9bd0be2e78e4734ad575034"}, + {file = "propcache-0.2.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:574faa3b79e8ebac7cb1d7930f51184ba1ccf69adfdec53a12f319a06030a68b"}, + {file = "propcache-0.2.1-cp310-cp310-win32.whl", hash = "sha256:03ff9d3f665769b2a85e6157ac8b439644f2d7fd17615a82fa55739bc97863f4"}, + {file = "propcache-0.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:2d3af2e79991102678f53e0dbf4c35de99b6b8b58f29a27ca0325816364caaba"}, + {file = "propcache-0.2.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:1ffc3cca89bb438fb9c95c13fc874012f7b9466b89328c3c8b1aa93cdcfadd16"}, + {file = "propcache-0.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f174bbd484294ed9fdf09437f889f95807e5f229d5d93588d34e92106fbf6717"}, + {file = "propcache-0.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:70693319e0b8fd35dd863e3e29513875eb15c51945bf32519ef52927ca883bc3"}, + {file = "propcache-0.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b480c6a4e1138e1aa137c0079b9b6305ec6dcc1098a8ca5196283e8a49df95a9"}, + {file = "propcache-0.2.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d27b84d5880f6d8aa9ae3edb253c59d9f6642ffbb2c889b78b60361eed449787"}, + {file = "propcache-0.2.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:857112b22acd417c40fa4595db2fe28ab900c8c5fe4670c7989b1c0230955465"}, + {file = "propcache-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cf6c4150f8c0e32d241436526f3c3f9cbd34429492abddbada2ffcff506c51af"}, + {file = "propcache-0.2.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:66d4cfda1d8ed687daa4bc0274fcfd5267873db9a5bc0418c2da19273040eeb7"}, + {file = "propcache-0.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c2f992c07c0fca81655066705beae35fc95a2fa7366467366db627d9f2ee097f"}, + {file = "propcache-0.2.1-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:4a571d97dbe66ef38e472703067021b1467025ec85707d57e78711c085984e54"}, + {file = "propcache-0.2.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:bb6178c241278d5fe853b3de743087be7f5f4c6f7d6d22a3b524d323eecec505"}, + {file = "propcache-0.2.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:ad1af54a62ffe39cf34db1aa6ed1a1873bd548f6401db39d8e7cd060b9211f82"}, + {file = "propcache-0.2.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:e7048abd75fe40712005bcfc06bb44b9dfcd8e101dda2ecf2f5aa46115ad07ca"}, + {file = "propcache-0.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:160291c60081f23ee43d44b08a7e5fb76681221a8e10b3139618c5a9a291b84e"}, + {file = "propcache-0.2.1-cp311-cp311-win32.whl", hash = "sha256:819ce3b883b7576ca28da3861c7e1a88afd08cc8c96908e08a3f4dd64a228034"}, + {file = "propcache-0.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:edc9fc7051e3350643ad929df55c451899bb9ae6d24998a949d2e4c87fb596d3"}, + {file = "propcache-0.2.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:081a430aa8d5e8876c6909b67bd2d937bfd531b0382d3fdedb82612c618bc41a"}, + {file = "propcache-0.2.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:d2ccec9ac47cf4e04897619c0e0c1a48c54a71bdf045117d3a26f80d38ab1fb0"}, + {file = "propcache-0.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:14d86fe14b7e04fa306e0c43cdbeebe6b2c2156a0c9ce56b815faacc193e320d"}, + {file = "propcache-0.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:049324ee97bb67285b49632132db351b41e77833678432be52bdd0289c0e05e4"}, + {file = "propcache-0.2.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1cd9a1d071158de1cc1c71a26014dcdfa7dd3d5f4f88c298c7f90ad6f27bb46d"}, + {file = "propcache-0.2.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98110aa363f1bb4c073e8dcfaefd3a5cea0f0834c2aab23dda657e4dab2f53b5"}, + {file = "propcache-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:647894f5ae99c4cf6bb82a1bb3a796f6e06af3caa3d32e26d2350d0e3e3faf24"}, + {file = "propcache-0.2.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bfd3223c15bebe26518d58ccf9a39b93948d3dcb3e57a20480dfdd315356baff"}, + {file = "propcache-0.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d71264a80f3fcf512eb4f18f59423fe82d6e346ee97b90625f283df56aee103f"}, + {file = "propcache-0.2.1-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:e73091191e4280403bde6c9a52a6999d69cdfde498f1fdf629105247599b57ec"}, + {file = "propcache-0.2.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:3935bfa5fede35fb202c4b569bb9c042f337ca4ff7bd540a0aa5e37131659348"}, + {file = "propcache-0.2.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:f508b0491767bb1f2b87fdfacaba5f7eddc2f867740ec69ece6d1946d29029a6"}, + {file = "propcache-0.2.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:1672137af7c46662a1c2be1e8dc78cb6d224319aaa40271c9257d886be4363a6"}, + {file = "propcache-0.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:b74c261802d3d2b85c9df2dfb2fa81b6f90deeef63c2db9f0e029a3cac50b518"}, + {file = "propcache-0.2.1-cp312-cp312-win32.whl", hash = "sha256:d09c333d36c1409d56a9d29b3a1b800a42c76a57a5a8907eacdbce3f18768246"}, + {file = "propcache-0.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:c214999039d4f2a5b2073ac506bba279945233da8c786e490d411dfc30f855c1"}, + {file = "propcache-0.2.1-py3-none-any.whl", hash = "sha256:52277518d6aae65536e9cea52d4e7fd2f7a66f4aa2d30ed3f2fcea620ace3c54"}, + {file = "propcache-0.2.1.tar.gz", hash = "sha256:3f77ce728b19cb537714499928fe800c3dda29e8d9428778fc7c186da4c09a64"}, +] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +summary = "Run a subprocess in a pseudo terminal" +groups = ["default"] +marker = "sys_platform != \"win32\" and sys_platform != \"emscripten\"" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +summary = "Safely evaluate AST nodes without side effects" +groups = ["default"] +files = [ + {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, + {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, +] + +[[package]] +name = "pyarrow" +version = "18.1.0" +requires_python = ">=3.9" +summary = "Python library for Apache Arrow" +groups = ["default"] +files = [ + {file = "pyarrow-18.1.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:e21488d5cfd3d8b500b3238a6c4b075efabc18f0f6d80b29239737ebd69caa6c"}, + {file = "pyarrow-18.1.0-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:b516dad76f258a702f7ca0250885fc93d1fa5ac13ad51258e39d402bd9e2e1e4"}, + {file = "pyarrow-18.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4f443122c8e31f4c9199cb23dca29ab9427cef990f283f80fe15b8e124bcc49b"}, + {file = "pyarrow-18.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0a03da7f2758645d17b7b4f83c8bffeae5bbb7f974523fe901f36288d2eab71"}, + {file = "pyarrow-18.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:ba17845efe3aa358ec266cf9cc2800fa73038211fb27968bfa88acd09261a470"}, + {file = "pyarrow-18.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:3c35813c11a059056a22a3bef520461310f2f7eea5c8a11ef9de7062a23f8d56"}, + {file = "pyarrow-18.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:9736ba3c85129d72aefa21b4f3bd715bc4190fe4426715abfff90481e7d00812"}, + {file = "pyarrow-18.1.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:eaeabf638408de2772ce3d7793b2668d4bb93807deed1725413b70e3156a7854"}, + {file = "pyarrow-18.1.0-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:3b2e2239339c538f3464308fd345113f886ad031ef8266c6f004d49769bb074c"}, + {file = "pyarrow-18.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f39a2e0ed32a0970e4e46c262753417a60c43a3246972cfc2d3eb85aedd01b21"}, + {file = "pyarrow-18.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e31e9417ba9c42627574bdbfeada7217ad8a4cbbe45b9d6bdd4b62abbca4c6f6"}, + {file = "pyarrow-18.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:01c034b576ce0eef554f7c3d8c341714954be9b3f5d5bc7117006b85fcf302fe"}, + {file = "pyarrow-18.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:f266a2c0fc31995a06ebd30bcfdb7f615d7278035ec5b1cd71c48d56daaf30b0"}, + {file = "pyarrow-18.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:d4f13eee18433f99adefaeb7e01d83b59f73360c231d4782d9ddfaf1c3fbde0a"}, + {file = "pyarrow-18.1.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:9f3a76670b263dc41d0ae877f09124ab96ce10e4e48f3e3e4257273cee61ad0d"}, + {file = "pyarrow-18.1.0-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:da31fbca07c435be88a0c321402c4e31a2ba61593ec7473630769de8346b54ee"}, + {file = "pyarrow-18.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:543ad8459bc438efc46d29a759e1079436290bd583141384c6f7a1068ed6f992"}, + {file = "pyarrow-18.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0743e503c55be0fdb5c08e7d44853da27f19dc854531c0570f9f394ec9671d54"}, + {file = "pyarrow-18.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:d4b3d2a34780645bed6414e22dda55a92e0fcd1b8a637fba86800ad737057e33"}, + {file = "pyarrow-18.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:c52f81aa6f6575058d8e2c782bf79d4f9fdc89887f16825ec3a66607a5dd8e30"}, + {file = "pyarrow-18.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:0ad4892617e1a6c7a551cfc827e072a633eaff758fa09f21c4ee548c30bcaf99"}, + {file = "pyarrow-18.1.0.tar.gz", hash = "sha256:9386d3ca9c145b5539a1cfc75df07757dff870168c959b473a0bccbc3abc8c73"}, +] + +[[package]] +name = "pycountry" +version = "24.6.1" +requires_python = ">=3.8" +summary = "ISO country, subdivision, language, currency and script definitions and their translations" +groups = ["default"] +dependencies = [ + "importlib-resources>5.12.0; python_version < \"3.9\"", +] +files = [ + {file = "pycountry-24.6.1-py3-none-any.whl", hash = "sha256:f1a4fb391cd7214f8eefd39556d740adcc233c778a27f8942c8dca351d6ce06f"}, + {file = "pycountry-24.6.1.tar.gz", hash = "sha256:b61b3faccea67f87d10c1f2b0fc0be714409e8fcdcc1315613174f6466c10221"}, +] + +[[package]] +name = "pycparser" +version = "2.22" +requires_python = ">=3.8" +summary = "C parser in Python" +groups = ["default"] +marker = "platform_python_implementation != \"PyPy\"" +files = [ + {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, + {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, +] + +[[package]] +name = "pydantic" +version = "2.10.3" +requires_python = ">=3.8" +summary = "Data validation using Python type hints" +groups = ["default"] +dependencies = [ + "annotated-types>=0.6.0", + "pydantic-core==2.27.1", + "typing-extensions>=4.12.2", +] +files = [ + {file = "pydantic-2.10.3-py3-none-any.whl", hash = "sha256:be04d85bbc7b65651c5f8e6b9976ed9c6f41782a55524cef079a34a0bb82144d"}, + {file = "pydantic-2.10.3.tar.gz", hash = "sha256:cb5ac360ce894ceacd69c403187900a02c4b20b693a9dd1d643e1effab9eadf9"}, +] + +[[package]] +name = "pydantic-core" +version = "2.27.1" +requires_python = ">=3.8" +summary = "Core functionality for Pydantic validation and serialization" +groups = ["default"] +dependencies = [ + "typing-extensions!=4.7.0,>=4.6.0", +] +files = [ + {file = "pydantic_core-2.27.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:71a5e35c75c021aaf400ac048dacc855f000bdfed91614b4a726f7432f1f3d6a"}, + {file = "pydantic_core-2.27.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f82d068a2d6ecfc6e054726080af69a6764a10015467d7d7b9f66d6ed5afa23b"}, + {file = "pydantic_core-2.27.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:121ceb0e822f79163dd4699e4c54f5ad38b157084d97b34de8b232bcaad70278"}, + {file = "pydantic_core-2.27.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4603137322c18eaf2e06a4495f426aa8d8388940f3c457e7548145011bb68e05"}, + {file = "pydantic_core-2.27.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a33cd6ad9017bbeaa9ed78a2e0752c5e250eafb9534f308e7a5f7849b0b1bfb4"}, + {file = "pydantic_core-2.27.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:15cc53a3179ba0fcefe1e3ae50beb2784dede4003ad2dfd24f81bba4b23a454f"}, + {file = "pydantic_core-2.27.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45d9c5eb9273aa50999ad6adc6be5e0ecea7e09dbd0d31bd0c65a55a2592ca08"}, + {file = "pydantic_core-2.27.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8bf7b66ce12a2ac52d16f776b31d16d91033150266eb796967a7e4621707e4f6"}, + {file = "pydantic_core-2.27.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:655d7dd86f26cb15ce8a431036f66ce0318648f8853d709b4167786ec2fa4807"}, + {file = "pydantic_core-2.27.1-cp310-cp310-musllinux_1_1_armv7l.whl", hash = "sha256:5556470f1a2157031e676f776c2bc20acd34c1990ca5f7e56f1ebf938b9ab57c"}, + {file = "pydantic_core-2.27.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f69ed81ab24d5a3bd93861c8c4436f54afdf8e8cc421562b0c7504cf3be58206"}, + {file = "pydantic_core-2.27.1-cp310-none-win32.whl", hash = "sha256:f5a823165e6d04ccea61a9f0576f345f8ce40ed533013580e087bd4d7442b52c"}, + {file = "pydantic_core-2.27.1-cp310-none-win_amd64.whl", hash = "sha256:57866a76e0b3823e0b56692d1a0bf722bffb324839bb5b7226a7dbd6c9a40b17"}, + {file = "pydantic_core-2.27.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:ac3b20653bdbe160febbea8aa6c079d3df19310d50ac314911ed8cc4eb7f8cb8"}, + {file = "pydantic_core-2.27.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a5a8e19d7c707c4cadb8c18f5f60c843052ae83c20fa7d44f41594c644a1d330"}, + {file = "pydantic_core-2.27.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7f7059ca8d64fea7f238994c97d91f75965216bcbe5f695bb44f354893f11d52"}, + {file = "pydantic_core-2.27.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bed0f8a0eeea9fb72937ba118f9db0cb7e90773462af7962d382445f3005e5a4"}, + {file = "pydantic_core-2.27.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a3cb37038123447cf0f3ea4c74751f6a9d7afef0eb71aa07bf5f652b5e6a132c"}, + {file = "pydantic_core-2.27.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:84286494f6c5d05243456e04223d5a9417d7f443c3b76065e75001beb26f88de"}, + {file = "pydantic_core-2.27.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:acc07b2cfc5b835444b44a9956846b578d27beeacd4b52e45489e93276241025"}, + {file = "pydantic_core-2.27.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4fefee876e07a6e9aad7a8c8c9f85b0cdbe7df52b8a9552307b09050f7512c7e"}, + {file = "pydantic_core-2.27.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:258c57abf1188926c774a4c94dd29237e77eda19462e5bb901d88adcab6af919"}, + {file = "pydantic_core-2.27.1-cp311-cp311-musllinux_1_1_armv7l.whl", hash = "sha256:35c14ac45fcfdf7167ca76cc80b2001205a8d5d16d80524e13508371fb8cdd9c"}, + {file = "pydantic_core-2.27.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d1b26e1dff225c31897696cab7d4f0a315d4c0d9e8666dbffdb28216f3b17fdc"}, + {file = "pydantic_core-2.27.1-cp311-none-win32.whl", hash = "sha256:2cdf7d86886bc6982354862204ae3b2f7f96f21a3eb0ba5ca0ac42c7b38598b9"}, + {file = "pydantic_core-2.27.1-cp311-none-win_amd64.whl", hash = "sha256:3af385b0cee8df3746c3f406f38bcbfdc9041b5c2d5ce3e5fc6637256e60bbc5"}, + {file = "pydantic_core-2.27.1-cp311-none-win_arm64.whl", hash = "sha256:81f2ec23ddc1b476ff96563f2e8d723830b06dceae348ce02914a37cb4e74b89"}, + {file = "pydantic_core-2.27.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:9cbd94fc661d2bab2bc702cddd2d3370bbdcc4cd0f8f57488a81bcce90c7a54f"}, + {file = "pydantic_core-2.27.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5f8c4718cd44ec1580e180cb739713ecda2bdee1341084c1467802a417fe0f02"}, + {file = "pydantic_core-2.27.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15aae984e46de8d376df515f00450d1522077254ef6b7ce189b38ecee7c9677c"}, + {file = "pydantic_core-2.27.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1ba5e3963344ff25fc8c40da90f44b0afca8cfd89d12964feb79ac1411a260ac"}, + {file = "pydantic_core-2.27.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:992cea5f4f3b29d6b4f7f1726ed8ee46c8331c6b4eed6db5b40134c6fe1768bb"}, + {file = "pydantic_core-2.27.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0325336f348dbee6550d129b1627cb8f5351a9dc91aad141ffb96d4937bd9529"}, + {file = "pydantic_core-2.27.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7597c07fbd11515f654d6ece3d0e4e5093edc30a436c63142d9a4b8e22f19c35"}, + {file = "pydantic_core-2.27.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:3bbd5d8cc692616d5ef6fbbbd50dbec142c7e6ad9beb66b78a96e9c16729b089"}, + {file = "pydantic_core-2.27.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:dc61505e73298a84a2f317255fcc72b710b72980f3a1f670447a21efc88f8381"}, + {file = "pydantic_core-2.27.1-cp312-cp312-musllinux_1_1_armv7l.whl", hash = "sha256:e1f735dc43da318cad19b4173dd1ffce1d84aafd6c9b782b3abc04a0d5a6f5bb"}, + {file = "pydantic_core-2.27.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f4e5658dbffe8843a0f12366a4c2d1c316dbe09bb4dfbdc9d2d9cd6031de8aae"}, + {file = "pydantic_core-2.27.1-cp312-none-win32.whl", hash = "sha256:672ebbe820bb37988c4d136eca2652ee114992d5d41c7e4858cdd90ea94ffe5c"}, + {file = "pydantic_core-2.27.1-cp312-none-win_amd64.whl", hash = "sha256:66ff044fd0bb1768688aecbe28b6190f6e799349221fb0de0e6f4048eca14c16"}, + {file = "pydantic_core-2.27.1-cp312-none-win_arm64.whl", hash = "sha256:9a3b0793b1bbfd4146304e23d90045f2a9b5fd5823aa682665fbdaf2a6c28f3e"}, + {file = "pydantic_core-2.27.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3fa80ac2bd5856580e242dbc202db873c60a01b20309c8319b5c5986fbe53ce6"}, + {file = "pydantic_core-2.27.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d950caa237bb1954f1b8c9227b5065ba6875ac9771bb8ec790d956a699b78676"}, + {file = "pydantic_core-2.27.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e4216e64d203e39c62df627aa882f02a2438d18a5f21d7f721621f7a5d3611d"}, + {file = "pydantic_core-2.27.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:02a3d637bd387c41d46b002f0e49c52642281edacd2740e5a42f7017feea3f2c"}, + {file = "pydantic_core-2.27.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:161c27ccce13b6b0c8689418da3885d3220ed2eae2ea5e9b2f7f3d48f1d52c27"}, + {file = "pydantic_core-2.27.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:19910754e4cc9c63bc1c7f6d73aa1cfee82f42007e407c0f413695c2f7ed777f"}, + {file = "pydantic_core-2.27.1-pp310-pypy310_pp73-musllinux_1_1_armv7l.whl", hash = "sha256:e173486019cc283dc9778315fa29a363579372fe67045e971e89b6365cc035ed"}, + {file = "pydantic_core-2.27.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:af52d26579b308921b73b956153066481f064875140ccd1dfd4e77db89dbb12f"}, + {file = "pydantic_core-2.27.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:981fb88516bd1ae8b0cbbd2034678a39dedc98752f264ac9bc5839d3923fa04c"}, + {file = "pydantic_core-2.27.1.tar.gz", hash = "sha256:62a763352879b84aa31058fc931884055fd75089cccbd9d58bb6afd01141b235"}, +] + +[[package]] +name = "pydub" +version = "0.25.1" +summary = "Manipulate audio with an simple and easy high level interface" +groups = ["default"] +files = [ + {file = "pydub-0.25.1-py2.py3-none-any.whl", hash = "sha256:65617e33033874b59d87db603aa1ed450633288aefead953b30bded59cb599a6"}, + {file = "pydub-0.25.1.tar.gz", hash = "sha256:980a33ce9949cab2a569606b65674d748ecbca4f0796887fd6f46173a7b0d30f"}, +] + +[[package]] +name = "pygments" +version = "2.18.0" +requires_python = ">=3.8" +summary = "Pygments is a syntax highlighting package written in Python." +groups = ["default"] +files = [ + {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, + {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, +] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +summary = "Extensions to the standard Python datetime module" +groups = ["default"] +dependencies = [ + "six>=1.5", +] +files = [ + {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, + {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, +] + +[[package]] +name = "python-multipart" +version = "0.0.20" +requires_python = ">=3.8" +summary = "A streaming multipart parser for Python" +groups = ["default"] +files = [ + {file = "python_multipart-0.0.20-py3-none-any.whl", hash = "sha256:8a62d3a8335e06589fe01f2a3e178cdcc632f3fbe0d492ad9ee0ec35aab1f104"}, + {file = "python_multipart-0.0.20.tar.gz", hash = "sha256:8dd0cab45b8e23064ae09147625994d090fa46f5b0d1e13af944c331a7fa9d13"}, +] + +[[package]] +name = "pytz" +version = "2024.2" +summary = "World timezone definitions, modern and historical" +groups = ["default"] +files = [ + {file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"}, + {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, +] + +[[package]] +name = "pywin32" +version = "308" +summary = "Python for Window Extensions" +groups = ["default"] +marker = "platform_system == \"Windows\"" +files = [ + {file = "pywin32-308-cp310-cp310-win32.whl", hash = "sha256:796ff4426437896550d2981b9c2ac0ffd75238ad9ea2d3bfa67a1abd546d262e"}, + {file = "pywin32-308-cp310-cp310-win_amd64.whl", hash = "sha256:4fc888c59b3c0bef905ce7eb7e2106a07712015ea1c8234b703a088d46110e8e"}, + {file = "pywin32-308-cp310-cp310-win_arm64.whl", hash = "sha256:a5ab5381813b40f264fa3495b98af850098f814a25a63589a8e9eb12560f450c"}, + {file = "pywin32-308-cp311-cp311-win32.whl", hash = "sha256:5d8c8015b24a7d6855b1550d8e660d8daa09983c80e5daf89a273e5c6fb5095a"}, + {file = "pywin32-308-cp311-cp311-win_amd64.whl", hash = "sha256:575621b90f0dc2695fec346b2d6302faebd4f0f45c05ea29404cefe35d89442b"}, + {file = "pywin32-308-cp311-cp311-win_arm64.whl", hash = "sha256:100a5442b7332070983c4cd03f2e906a5648a5104b8a7f50175f7906efd16bb6"}, + {file = "pywin32-308-cp312-cp312-win32.whl", hash = "sha256:587f3e19696f4bf96fde9d8a57cec74a57021ad5f204c9e627e15c33ff568897"}, + {file = "pywin32-308-cp312-cp312-win_amd64.whl", hash = "sha256:00b3e11ef09ede56c6a43c71f2d31857cf7c54b0ab6e78ac659497abd2834f47"}, + {file = "pywin32-308-cp312-cp312-win_arm64.whl", hash = "sha256:9b4de86c8d909aed15b7011182c8cab38c8850de36e6afb1f0db22b8959e3091"}, +] + +[[package]] +name = "pyyaml" +version = "6.0.2" +requires_python = ">=3.8" +summary = "YAML parser and emitter for Python" +groups = ["default"] +files = [ + {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, + {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, + {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, + {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, + {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, + {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, + {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, + {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, +] + +[[package]] +name = "referencing" +version = "0.35.1" +requires_python = ">=3.8" +summary = "JSON Referencing + Python" +groups = ["default"] +dependencies = [ + "attrs>=22.2.0", + "rpds-py>=0.7.0", +] +files = [ + {file = "referencing-0.35.1-py3-none-any.whl", hash = "sha256:eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de"}, + {file = "referencing-0.35.1.tar.gz", hash = "sha256:25b42124a6c8b632a425174f24087783efb348a6f1e0008e63cd4466fedf703c"}, +] + +[[package]] +name = "regex" +version = "2024.11.6" +requires_python = ">=3.8" +summary = "Alternative regular expression module, to replace re." +groups = ["default"] +files = [ + {file = "regex-2024.11.6-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ff590880083d60acc0433f9c3f713c51f7ac6ebb9adf889c79a261ecf541aa91"}, + {file = "regex-2024.11.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:658f90550f38270639e83ce492f27d2c8d2cd63805c65a13a14d36ca126753f0"}, + {file = "regex-2024.11.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:164d8b7b3b4bcb2068b97428060b2a53be050085ef94eca7f240e7947f1b080e"}, + {file = "regex-2024.11.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d3660c82f209655a06b587d55e723f0b813d3a7db2e32e5e7dc64ac2a9e86fde"}, + {file = "regex-2024.11.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d22326fcdef5e08c154280b71163ced384b428343ae16a5ab2b3354aed12436e"}, + {file = "regex-2024.11.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f1ac758ef6aebfc8943560194e9fd0fa18bcb34d89fd8bd2af18183afd8da3a2"}, + {file = "regex-2024.11.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:997d6a487ff00807ba810e0f8332c18b4eb8d29463cfb7c820dc4b6e7562d0cf"}, + {file = "regex-2024.11.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:02a02d2bb04fec86ad61f3ea7f49c015a0681bf76abb9857f945d26159d2968c"}, + {file = "regex-2024.11.6-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:f02f93b92358ee3f78660e43b4b0091229260c5d5c408d17d60bf26b6c900e86"}, + {file = "regex-2024.11.6-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:06eb1be98df10e81ebaded73fcd51989dcf534e3c753466e4b60c4697a003b67"}, + {file = "regex-2024.11.6-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:040df6fe1a5504eb0f04f048e6d09cd7c7110fef851d7c567a6b6e09942feb7d"}, + {file = "regex-2024.11.6-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:fdabbfc59f2c6edba2a6622c647b716e34e8e3867e0ab975412c5c2f79b82da2"}, + {file = "regex-2024.11.6-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:8447d2d39b5abe381419319f942de20b7ecd60ce86f16a23b0698f22e1b70008"}, + {file = "regex-2024.11.6-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:da8f5fc57d1933de22a9e23eec290a0d8a5927a5370d24bda9a6abe50683fe62"}, + {file = "regex-2024.11.6-cp310-cp310-win32.whl", hash = "sha256:b489578720afb782f6ccf2840920f3a32e31ba28a4b162e13900c3e6bd3f930e"}, + {file = "regex-2024.11.6-cp310-cp310-win_amd64.whl", hash = "sha256:5071b2093e793357c9d8b2929dfc13ac5f0a6c650559503bb81189d0a3814519"}, + {file = "regex-2024.11.6-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:5478c6962ad548b54a591778e93cd7c456a7a29f8eca9c49e4f9a806dcc5d638"}, + {file = "regex-2024.11.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2c89a8cc122b25ce6945f0423dc1352cb9593c68abd19223eebbd4e56612c5b7"}, + {file = "regex-2024.11.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:94d87b689cdd831934fa3ce16cc15cd65748e6d689f5d2b8f4f4df2065c9fa20"}, + {file = "regex-2024.11.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1062b39a0a2b75a9c694f7a08e7183a80c63c0d62b301418ffd9c35f55aaa114"}, + {file = "regex-2024.11.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:167ed4852351d8a750da48712c3930b031f6efdaa0f22fa1933716bfcd6bf4a3"}, + {file = "regex-2024.11.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2d548dafee61f06ebdb584080621f3e0c23fff312f0de1afc776e2a2ba99a74f"}, + {file = "regex-2024.11.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2a19f302cd1ce5dd01a9099aaa19cae6173306d1302a43b627f62e21cf18ac0"}, + {file = "regex-2024.11.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bec9931dfb61ddd8ef2ebc05646293812cb6b16b60cf7c9511a832b6f1854b55"}, + {file = "regex-2024.11.6-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:9714398225f299aa85267fd222f7142fcb5c769e73d7733344efc46f2ef5cf89"}, + {file = "regex-2024.11.6-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:202eb32e89f60fc147a41e55cb086db2a3f8cb82f9a9a88440dcfc5d37faae8d"}, + {file = "regex-2024.11.6-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:4181b814e56078e9b00427ca358ec44333765f5ca1b45597ec7446d3a1ef6e34"}, + {file = "regex-2024.11.6-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:068376da5a7e4da51968ce4c122a7cd31afaaec4fccc7856c92f63876e57b51d"}, + {file = "regex-2024.11.6-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f2c4184420d881a3475fb2c6f4d95d53a8d50209a2500723d831036f7c45"}, + {file = "regex-2024.11.6-cp311-cp311-win32.whl", hash = "sha256:c36f9b6f5f8649bb251a5f3f66564438977b7ef8386a52460ae77e6070d309d9"}, + {file = "regex-2024.11.6-cp311-cp311-win_amd64.whl", hash = "sha256:02e28184be537f0e75c1f9b2f8847dc51e08e6e171c6bde130b2687e0c33cf60"}, + {file = "regex-2024.11.6-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:52fb28f528778f184f870b7cf8f225f5eef0a8f6e3778529bdd40c7b3920796a"}, + {file = "regex-2024.11.6-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:fdd6028445d2460f33136c55eeb1f601ab06d74cb3347132e1c24250187500d9"}, + {file = "regex-2024.11.6-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:805e6b60c54bf766b251e94526ebad60b7de0c70f70a4e6210ee2891acb70bf2"}, + {file = "regex-2024.11.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b85c2530be953a890eaffde05485238f07029600e8f098cdf1848d414a8b45e4"}, + {file = "regex-2024.11.6-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb26437975da7dc36b7efad18aa9dd4ea569d2357ae6b783bf1118dabd9ea577"}, + {file = "regex-2024.11.6-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:abfa5080c374a76a251ba60683242bc17eeb2c9818d0d30117b4486be10c59d3"}, + {file = "regex-2024.11.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b7fa6606c2881c1db9479b0eaa11ed5dfa11c8d60a474ff0e095099f39d98e"}, + {file = "regex-2024.11.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0c32f75920cf99fe6b6c539c399a4a128452eaf1af27f39bce8909c9a3fd8cbe"}, + {file = "regex-2024.11.6-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:982e6d21414e78e1f51cf595d7f321dcd14de1f2881c5dc6a6e23bbbbd68435e"}, + {file = "regex-2024.11.6-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:a7c2155f790e2fb448faed6dd241386719802296ec588a8b9051c1f5c481bc29"}, + {file = "regex-2024.11.6-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:149f5008d286636e48cd0b1dd65018548944e495b0265b45e1bffecce1ef7f39"}, + {file = "regex-2024.11.6-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:e5364a4502efca094731680e80009632ad6624084aff9a23ce8c8c6820de3e51"}, + {file = "regex-2024.11.6-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0a86e7eeca091c09e021db8eb72d54751e527fa47b8d5787caf96d9831bd02ad"}, + {file = "regex-2024.11.6-cp312-cp312-win32.whl", hash = "sha256:32f9a4c643baad4efa81d549c2aadefaeba12249b2adc5af541759237eee1c54"}, + {file = "regex-2024.11.6-cp312-cp312-win_amd64.whl", hash = "sha256:a93c194e2df18f7d264092dc8539b8ffb86b45b899ab976aa15d48214138e81b"}, + {file = "regex-2024.11.6.tar.gz", hash = "sha256:7ab159b063c52a0333c884e4679f8d7a85112ee3078fe3d9004b2dd875585519"}, +] + +[[package]] +name = "requests" +version = "2.32.3" +requires_python = ">=3.8" +summary = "Python HTTP for Humans." +groups = ["default"] +dependencies = [ + "certifi>=2017.4.17", + "charset-normalizer<4,>=2", + "idna<4,>=2.5", + "urllib3<3,>=1.21.1", +] +files = [ + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, +] + +[[package]] +name = "rich" +version = "13.9.4" +requires_python = ">=3.8.0" +summary = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal" +groups = ["default"] +dependencies = [ + "markdown-it-py>=2.2.0", + "pygments<3.0.0,>=2.13.0", + "typing-extensions<5.0,>=4.0.0; python_version < \"3.11\"", +] +files = [ + {file = "rich-13.9.4-py3-none-any.whl", hash = "sha256:6049d5e6ec054bf2779ab3358186963bac2ea89175919d699e378b99738c2a90"}, + {file = "rich-13.9.4.tar.gz", hash = "sha256:439594978a49a09530cff7ebc4b5c7103ef57baf48d5ea3184f21d9a2befa098"}, +] + +[[package]] +name = "rpds-py" +version = "0.22.3" +requires_python = ">=3.9" +summary = "Python bindings to Rust's persistent data structures (rpds)" +groups = ["default"] +files = [ + {file = "rpds_py-0.22.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:6c7b99ca52c2c1752b544e310101b98a659b720b21db00e65edca34483259967"}, + {file = "rpds_py-0.22.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:be2eb3f2495ba669d2a985f9b426c1797b7d48d6963899276d22f23e33d47e37"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70eb60b3ae9245ddea20f8a4190bd79c705a22f8028aaf8bbdebe4716c3fab24"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4041711832360a9b75cfb11b25a6a97c8fb49c07b8bd43d0d02b45d0b499a4ff"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:64607d4cbf1b7e3c3c8a14948b99345eda0e161b852e122c6bb71aab6d1d798c"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e69b0a0e2537f26d73b4e43ad7bc8c8efb39621639b4434b76a3de50c6966e"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc27863442d388870c1809a87507727b799c8460573cfbb6dc0eeaef5a11b5ec"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e79dd39f1e8c3504be0607e5fc6e86bb60fe3584bec8b782578c3b0fde8d932c"}, + {file = "rpds_py-0.22.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e0fa2d4ec53dc51cf7d3bb22e0aa0143966119f42a0c3e4998293a3dd2856b09"}, + {file = "rpds_py-0.22.3-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:fda7cb070f442bf80b642cd56483b5548e43d366fe3f39b98e67cce780cded00"}, + {file = "rpds_py-0.22.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:cff63a0272fcd259dcc3be1657b07c929c466b067ceb1c20060e8d10af56f5bf"}, + {file = "rpds_py-0.22.3-cp310-cp310-win32.whl", hash = "sha256:9bd7228827ec7bb817089e2eb301d907c0d9827a9e558f22f762bb690b131652"}, + {file = "rpds_py-0.22.3-cp310-cp310-win_amd64.whl", hash = "sha256:9beeb01d8c190d7581a4d59522cd3d4b6887040dcfc744af99aa59fef3e041a8"}, + {file = "rpds_py-0.22.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d20cfb4e099748ea39e6f7b16c91ab057989712d31761d3300d43134e26e165f"}, + {file = "rpds_py-0.22.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:68049202f67380ff9aa52f12e92b1c30115f32e6895cd7198fa2a7961621fc5a"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb4f868f712b2dd4bcc538b0a0c1f63a2b1d584c925e69a224d759e7070a12d5"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bc51abd01f08117283c5ebf64844a35144a0843ff7b2983e0648e4d3d9f10dbb"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0f3cec041684de9a4684b1572fe28c7267410e02450f4561700ca5a3bc6695a2"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7ef9d9da710be50ff6809fed8f1963fecdfecc8b86656cadfca3bc24289414b0"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:59f4a79c19232a5774aee369a0c296712ad0e77f24e62cad53160312b1c1eaa1"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1a60bce91f81ddaac922a40bbb571a12c1070cb20ebd6d49c48e0b101d87300d"}, + {file = "rpds_py-0.22.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e89391e6d60251560f0a8f4bd32137b077a80d9b7dbe6d5cab1cd80d2746f648"}, + {file = "rpds_py-0.22.3-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e3fb866d9932a3d7d0c82da76d816996d1667c44891bd861a0f97ba27e84fc74"}, + {file = "rpds_py-0.22.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1352ae4f7c717ae8cba93421a63373e582d19d55d2ee2cbb184344c82d2ae55a"}, + {file = "rpds_py-0.22.3-cp311-cp311-win32.whl", hash = "sha256:b0b4136a252cadfa1adb705bb81524eee47d9f6aab4f2ee4fa1e9d3cd4581f64"}, + {file = "rpds_py-0.22.3-cp311-cp311-win_amd64.whl", hash = "sha256:8bd7c8cfc0b8247c8799080fbff54e0b9619e17cdfeb0478ba7295d43f635d7c"}, + {file = "rpds_py-0.22.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:27e98004595899949bd7a7b34e91fa7c44d7a97c40fcaf1d874168bb652ec67e"}, + {file = "rpds_py-0.22.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1978d0021e943aae58b9b0b196fb4895a25cc53d3956b8e35e0b7682eefb6d56"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:655ca44a831ecb238d124e0402d98f6212ac527a0ba6c55ca26f616604e60a45"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:feea821ee2a9273771bae61194004ee2fc33f8ec7db08117ef9147d4bbcbca8e"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:22bebe05a9ffc70ebfa127efbc429bc26ec9e9b4ee4d15a740033efda515cf3d"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3af6e48651c4e0d2d166dc1b033b7042ea3f871504b6805ba5f4fe31581d8d38"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e67ba3c290821343c192f7eae1d8fd5999ca2dc99994114643e2f2d3e6138b15"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:02fbb9c288ae08bcb34fb41d516d5eeb0455ac35b5512d03181d755d80810059"}, + {file = "rpds_py-0.22.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f56a6b404f74ab372da986d240e2e002769a7d7102cc73eb238a4f72eec5284e"}, + {file = "rpds_py-0.22.3-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0a0461200769ab3b9ab7e513f6013b7a97fdeee41c29b9db343f3c5a8e2b9e61"}, + {file = "rpds_py-0.22.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:8633e471c6207a039eff6aa116e35f69f3156b3989ea3e2d755f7bc41754a4a7"}, + {file = "rpds_py-0.22.3-cp312-cp312-win32.whl", hash = "sha256:593eba61ba0c3baae5bc9be2f5232430453fb4432048de28399ca7376de9c627"}, + {file = "rpds_py-0.22.3-cp312-cp312-win_amd64.whl", hash = "sha256:d115bffdd417c6d806ea9069237a4ae02f513b778e3789a359bc5856e0404cc4"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:d48424e39c2611ee1b84ad0f44fb3b2b53d473e65de061e3f460fc0be5f1939d"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:24e8abb5878e250f2eb0d7859a8e561846f98910326d06c0d51381fed59357bd"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4b232061ca880db21fa14defe219840ad9b74b6158adb52ddf0e87bead9e8493"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ac0a03221cdb5058ce0167ecc92a8c89e8d0decdc9e99a2ec23380793c4dcb96"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb0c341fa71df5a4595f9501df4ac5abfb5a09580081dffbd1ddd4654e6e9123"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bf9db5488121b596dbfc6718c76092fda77b703c1f7533a226a5a9f65248f8ad"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b8db6b5b2d4491ad5b6bdc2bc7c017eec108acbf4e6785f42a9eb0ba234f4c9"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b3d504047aba448d70cf6fa22e06cb09f7cbd761939fdd47604f5e007675c24e"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:e61b02c3f7a1e0b75e20c3978f7135fd13cb6cf551bf4a6d29b999a88830a338"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:e35ba67d65d49080e8e5a1dd40101fccdd9798adb9b050ff670b7d74fa41c566"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:26fd7cac7dd51011a245f29a2cc6489c4608b5a8ce8d75661bb4a1066c52dfbe"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:177c7c0fce2855833819c98e43c262007f42ce86651ffbb84f37883308cb0e7d"}, + {file = "rpds_py-0.22.3.tar.gz", hash = "sha256:e32fee8ab45d3c2db6da19a5323bc3362237c8b653c70194414b892fd06a080d"}, +] + +[[package]] +name = "ruff" +version = "0.8.3" +requires_python = ">=3.7" +summary = "An extremely fast Python linter and code formatter, written in Rust." +groups = ["default"] +marker = "sys_platform != \"emscripten\"" +files = [ + {file = "ruff-0.8.3-py3-none-linux_armv6l.whl", hash = "sha256:8d5d273ffffff0acd3db5bf626d4b131aa5a5ada1276126231c4174543ce20d6"}, + {file = "ruff-0.8.3-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:e4d66a21de39f15c9757d00c50c8cdd20ac84f55684ca56def7891a025d7e939"}, + {file = "ruff-0.8.3-py3-none-macosx_11_0_arm64.whl", hash = "sha256:c356e770811858bd20832af696ff6c7e884701115094f427b64b25093d6d932d"}, + {file = "ruff-0.8.3-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c0a60a825e3e177116c84009d5ebaa90cf40dfab56e1358d1df4e29a9a14b13"}, + {file = "ruff-0.8.3-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:75fb782f4db39501210ac093c79c3de581d306624575eddd7e4e13747e61ba18"}, + {file = "ruff-0.8.3-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7f26bc76a133ecb09a38b7868737eded6941b70a6d34ef53a4027e83913b6502"}, + {file = "ruff-0.8.3-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:01b14b2f72a37390c1b13477c1c02d53184f728be2f3ffc3ace5b44e9e87b90d"}, + {file = "ruff-0.8.3-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:53babd6e63e31f4e96ec95ea0d962298f9f0d9cc5990a1bbb023a6baf2503a82"}, + {file = "ruff-0.8.3-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1ae441ce4cf925b7f363d33cd6570c51435972d697e3e58928973994e56e1452"}, + {file = "ruff-0.8.3-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7c65bc0cadce32255e93c57d57ecc2cca23149edd52714c0c5d6fa11ec328cd"}, + {file = "ruff-0.8.3-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:5be450bb18f23f0edc5a4e5585c17a56ba88920d598f04a06bd9fd76d324cb20"}, + {file = "ruff-0.8.3-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:8faeae3827eaa77f5721f09b9472a18c749139c891dbc17f45e72d8f2ca1f8fc"}, + {file = "ruff-0.8.3-py3-none-musllinux_1_2_i686.whl", hash = "sha256:db503486e1cf074b9808403991663e4277f5c664d3fe237ee0d994d1305bb060"}, + {file = "ruff-0.8.3-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:6567be9fb62fbd7a099209257fef4ad2c3153b60579818b31a23c886ed4147ea"}, + {file = "ruff-0.8.3-py3-none-win32.whl", hash = "sha256:19048f2f878f3ee4583fc6cb23fb636e48c2635e30fb2022b3a1cd293402f964"}, + {file = "ruff-0.8.3-py3-none-win_amd64.whl", hash = "sha256:f7df94f57d7418fa7c3ffb650757e0c2b96cf2501a0b192c18e4fb5571dfada9"}, + {file = "ruff-0.8.3-py3-none-win_arm64.whl", hash = "sha256:fe2756edf68ea79707c8d68b78ca9a58ed9af22e430430491ee03e718b5e4936"}, + {file = "ruff-0.8.3.tar.gz", hash = "sha256:5e7558304353b84279042fc584a4f4cb8a07ae79b2bf3da1a7551d960b5626d3"}, +] + +[[package]] +name = "safehttpx" +version = "0.1.6" +requires_python = ">3.9" +summary = "A small Python library created to help developers protect their applications from Server Side Request Forgery (SSRF) attacks." +groups = ["default"] +dependencies = [ + "httpx", +] +files = [ + {file = "safehttpx-0.1.6-py3-none-any.whl", hash = "sha256:407cff0b410b071623087c63dd2080c3b44dc076888d8c5823c00d1e58cb381c"}, + {file = "safehttpx-0.1.6.tar.gz", hash = "sha256:b356bfc82cee3a24c395b94a2dbeabbed60aff1aa5fa3b5fe97c4f2456ebce42"}, +] + +[[package]] +name = "safetensors" +version = "0.4.5" +requires_python = ">=3.7" +summary = "" +groups = ["default"] +files = [ + {file = "safetensors-0.4.5-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:a63eaccd22243c67e4f2b1c3e258b257effc4acd78f3b9d397edc8cf8f1298a7"}, + {file = "safetensors-0.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:23fc9b4ec7b602915cbb4ec1a7c1ad96d2743c322f20ab709e2c35d1b66dad27"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6885016f34bef80ea1085b7e99b3c1f92cb1be78a49839203060f67b40aee761"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:133620f443450429322f238fda74d512c4008621227fccf2f8cf4a76206fea7c"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4fb3e0609ec12d2a77e882f07cced530b8262027f64b75d399f1504ffec0ba56"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d0f1dd769f064adc33831f5e97ad07babbd728427f98e3e1db6902e369122737"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c6d156bdb26732feada84f9388a9f135528c1ef5b05fae153da365ad4319c4c5"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9e347d77e2c77eb7624400ccd09bed69d35c0332f417ce8c048d404a096c593b"}, + {file = "safetensors-0.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9f556eea3aec1d3d955403159fe2123ddd68e880f83954ee9b4a3f2e15e716b6"}, + {file = "safetensors-0.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:9483f42be3b6bc8ff77dd67302de8ae411c4db39f7224dec66b0eb95822e4163"}, + {file = "safetensors-0.4.5-cp310-none-win32.whl", hash = "sha256:7389129c03fadd1ccc37fd1ebbc773f2b031483b04700923c3511d2a939252cc"}, + {file = "safetensors-0.4.5-cp310-none-win_amd64.whl", hash = "sha256:e98ef5524f8b6620c8cdef97220c0b6a5c1cef69852fcd2f174bb96c2bb316b1"}, + {file = "safetensors-0.4.5-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:21f848d7aebd5954f92538552d6d75f7c1b4500f51664078b5b49720d180e47c"}, + {file = "safetensors-0.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bb07000b19d41e35eecef9a454f31a8b4718a185293f0d0b1c4b61d6e4487971"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09dedf7c2fda934ee68143202acff6e9e8eb0ddeeb4cfc24182bef999efa9f42"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:59b77e4b7a708988d84f26de3ebead61ef1659c73dcbc9946c18f3b1786d2688"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5d3bc83e14d67adc2e9387e511097f254bd1b43c3020440e708858c684cbac68"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:39371fc551c1072976073ab258c3119395294cf49cdc1f8476794627de3130df"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a6c19feda32b931cae0acd42748a670bdf56bee6476a046af20181ad3fee4090"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a659467495de201e2f282063808a41170448c78bada1e62707b07a27b05e6943"}, + {file = "safetensors-0.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:bad5e4b2476949bcd638a89f71b6916fa9a5cae5c1ae7eede337aca2100435c0"}, + {file = "safetensors-0.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a3a315a6d0054bc6889a17f5668a73f94f7fe55121ff59e0a199e3519c08565f"}, + {file = "safetensors-0.4.5-cp311-none-win32.whl", hash = "sha256:a01e232e6d3d5cf8b1667bc3b657a77bdab73f0743c26c1d3c5dd7ce86bd3a92"}, + {file = "safetensors-0.4.5-cp311-none-win_amd64.whl", hash = "sha256:cbd39cae1ad3e3ef6f63a6f07296b080c951f24cec60188378e43d3713000c04"}, + {file = "safetensors-0.4.5-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:473300314e026bd1043cef391bb16a8689453363381561b8a3e443870937cc1e"}, + {file = "safetensors-0.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:801183a0f76dc647f51a2d9141ad341f9665602a7899a693207a82fb102cc53e"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1524b54246e422ad6fb6aea1ac71edeeb77666efa67230e1faf6999df9b2e27f"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b3139098e3e8b2ad7afbca96d30ad29157b50c90861084e69fcb80dec7430461"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:65573dc35be9059770808e276b017256fa30058802c29e1038eb1c00028502ea"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fd33da8e9407559f8779c82a0448e2133737f922d71f884da27184549416bfed"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3685ce7ed036f916316b567152482b7e959dc754fcc4a8342333d222e05f407c"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dde2bf390d25f67908278d6f5d59e46211ef98e44108727084d4637ee70ab4f1"}, + {file = "safetensors-0.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7469d70d3de970b1698d47c11ebbf296a308702cbaae7fcb993944751cf985f4"}, + {file = "safetensors-0.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3a6ba28118636a130ccbb968bc33d4684c48678695dba2590169d5ab03a45646"}, + {file = "safetensors-0.4.5-cp312-none-win32.whl", hash = "sha256:c859c7ed90b0047f58ee27751c8e56951452ed36a67afee1b0a87847d065eec6"}, + {file = "safetensors-0.4.5-cp312-none-win_amd64.whl", hash = "sha256:b5a8810ad6a6f933fff6c276eae92c1da217b39b4d8b1bc1c0b8af2d270dc532"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:fdadf66b5a22ceb645d5435a0be7a0292ce59648ca1d46b352f13cff3ea80410"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d42ffd4c2259f31832cb17ff866c111684c87bd930892a1ba53fed28370c918c"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd8a1f6d2063a92cd04145c7fd9e31a1c7d85fbec20113a14b487563fdbc0597"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:951d2fcf1817f4fb0ef0b48f6696688a4e852a95922a042b3f96aaa67eedc920"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6ac85d9a8c1af0e3132371d9f2d134695a06a96993c2e2f0bbe25debb9e3f67a"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:e3cec4a29eb7fe8da0b1c7988bc3828183080439dd559f720414450de076fcab"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:21742b391b859e67b26c0b2ac37f52c9c0944a879a25ad2f9f9f3cd61e7fda8f"}, + {file = "safetensors-0.4.5.tar.gz", hash = "sha256:d73de19682deabb02524b3d5d1f8b3aaba94c72f1bbfc7911b9b9d5d391c0310"}, +] + +[[package]] +name = "scikit-learn" +version = "1.6.0" +requires_python = ">=3.9" +summary = "A set of python modules for machine learning and data mining" +groups = ["default"] +dependencies = [ + "joblib>=1.2.0", + "numpy>=1.19.5", + "scipy>=1.6.0", + "threadpoolctl>=3.1.0", +] +files = [ + {file = "scikit_learn-1.6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:366fb3fa47dce90afed3d6106183f4978d6f24cfd595c2373424171b915ee718"}, + {file = "scikit_learn-1.6.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:59cd96a8d9f8dfd546f5d6e9787e1b989e981388d7803abbc9efdcde61e47460"}, + {file = "scikit_learn-1.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:efa7a579606c73a0b3d210e33ea410ea9e1af7933fe324cb7e6fbafae4ea5948"}, + {file = "scikit_learn-1.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a46d3ca0f11a540b8eaddaf5e38172d8cd65a86cb3e3632161ec96c0cffb774c"}, + {file = "scikit_learn-1.6.0-cp310-cp310-win_amd64.whl", hash = "sha256:5be4577769c5dde6e1b53de8e6520f9b664ab5861dd57acee47ad119fd7405d6"}, + {file = "scikit_learn-1.6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1f50b4f24cf12a81c3c09958ae3b864d7534934ca66ded3822de4996d25d7285"}, + {file = "scikit_learn-1.6.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:eb9ae21f387826da14b0b9cb1034f5048ddb9182da429c689f5f4a87dc96930b"}, + {file = "scikit_learn-1.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0baa91eeb8c32632628874a5c91885eaedd23b71504d24227925080da075837a"}, + {file = "scikit_learn-1.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c716d13ba0a2f8762d96ff78d3e0cde90bc9c9b5c13d6ab6bb9b2d6ca6705fd"}, + {file = "scikit_learn-1.6.0-cp311-cp311-win_amd64.whl", hash = "sha256:9aafd94bafc841b626681e626be27bf1233d5a0f20f0a6fdb4bee1a1963c6643"}, + {file = "scikit_learn-1.6.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:04a5ba45c12a5ff81518aa4f1604e826a45d20e53da47b15871526cda4ff5174"}, + {file = "scikit_learn-1.6.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:21fadfc2ad7a1ce8bd1d90f23d17875b84ec765eecbbfc924ff11fb73db582ce"}, + {file = "scikit_learn-1.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30f34bb5fde90e020653bb84dcb38b6c83f90c70680dbd8c38bd9becbad7a127"}, + {file = "scikit_learn-1.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1dad624cffe3062276a0881d4e441bc9e3b19d02d17757cd6ae79a9d192a0027"}, + {file = "scikit_learn-1.6.0-cp312-cp312-win_amd64.whl", hash = "sha256:2fce7950a3fad85e0a61dc403df0f9345b53432ac0e47c50da210d22c60b6d85"}, + {file = "scikit_learn-1.6.0.tar.gz", hash = "sha256:9d58481f9f7499dff4196927aedd4285a0baec8caa3790efbe205f13de37dd6e"}, +] + +[[package]] +name = "scipy" +version = "1.14.1" +requires_python = ">=3.10" +summary = "Fundamental algorithms for scientific computing in Python" +groups = ["default"] +dependencies = [ + "numpy<2.3,>=1.23.5", +] +files = [ + {file = "scipy-1.14.1-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:b28d2ca4add7ac16ae8bb6632a3c86e4b9e4d52d3e34267f6e1b0c1f8d87e389"}, + {file = "scipy-1.14.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:d0d2821003174de06b69e58cef2316a6622b60ee613121199cb2852a873f8cf3"}, + {file = "scipy-1.14.1-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:8bddf15838ba768bb5f5083c1ea012d64c9a444e16192762bd858f1e126196d0"}, + {file = "scipy-1.14.1-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:97c5dddd5932bd2a1a31c927ba5e1463a53b87ca96b5c9bdf5dfd6096e27efc3"}, + {file = "scipy-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ff0a7e01e422c15739ecd64432743cf7aae2b03f3084288f399affcefe5222d"}, + {file = "scipy-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e32dced201274bf96899e6491d9ba3e9a5f6b336708656466ad0522d8528f69"}, + {file = "scipy-1.14.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:8426251ad1e4ad903a4514712d2fa8fdd5382c978010d1c6f5f37ef286a713ad"}, + {file = "scipy-1.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:a49f6ed96f83966f576b33a44257d869756df6cf1ef4934f59dd58b25e0327e5"}, + {file = "scipy-1.14.1-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:2da0469a4ef0ecd3693761acbdc20f2fdeafb69e6819cc081308cc978153c675"}, + {file = "scipy-1.14.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:c0ee987efa6737242745f347835da2cc5bb9f1b42996a4d97d5c7ff7928cb6f2"}, + {file = "scipy-1.14.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:3a1b111fac6baec1c1d92f27e76511c9e7218f1695d61b59e05e0fe04dc59617"}, + {file = "scipy-1.14.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:8475230e55549ab3f207bff11ebfc91c805dc3463ef62eda3ccf593254524ce8"}, + {file = "scipy-1.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:278266012eb69f4a720827bdd2dc54b2271c97d84255b2faaa8f161a158c3b37"}, + {file = "scipy-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fef8c87f8abfb884dac04e97824b61299880c43f4ce675dd2cbeadd3c9b466d2"}, + {file = "scipy-1.14.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b05d43735bb2f07d689f56f7b474788a13ed8adc484a85aa65c0fd931cf9ccd2"}, + {file = "scipy-1.14.1-cp311-cp311-win_amd64.whl", hash = "sha256:716e389b694c4bb564b4fc0c51bc84d381735e0d39d3f26ec1af2556ec6aad94"}, + {file = "scipy-1.14.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:631f07b3734d34aced009aaf6fedfd0eb3498a97e581c3b1e5f14a04164a456d"}, + {file = "scipy-1.14.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:af29a935803cc707ab2ed7791c44288a682f9c8107bc00f0eccc4f92c08d6e07"}, + {file = "scipy-1.14.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:2843f2d527d9eebec9a43e6b406fb7266f3af25a751aa91d62ff416f54170bc5"}, + {file = "scipy-1.14.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:eb58ca0abd96911932f688528977858681a59d61a7ce908ffd355957f7025cfc"}, + {file = "scipy-1.14.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30ac8812c1d2aab7131a79ba62933a2a76f582d5dbbc695192453dae67ad6310"}, + {file = "scipy-1.14.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f9ea80f2e65bdaa0b7627fb00cbeb2daf163caa015e59b7516395fe3bd1e066"}, + {file = "scipy-1.14.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:edaf02b82cd7639db00dbff629995ef185c8df4c3ffa71a5562a595765a06ce1"}, + {file = "scipy-1.14.1-cp312-cp312-win_amd64.whl", hash = "sha256:2ff38e22128e6c03ff73b6bb0f85f897d2362f8c052e3b8ad00532198fbdae3f"}, + {file = "scipy-1.14.1.tar.gz", hash = "sha256:5a275584e726026a5699459aa72f828a610821006228e841b94275c4a7c08417"}, +] + +[[package]] +name = "semantic-version" +version = "2.10.0" +requires_python = ">=2.7" +summary = "A library implementing the 'SemVer' scheme." +groups = ["default"] +files = [ + {file = "semantic_version-2.10.0-py2.py3-none-any.whl", hash = "sha256:de78a3b8e0feda74cabc54aab2da702113e33ac9d9eb9d2389bcf1f58b7d9177"}, + {file = "semantic_version-2.10.0.tar.gz", hash = "sha256:bdabb6d336998cbb378d4b9db3a4b56a1e3235701dc05ea2690d9a997ed5041c"}, +] + +[[package]] +name = "sentence-transformers" +version = "3.3.1" +requires_python = ">=3.9" +summary = "State-of-the-Art Text Embeddings" +groups = ["default"] +dependencies = [ + "Pillow", + "huggingface-hub>=0.20.0", + "scikit-learn", + "scipy", + "torch>=1.11.0", + "tqdm", + "transformers<5.0.0,>=4.41.0", +] +files = [ + {file = "sentence_transformers-3.3.1-py3-none-any.whl", hash = "sha256:abffcc79dab37b7d18d21a26d5914223dd42239cfe18cb5e111c66c54b658ae7"}, + {file = "sentence_transformers-3.3.1.tar.gz", hash = "sha256:9635dbfb11c6b01d036b9cfcee29f7716ab64cf2407ad9f403a2e607da2ac48b"}, +] + +[[package]] +name = "setuptools" +version = "75.6.0" +requires_python = ">=3.9" +summary = "Easily download, build, install, upgrade, and uninstall Python packages" +groups = ["default"] +files = [ + {file = "setuptools-75.6.0-py3-none-any.whl", hash = "sha256:ce74b49e8f7110f9bf04883b730f4765b774ef3ef28f722cce7c273d253aaf7d"}, + {file = "setuptools-75.6.0.tar.gz", hash = "sha256:8199222558df7c86216af4f84c30e9b34a61d8ba19366cc914424cdbd28252f6"}, +] + +[[package]] +name = "shellingham" +version = "1.5.4" +requires_python = ">=3.7" +summary = "Tool to Detect Surrounding Shell" +groups = ["default"] +files = [ + {file = "shellingham-1.5.4-py2.py3-none-any.whl", hash = "sha256:7ecfff8f2fd72616f7481040475a65b2bf8af90a56c89140852d1120324e8686"}, + {file = "shellingham-1.5.4.tar.gz", hash = "sha256:8dbca0739d487e5bd35ab3ca4b36e11c4078f3a234bfce294b0a0291363404de"}, +] + +[[package]] +name = "six" +version = "1.17.0" +requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +summary = "Python 2 and 3 compatibility utilities" +groups = ["default"] +files = [ + {file = "six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274"}, + {file = "six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81"}, +] + +[[package]] +name = "sniffio" +version = "1.3.1" +requires_python = ">=3.7" +summary = "Sniff out which async library your code is running under" +groups = ["default"] +files = [ + {file = "sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2"}, + {file = "sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc"}, +] + +[[package]] +name = "stack-data" +version = "0.6.3" +summary = "Extract data from python stack frames and tracebacks for informative displays" +groups = ["default"] +dependencies = [ + "asttokens>=2.1.0", + "executing>=1.2.0", + "pure-eval", +] +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[[package]] +name = "standardwebhooks" +version = "1.0.0" +requires_python = ">=3.6" +summary = "Standard Webhooks" +groups = ["default"] +dependencies = [ + "Deprecated", + "attrs>=21.3.0", + "httpx>=0.23.0", + "python-dateutil", + "types-Deprecated", + "types-python-dateutil", +] +files = [ + {file = "standardwebhooks-1.0.0.tar.gz", hash = "sha256:d94b99c0dcea84156e03adad94f8dba32d5454cc68e12ec2c824051b55bb67ff"}, +] + +[[package]] +name = "starlette" +version = "0.41.3" +requires_python = ">=3.8" +summary = "The little ASGI library that shines." +groups = ["default"] +dependencies = [ + "anyio<5,>=3.4.0", + "typing-extensions>=3.10.0; python_version < \"3.10\"", +] +files = [ + {file = "starlette-0.41.3-py3-none-any.whl", hash = "sha256:44cedb2b7c77a9de33a8b74b2b90e9f50d11fcf25d8270ea525ad71a25374ff7"}, + {file = "starlette-0.41.3.tar.gz", hash = "sha256:0e4ab3d16522a255be6b28260b938eae2482f98ce5cc934cb08dce8dc3ba5835"}, +] + +[[package]] +name = "sympy" +version = "1.13.1" +requires_python = ">=3.8" +summary = "Computer algebra system (CAS) in Python" +groups = ["default"] +marker = "python_version >= \"3.9\"" +dependencies = [ + "mpmath<1.4,>=1.1.0", +] +files = [ + {file = "sympy-1.13.1-py3-none-any.whl", hash = "sha256:db36cdc64bf61b9b24578b6f7bab1ecdd2452cf008f34faa33776680c26d66f8"}, + {file = "sympy-1.13.1.tar.gz", hash = "sha256:9cebf7e04ff162015ce31c9c6c9144daa34a93bd082f54fd8f12deca4f47515f"}, +] + +[[package]] +name = "tblib" +version = "3.0.0" +requires_python = ">=3.8" +summary = "Traceback serialization library." +groups = ["default"] +files = [ + {file = "tblib-3.0.0-py3-none-any.whl", hash = "sha256:80a6c77e59b55e83911e1e607c649836a69c103963c5f28a46cbeef44acf8129"}, + {file = "tblib-3.0.0.tar.gz", hash = "sha256:93622790a0a29e04f0346458face1e144dc4d32f493714c6c3dff82a4adb77e6"}, +] + +[[package]] +name = "tenacity" +version = "9.0.0" +requires_python = ">=3.8" +summary = "Retry code until it succeeds" +groups = ["default"] +files = [ + {file = "tenacity-9.0.0-py3-none-any.whl", hash = "sha256:93de0c98785b27fcf659856aa9f54bfbd399e29969b0621bc7f762bd441b4539"}, + {file = "tenacity-9.0.0.tar.gz", hash = "sha256:807f37ca97d62aa361264d497b0e31e92b8027044942bfa756160d908320d73b"}, +] + +[[package]] +name = "threadpoolctl" +version = "3.5.0" +requires_python = ">=3.8" +summary = "threadpoolctl" +groups = ["default"] +files = [ + {file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"}, + {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, +] + +[[package]] +name = "tokenizers" +version = "0.21.0" +requires_python = ">=3.7" +summary = "" +groups = ["default"] +dependencies = [ + "huggingface-hub<1.0,>=0.16.4", +] +files = [ + {file = "tokenizers-0.21.0-cp39-abi3-macosx_10_12_x86_64.whl", hash = "sha256:3c4c93eae637e7d2aaae3d376f06085164e1660f89304c0ab2b1d08a406636b2"}, + {file = "tokenizers-0.21.0-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:f53ea537c925422a2e0e92a24cce96f6bc5046bbef24a1652a5edc8ba975f62e"}, + {file = "tokenizers-0.21.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b177fb54c4702ef611de0c069d9169f0004233890e0c4c5bd5508ae05abf193"}, + {file = "tokenizers-0.21.0-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6b43779a269f4629bebb114e19c3fca0223296ae9fea8bb9a7a6c6fb0657ff8e"}, + {file = "tokenizers-0.21.0-cp39-abi3-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9aeb255802be90acfd363626753fda0064a8df06031012fe7d52fd9a905eb00e"}, + {file = "tokenizers-0.21.0-cp39-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d8b09dbeb7a8d73ee204a70f94fc06ea0f17dcf0844f16102b9f414f0b7463ba"}, + {file = "tokenizers-0.21.0-cp39-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:400832c0904f77ce87c40f1a8a27493071282f785724ae62144324f171377273"}, + {file = "tokenizers-0.21.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e84ca973b3a96894d1707e189c14a774b701596d579ffc7e69debfc036a61a04"}, + {file = "tokenizers-0.21.0-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:eb7202d231b273c34ec67767378cd04c767e967fda12d4a9e36208a34e2f137e"}, + {file = "tokenizers-0.21.0-cp39-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:089d56db6782a73a27fd8abf3ba21779f5b85d4a9f35e3b493c7bbcbbf0d539b"}, + {file = "tokenizers-0.21.0-cp39-abi3-musllinux_1_2_i686.whl", hash = "sha256:c87ca3dc48b9b1222d984b6b7490355a6fdb411a2d810f6f05977258400ddb74"}, + {file = "tokenizers-0.21.0-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:4145505a973116f91bc3ac45988a92e618a6f83eb458f49ea0790df94ee243ff"}, + {file = "tokenizers-0.21.0-cp39-abi3-win32.whl", hash = "sha256:eb1702c2f27d25d9dd5b389cc1f2f51813e99f8ca30d9e25348db6585a97e24a"}, + {file = "tokenizers-0.21.0-cp39-abi3-win_amd64.whl", hash = "sha256:87841da5a25a3a5f70c102de371db120f41873b854ba65e52bccd57df5a3780c"}, + {file = "tokenizers-0.21.0.tar.gz", hash = "sha256:ee0894bf311b75b0c03079f33859ae4b2334d675d4e93f5a4132e1eae2834fe4"}, +] + +[[package]] +name = "tomlkit" +version = "0.13.2" +requires_python = ">=3.8" +summary = "Style preserving TOML library" +groups = ["default"] +files = [ + {file = "tomlkit-0.13.2-py3-none-any.whl", hash = "sha256:7a974427f6e119197f670fbbbeae7bef749a6c14e793db934baefc1b5f03efde"}, + {file = "tomlkit-0.13.2.tar.gz", hash = "sha256:fff5fe59a87295b278abd31bec92c15d9bc4a06885ab12bcea52c71119392e79"}, +] + +[[package]] +name = "torch" +version = "2.5.1" +requires_python = ">=3.8.0" +summary = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" +groups = ["default"] +dependencies = [ + "filelock", + "fsspec", + "jinja2", + "networkx", + "nvidia-cublas-cu12==12.4.5.8; platform_system == \"Linux\" and platform_machine == \"x86_64\"", + "nvidia-cuda-cupti-cu12==12.4.127; platform_system == \"Linux\" and platform_machine == \"x86_64\"", + "nvidia-cuda-nvrtc-cu12==12.4.127; platform_system == \"Linux\" and platform_machine == \"x86_64\"", + "nvidia-cuda-runtime-cu12==12.4.127; platform_system == \"Linux\" and platform_machine == \"x86_64\"", + "nvidia-cudnn-cu12==9.1.0.70; platform_system == \"Linux\" and platform_machine == \"x86_64\"", + "nvidia-cufft-cu12==11.2.1.3; platform_system == \"Linux\" and platform_machine == \"x86_64\"", + "nvidia-curand-cu12==10.3.5.147; platform_system == \"Linux\" and platform_machine == \"x86_64\"", + "nvidia-cusolver-cu12==11.6.1.9; platform_system == \"Linux\" and platform_machine == \"x86_64\"", + "nvidia-cusparse-cu12==12.3.1.170; platform_system == \"Linux\" and platform_machine == \"x86_64\"", + "nvidia-nccl-cu12==2.21.5; platform_system == \"Linux\" and platform_machine == \"x86_64\"", + "nvidia-nvjitlink-cu12==12.4.127; platform_system == \"Linux\" and platform_machine == \"x86_64\"", + "nvidia-nvtx-cu12==12.4.127; platform_system == \"Linux\" and platform_machine == \"x86_64\"", + "setuptools; python_version >= \"3.12\"", + "sympy==1.12.1; python_version == \"3.8\"", + "sympy==1.13.1; python_version >= \"3.9\"", + "triton==3.1.0; platform_system == \"Linux\" and platform_machine == \"x86_64\" and python_version < \"3.13\"", + "typing-extensions>=4.8.0", +] +files = [ + {file = "torch-2.5.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:71328e1bbe39d213b8721678f9dcac30dfc452a46d586f1d514a6aa0a99d4744"}, + {file = "torch-2.5.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:34bfa1a852e5714cbfa17f27c49d8ce35e1b7af5608c4bc6e81392c352dbc601"}, + {file = "torch-2.5.1-cp310-cp310-win_amd64.whl", hash = "sha256:32a037bd98a241df6c93e4c789b683335da76a2ac142c0973675b715102dc5fa"}, + {file = "torch-2.5.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:23d062bf70776a3d04dbe74db950db2a5245e1ba4f27208a87f0d743b0d06e86"}, + {file = "torch-2.5.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:de5b7d6740c4b636ef4db92be922f0edc425b65ed78c5076c43c42d362a45457"}, + {file = "torch-2.5.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:340ce0432cad0d37f5a31be666896e16788f1adf8ad7be481196b503dad675b9"}, + {file = "torch-2.5.1-cp311-cp311-win_amd64.whl", hash = "sha256:603c52d2fe06433c18b747d25f5c333f9c1d58615620578c326d66f258686f9a"}, + {file = "torch-2.5.1-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:31f8c39660962f9ae4eeec995e3049b5492eb7360dd4f07377658ef4d728fa4c"}, + {file = "torch-2.5.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:ed231a4b3a5952177fafb661213d690a72caaad97d5824dd4fc17ab9e15cec03"}, + {file = "torch-2.5.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:3f4b7f10a247e0dcd7ea97dc2d3bfbfc90302ed36d7f3952b0008d0df264e697"}, + {file = "torch-2.5.1-cp312-cp312-win_amd64.whl", hash = "sha256:73e58e78f7d220917c5dbfad1a40e09df9929d3b95d25e57d9f8558f84c9a11c"}, + {file = "torch-2.5.1-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:8c712df61101964eb11910a846514011f0b6f5920c55dbf567bff8a34163d5b1"}, +] + +[[package]] +name = "tqdm" +version = "4.67.1" +requires_python = ">=3.7" +summary = "Fast, Extensible Progress Meter" +groups = ["default"] +dependencies = [ + "colorama; platform_system == \"Windows\"", +] +files = [ + {file = "tqdm-4.67.1-py3-none-any.whl", hash = "sha256:26445eca388f82e72884e0d580d5464cd801a3ea01e63e5601bdff9ba6a48de2"}, + {file = "tqdm-4.67.1.tar.gz", hash = "sha256:f8aef9c52c08c13a65f30ea34f4e5aac3fd1a34959879d7e59e63027286627f2"}, +] + +[[package]] +name = "traitlets" +version = "5.14.3" +requires_python = ">=3.8" +summary = "Traitlets Python configuration system" +groups = ["default"] +files = [ + {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, + {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, +] + +[[package]] +name = "transformers" +version = "4.47.1" +requires_python = ">=3.9.0" +summary = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow" +groups = ["default"] +dependencies = [ + "filelock", + "huggingface-hub<1.0,>=0.24.0", + "numpy>=1.17", + "packaging>=20.0", + "pyyaml>=5.1", + "regex!=2019.12.17", + "requests", + "safetensors>=0.4.1", + "tokenizers<0.22,>=0.21", + "tqdm>=4.27", +] +files = [ + {file = "transformers-4.47.1-py3-none-any.whl", hash = "sha256:d2f5d19bb6283cd66c893ec7e6d931d6370bbf1cc93633326ff1f41a40046c9c"}, + {file = "transformers-4.47.1.tar.gz", hash = "sha256:6c29c05a5f595e278481166539202bf8641281536df1c42357ee58a45d0a564a"}, +] + +[[package]] +name = "triton" +version = "3.1.0" +summary = "A language and compiler for custom Deep Learning operations" +groups = ["default"] +marker = "platform_system == \"Linux\" and platform_machine == \"x86_64\" and python_version < \"3.13\"" +dependencies = [ + "filelock", +] +files = [ + {file = "triton-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b0dd10a925263abbe9fa37dcde67a5e9b2383fc269fdf59f5657cac38c5d1d8"}, + {file = "triton-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0f34f6e7885d1bf0eaaf7ba875a5f0ce6f3c13ba98f9503651c1e6dc6757ed5c"}, + {file = "triton-3.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c8182f42fd8080a7d39d666814fa36c5e30cc00ea7eeeb1a2983dbb4c99a0fdc"}, +] + +[[package]] +name = "typer" +version = "0.15.1" +requires_python = ">=3.7" +summary = "Typer, build great CLIs. Easy to code. Based on Python type hints." +groups = ["default"] +dependencies = [ + "click>=8.0.0", + "rich>=10.11.0", + "shellingham>=1.3.0", + "typing-extensions>=3.7.4.3", +] +files = [ + {file = "typer-0.15.1-py3-none-any.whl", hash = "sha256:7994fb7b8155b64d3402518560648446072864beefd44aa2dc36972a5972e847"}, + {file = "typer-0.15.1.tar.gz", hash = "sha256:a0588c0a7fa68a1978a069818657778f86abe6ff5ea6abf472f940a08bfe4f0a"}, +] + +[[package]] +name = "types-deprecated" +version = "1.2.15.20241117" +requires_python = ">=3.8" +summary = "Typing stubs for Deprecated" +groups = ["default"] +files = [ + {file = "types-Deprecated-1.2.15.20241117.tar.gz", hash = "sha256:924002c8b7fddec51ba4949788a702411a2e3636cd9b2a33abd8ee119701d77e"}, + {file = "types_Deprecated-1.2.15.20241117-py3-none-any.whl", hash = "sha256:a0cc5e39f769fc54089fd8e005416b55d74aa03f6964d2ed1a0b0b2e28751884"}, +] + +[[package]] +name = "types-python-dateutil" +version = "2.9.0.20241206" +requires_python = ">=3.8" +summary = "Typing stubs for python-dateutil" +groups = ["default"] +files = [ + {file = "types_python_dateutil-2.9.0.20241206-py3-none-any.whl", hash = "sha256:e248a4bc70a486d3e3ec84d0dc30eec3a5f979d6e7ee4123ae043eedbb987f53"}, + {file = "types_python_dateutil-2.9.0.20241206.tar.gz", hash = "sha256:18f493414c26ffba692a72369fea7a154c502646301ebfe3d56a04b3767284cb"}, +] + +[[package]] +name = "typing-extensions" +version = "4.12.2" +requires_python = ">=3.8" +summary = "Backported and Experimental Type Hints for Python 3.8+" +groups = ["default"] +files = [ + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, +] + +[[package]] +name = "tzdata" +version = "2024.2" +requires_python = ">=2" +summary = "Provider of IANA time zone data" +groups = ["default"] +files = [ + {file = "tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd"}, + {file = "tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc"}, +] + +[[package]] +name = "universal-pathlib" +version = "0.2.6" +requires_python = ">=3.8" +summary = "pathlib api extended to use fsspec backends" +groups = ["default"] +dependencies = [ + "fsspec!=2024.3.1,>=2022.1.0", +] +files = [ + {file = "universal_pathlib-0.2.6-py3-none-any.whl", hash = "sha256:700dec2b58ef34b87998513de6d2ae153b22f083197dfafb8544744edabd1b18"}, + {file = "universal_pathlib-0.2.6.tar.gz", hash = "sha256:50817aaeaa9f4163cb1e76f5bdf84207fa05ce728b23fd779479b3462e5430ac"}, +] + +[[package]] +name = "urllib3" +version = "2.2.3" +requires_python = ">=3.8" +summary = "HTTP library with thread-safe connection pooling, file post, and more." +groups = ["default"] +files = [ + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, +] + +[[package]] +name = "uvicorn" +version = "0.34.0" +requires_python = ">=3.9" +summary = "The lightning-fast ASGI server." +groups = ["default"] +marker = "sys_platform != \"emscripten\"" +dependencies = [ + "click>=7.0", + "h11>=0.8", + "typing-extensions>=4.0; python_version < \"3.11\"", +] +files = [ + {file = "uvicorn-0.34.0-py3-none-any.whl", hash = "sha256:023dc038422502fa28a09c7a30bf2b6991512da7dcdb8fd35fe57cfc154126f4"}, + {file = "uvicorn-0.34.0.tar.gz", hash = "sha256:404051050cd7e905de2c9a7e61790943440b3416f49cb409f965d9dcd0fa73e9"}, +] + +[[package]] +name = "wcwidth" +version = "0.2.13" +summary = "Measures the displayed width of unicode strings in a terminal" +groups = ["default"] +dependencies = [ + "backports-functools-lru-cache>=1.2.1; python_version < \"3.2\"", +] +files = [ + {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, + {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, +] + +[[package]] +name = "websockets" +version = "14.1" +requires_python = ">=3.9" +summary = "An implementation of the WebSocket Protocol (RFC 6455 & 7692)" +groups = ["default"] +files = [ + {file = "websockets-14.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a0adf84bc2e7c86e8a202537b4fd50e6f7f0e4a6b6bf64d7ccb96c4cd3330b29"}, + {file = "websockets-14.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:90b5d9dfbb6d07a84ed3e696012610b6da074d97453bd01e0e30744b472c8179"}, + {file = "websockets-14.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2177ee3901075167f01c5e335a6685e71b162a54a89a56001f1c3e9e3d2ad250"}, + {file = "websockets-14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3f14a96a0034a27f9d47fd9788913924c89612225878f8078bb9d55f859272b0"}, + {file = "websockets-14.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1f874ba705deea77bcf64a9da42c1f5fc2466d8f14daf410bc7d4ceae0a9fcb0"}, + {file = "websockets-14.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9607b9a442392e690a57909c362811184ea429585a71061cd5d3c2b98065c199"}, + {file = "websockets-14.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:bea45f19b7ca000380fbd4e02552be86343080120d074b87f25593ce1700ad58"}, + {file = "websockets-14.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:219c8187b3ceeadbf2afcf0f25a4918d02da7b944d703b97d12fb01510869078"}, + {file = "websockets-14.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ad2ab2547761d79926effe63de21479dfaf29834c50f98c4bf5b5480b5838434"}, + {file = "websockets-14.1-cp310-cp310-win32.whl", hash = "sha256:1288369a6a84e81b90da5dbed48610cd7e5d60af62df9851ed1d1d23a9069f10"}, + {file = "websockets-14.1-cp310-cp310-win_amd64.whl", hash = "sha256:e0744623852f1497d825a49a99bfbec9bea4f3f946df6eb9d8a2f0c37a2fec2e"}, + {file = "websockets-14.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:449d77d636f8d9c17952628cc7e3b8faf6e92a17ec581ec0c0256300717e1512"}, + {file = "websockets-14.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a35f704be14768cea9790d921c2c1cc4fc52700410b1c10948511039be824aac"}, + {file = "websockets-14.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b1f3628a0510bd58968c0f60447e7a692933589b791a6b572fcef374053ca280"}, + {file = "websockets-14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c3deac3748ec73ef24fc7be0b68220d14d47d6647d2f85b2771cb35ea847aa1"}, + {file = "websockets-14.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7048eb4415d46368ef29d32133134c513f507fff7d953c18c91104738a68c3b3"}, + {file = "websockets-14.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6cf0ad281c979306a6a34242b371e90e891bce504509fb6bb5246bbbf31e7b6"}, + {file = "websockets-14.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:cc1fc87428c1d18b643479caa7b15db7d544652e5bf610513d4a3478dbe823d0"}, + {file = "websockets-14.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:f95ba34d71e2fa0c5d225bde3b3bdb152e957150100e75c86bc7f3964c450d89"}, + {file = "websockets-14.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:9481a6de29105d73cf4515f2bef8eb71e17ac184c19d0b9918a3701c6c9c4f23"}, + {file = "websockets-14.1-cp311-cp311-win32.whl", hash = "sha256:368a05465f49c5949e27afd6fbe0a77ce53082185bbb2ac096a3a8afaf4de52e"}, + {file = "websockets-14.1-cp311-cp311-win_amd64.whl", hash = "sha256:6d24fc337fc055c9e83414c94e1ee0dee902a486d19d2a7f0929e49d7d604b09"}, + {file = "websockets-14.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:ed907449fe5e021933e46a3e65d651f641975a768d0649fee59f10c2985529ed"}, + {file = "websockets-14.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:87e31011b5c14a33b29f17eb48932e63e1dcd3fa31d72209848652310d3d1f0d"}, + {file = "websockets-14.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:bc6ccf7d54c02ae47a48ddf9414c54d48af9c01076a2e1023e3b486b6e72c707"}, + {file = "websockets-14.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9777564c0a72a1d457f0848977a1cbe15cfa75fa2f67ce267441e465717dcf1a"}, + {file = "websockets-14.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a655bde548ca98f55b43711b0ceefd2a88a71af6350b0c168aa77562104f3f45"}, + {file = "websockets-14.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a3dfff83ca578cada2d19e665e9c8368e1598d4e787422a460ec70e531dbdd58"}, + {file = "websockets-14.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6a6c9bcf7cdc0fd41cc7b7944447982e8acfd9f0d560ea6d6845428ed0562058"}, + {file = "websockets-14.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:4b6caec8576e760f2c7dd878ba817653144d5f369200b6ddf9771d64385b84d4"}, + {file = "websockets-14.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:eb6d38971c800ff02e4a6afd791bbe3b923a9a57ca9aeab7314c21c84bf9ff05"}, + {file = "websockets-14.1-cp312-cp312-win32.whl", hash = "sha256:1d045cbe1358d76b24d5e20e7b1878efe578d9897a25c24e6006eef788c0fdf0"}, + {file = "websockets-14.1-cp312-cp312-win_amd64.whl", hash = "sha256:90f4c7a069c733d95c308380aae314f2cb45bd8a904fb03eb36d1a4983a4993f"}, + {file = "websockets-14.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:e5dc25a9dbd1a7f61eca4b7cb04e74ae4b963d658f9e4f9aad9cd00b688692c8"}, + {file = "websockets-14.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:04a97aca96ca2acedf0d1f332c861c5a4486fdcba7bcef35873820f940c4231e"}, + {file = "websockets-14.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df174ece723b228d3e8734a6f2a6febbd413ddec39b3dc592f5a4aa0aff28098"}, + {file = "websockets-14.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:034feb9f4286476f273b9a245fb15f02c34d9586a5bc936aff108c3ba1b21beb"}, + {file = "websockets-14.1-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:660c308dabd2b380807ab64b62985eaccf923a78ebc572bd485375b9ca2b7dc7"}, + {file = "websockets-14.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:5a42d3ecbb2db5080fc578314439b1d79eef71d323dc661aa616fb492436af5d"}, + {file = "websockets-14.1-py3-none-any.whl", hash = "sha256:4d4fc827a20abe6d544a119896f6b78ee13fe81cbfef416f3f2ddf09a03f0e2e"}, + {file = "websockets-14.1.tar.gz", hash = "sha256:398b10c77d471c0aab20a845e7a60076b6390bfdaac7a6d2edb0d2c59d75e8d8"}, +] + +[[package]] +name = "wrapt" +version = "1.17.0" +requires_python = ">=3.8" +summary = "Module for decorators, wrappers and monkey patching." +groups = ["default"] +files = [ + {file = "wrapt-1.17.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2a0c23b8319848426f305f9cb0c98a6e32ee68a36264f45948ccf8e7d2b941f8"}, + {file = "wrapt-1.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1ca5f060e205f72bec57faae5bd817a1560fcfc4af03f414b08fa29106b7e2d"}, + {file = "wrapt-1.17.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e185ec6060e301a7e5f8461c86fb3640a7beb1a0f0208ffde7a65ec4074931df"}, + {file = "wrapt-1.17.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bb90765dd91aed05b53cd7a87bd7f5c188fcd95960914bae0d32c5e7f899719d"}, + {file = "wrapt-1.17.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:879591c2b5ab0a7184258274c42a126b74a2c3d5a329df16d69f9cee07bba6ea"}, + {file = "wrapt-1.17.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:fce6fee67c318fdfb7f285c29a82d84782ae2579c0e1b385b7f36c6e8074fffb"}, + {file = "wrapt-1.17.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:0698d3a86f68abc894d537887b9bbf84d29bcfbc759e23f4644be27acf6da301"}, + {file = "wrapt-1.17.0-cp310-cp310-win32.whl", hash = "sha256:69d093792dc34a9c4c8a70e4973a3361c7a7578e9cd86961b2bbf38ca71e4e22"}, + {file = "wrapt-1.17.0-cp310-cp310-win_amd64.whl", hash = "sha256:f28b29dc158ca5d6ac396c8e0a2ef45c4e97bb7e65522bfc04c989e6fe814575"}, + {file = "wrapt-1.17.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:74bf625b1b4caaa7bad51d9003f8b07a468a704e0644a700e936c357c17dd45a"}, + {file = "wrapt-1.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0f2a28eb35cf99d5f5bd12f5dd44a0f41d206db226535b37b0c60e9da162c3ed"}, + {file = "wrapt-1.17.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:81b1289e99cf4bad07c23393ab447e5e96db0ab50974a280f7954b071d41b489"}, + {file = "wrapt-1.17.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9f2939cd4a2a52ca32bc0b359015718472d7f6de870760342e7ba295be9ebaf9"}, + {file = "wrapt-1.17.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6a9653131bda68a1f029c52157fd81e11f07d485df55410401f745007bd6d339"}, + {file = "wrapt-1.17.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4e4b4385363de9052dac1a67bfb535c376f3d19c238b5f36bddc95efae15e12d"}, + {file = "wrapt-1.17.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:bdf62d25234290db1837875d4dceb2151e4ea7f9fff2ed41c0fde23ed542eb5b"}, + {file = "wrapt-1.17.0-cp311-cp311-win32.whl", hash = "sha256:5d8fd17635b262448ab8f99230fe4dac991af1dabdbb92f7a70a6afac8a7e346"}, + {file = "wrapt-1.17.0-cp311-cp311-win_amd64.whl", hash = "sha256:92a3d214d5e53cb1db8b015f30d544bc9d3f7179a05feb8f16df713cecc2620a"}, + {file = "wrapt-1.17.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:89fc28495896097622c3fc238915c79365dd0ede02f9a82ce436b13bd0ab7569"}, + {file = "wrapt-1.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:875d240fdbdbe9e11f9831901fb8719da0bd4e6131f83aa9f69b96d18fae7504"}, + {file = "wrapt-1.17.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5ed16d95fd142e9c72b6c10b06514ad30e846a0d0917ab406186541fe68b451"}, + {file = "wrapt-1.17.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18b956061b8db634120b58f668592a772e87e2e78bc1f6a906cfcaa0cc7991c1"}, + {file = "wrapt-1.17.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:daba396199399ccabafbfc509037ac635a6bc18510ad1add8fd16d4739cdd106"}, + {file = "wrapt-1.17.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:4d63f4d446e10ad19ed01188d6c1e1bb134cde8c18b0aa2acfd973d41fcc5ada"}, + {file = "wrapt-1.17.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:8a5e7cc39a45fc430af1aefc4d77ee6bad72c5bcdb1322cfde852c15192b8bd4"}, + {file = "wrapt-1.17.0-cp312-cp312-win32.whl", hash = "sha256:0a0a1a1ec28b641f2a3a2c35cbe86c00051c04fffcfcc577ffcdd707df3f8635"}, + {file = "wrapt-1.17.0-cp312-cp312-win_amd64.whl", hash = "sha256:3c34f6896a01b84bab196f7119770fd8466c8ae3dfa73c59c0bb281e7b588ce7"}, + {file = "wrapt-1.17.0-py3-none-any.whl", hash = "sha256:d2c63b93548eda58abf5188e505ffed0229bf675f7c3090f8e36ad55b8cbc371"}, + {file = "wrapt-1.17.0.tar.gz", hash = "sha256:16187aa2317c731170a88ef35e8937ae0f533c402872c1ee5e6d079fcf320801"}, +] + +[[package]] +name = "xxhash" +version = "3.5.0" +requires_python = ">=3.7" +summary = "Python binding for xxHash" +groups = ["default"] +files = [ + {file = "xxhash-3.5.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ece616532c499ee9afbb83078b1b952beffef121d989841f7f4b3dc5ac0fd212"}, + {file = "xxhash-3.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3171f693dbc2cef6477054a665dc255d996646b4023fe56cb4db80e26f4cc520"}, + {file = "xxhash-3.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7c5d3e570ef46adaf93fc81b44aca6002b5a4d8ca11bd0580c07eac537f36680"}, + {file = "xxhash-3.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7cb29a034301e2982df8b1fe6328a84f4b676106a13e9135a0d7e0c3e9f806da"}, + {file = "xxhash-3.5.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d0d307d27099bb0cbeea7260eb39ed4fdb99c5542e21e94bb6fd29e49c57a23"}, + {file = "xxhash-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0342aafd421795d740e514bc9858ebddfc705a75a8c5046ac56d85fe97bf196"}, + {file = "xxhash-3.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3dbbd9892c5ebffeca1ed620cf0ade13eb55a0d8c84e0751a6653adc6ac40d0c"}, + {file = "xxhash-3.5.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:4cc2d67fdb4d057730c75a64c5923abfa17775ae234a71b0200346bfb0a7f482"}, + {file = "xxhash-3.5.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:ec28adb204b759306a3d64358a5e5c07d7b1dd0ccbce04aa76cb9377b7b70296"}, + {file = "xxhash-3.5.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:1328f6d8cca2b86acb14104e381225a3d7b42c92c4b86ceae814e5c400dbb415"}, + {file = "xxhash-3.5.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:8d47ebd9f5d9607fd039c1fbf4994e3b071ea23eff42f4ecef246ab2b7334198"}, + {file = "xxhash-3.5.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:b96d559e0fcddd3343c510a0fe2b127fbff16bf346dd76280b82292567523442"}, + {file = "xxhash-3.5.0-cp310-cp310-win32.whl", hash = "sha256:61c722ed8d49ac9bc26c7071eeaa1f6ff24053d553146d5df031802deffd03da"}, + {file = "xxhash-3.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:9bed5144c6923cc902cd14bb8963f2d5e034def4486ab0bbe1f58f03f042f9a9"}, + {file = "xxhash-3.5.0-cp310-cp310-win_arm64.whl", hash = "sha256:893074d651cf25c1cc14e3bea4fceefd67f2921b1bb8e40fcfeba56820de80c6"}, + {file = "xxhash-3.5.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:02c2e816896dc6f85922ced60097bcf6f008dedfc5073dcba32f9c8dd786f3c1"}, + {file = "xxhash-3.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6027dcd885e21581e46d3c7f682cfb2b870942feeed58a21c29583512c3f09f8"}, + {file = "xxhash-3.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1308fa542bbdbf2fa85e9e66b1077eea3a88bef38ee8a06270b4298a7a62a166"}, + {file = "xxhash-3.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c28b2fdcee797e1c1961cd3bcd3d545cab22ad202c846235197935e1df2f8ef7"}, + {file = "xxhash-3.5.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:924361811732ddad75ff23e90efd9ccfda4f664132feecb90895bade6a1b4623"}, + {file = "xxhash-3.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89997aa1c4b6a5b1e5b588979d1da048a3c6f15e55c11d117a56b75c84531f5a"}, + {file = "xxhash-3.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:685c4f4e8c59837de103344eb1c8a3851f670309eb5c361f746805c5471b8c88"}, + {file = "xxhash-3.5.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:dbd2ecfbfee70bc1a4acb7461fa6af7748ec2ab08ac0fa298f281c51518f982c"}, + {file = "xxhash-3.5.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:25b5a51dc3dfb20a10833c8eee25903fd2e14059e9afcd329c9da20609a307b2"}, + {file = "xxhash-3.5.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a8fb786fb754ef6ff8c120cb96629fb518f8eb5a61a16aac3a979a9dbd40a084"}, + {file = "xxhash-3.5.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:a905ad00ad1e1c34fe4e9d7c1d949ab09c6fa90c919860c1534ff479f40fd12d"}, + {file = "xxhash-3.5.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:963be41bcd49f53af6d795f65c0da9b4cc518c0dd9c47145c98f61cb464f4839"}, + {file = "xxhash-3.5.0-cp311-cp311-win32.whl", hash = "sha256:109b436096d0a2dd039c355fa3414160ec4d843dfecc64a14077332a00aeb7da"}, + {file = "xxhash-3.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:b702f806693201ad6c0a05ddbbe4c8f359626d0b3305f766077d51388a6bac58"}, + {file = "xxhash-3.5.0-cp311-cp311-win_arm64.whl", hash = "sha256:c4dcb4120d0cc3cc448624147dba64e9021b278c63e34a38789b688fd0da9bf3"}, + {file = "xxhash-3.5.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:14470ace8bd3b5d51318782cd94e6f94431974f16cb3b8dc15d52f3b69df8e00"}, + {file = "xxhash-3.5.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:59aa1203de1cb96dbeab595ded0ad0c0056bb2245ae11fac11c0ceea861382b9"}, + {file = "xxhash-3.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:08424f6648526076e28fae6ea2806c0a7d504b9ef05ae61d196d571e5c879c84"}, + {file = "xxhash-3.5.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:61a1ff00674879725b194695e17f23d3248998b843eb5e933007ca743310f793"}, + {file = "xxhash-3.5.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2f2c61bee5844d41c3eb015ac652a0229e901074951ae48581d58bfb2ba01be"}, + {file = "xxhash-3.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d32a592cac88d18cc09a89172e1c32d7f2a6e516c3dfde1b9adb90ab5df54a6"}, + {file = "xxhash-3.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:70dabf941dede727cca579e8c205e61121afc9b28516752fd65724be1355cc90"}, + {file = "xxhash-3.5.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e5d0ddaca65ecca9c10dcf01730165fd858533d0be84c75c327487c37a906a27"}, + {file = "xxhash-3.5.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:3e5b5e16c5a480fe5f59f56c30abdeba09ffd75da8d13f6b9b6fd224d0b4d0a2"}, + {file = "xxhash-3.5.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:149b7914451eb154b3dfaa721315117ea1dac2cc55a01bfbd4df7c68c5dd683d"}, + {file = "xxhash-3.5.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:eade977f5c96c677035ff39c56ac74d851b1cca7d607ab3d8f23c6b859379cab"}, + {file = "xxhash-3.5.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:fa9f547bd98f5553d03160967866a71056a60960be00356a15ecc44efb40ba8e"}, + {file = "xxhash-3.5.0-cp312-cp312-win32.whl", hash = "sha256:f7b58d1fd3551b8c80a971199543379be1cee3d0d409e1f6d8b01c1a2eebf1f8"}, + {file = "xxhash-3.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:fa0cafd3a2af231b4e113fba24a65d7922af91aeb23774a8b78228e6cd785e3e"}, + {file = "xxhash-3.5.0-cp312-cp312-win_arm64.whl", hash = "sha256:586886c7e89cb9828bcd8a5686b12e161368e0064d040e225e72607b43858ba2"}, + {file = "xxhash-3.5.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:2014c5b3ff15e64feecb6b713af12093f75b7926049e26a580e94dcad3c73d8c"}, + {file = "xxhash-3.5.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fab81ef75003eda96239a23eda4e4543cedc22e34c373edcaf744e721a163986"}, + {file = "xxhash-3.5.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4e2febf914ace002132aa09169cc572e0d8959d0f305f93d5828c4836f9bc5a6"}, + {file = "xxhash-3.5.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5d3a10609c51da2a1c0ea0293fc3968ca0a18bd73838455b5bca3069d7f8e32b"}, + {file = "xxhash-3.5.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:5a74f23335b9689b66eb6dbe2a931a88fcd7a4c2cc4b1cb0edba8ce381c7a1da"}, + {file = "xxhash-3.5.0.tar.gz", hash = "sha256:84f2caddf951c9cbf8dc2e22a89d4ccf5d86391ac6418fe81e3c67d0cf60b45f"}, +] + +[[package]] +name = "yarl" +version = "1.18.3" +requires_python = ">=3.9" +summary = "Yet another URL library" +groups = ["default"] +dependencies = [ + "idna>=2.0", + "multidict>=4.0", + "propcache>=0.2.0", +] +files = [ + {file = "yarl-1.18.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7df647e8edd71f000a5208fe6ff8c382a1de8edfbccdbbfe649d263de07d8c34"}, + {file = "yarl-1.18.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c69697d3adff5aa4f874b19c0e4ed65180ceed6318ec856ebc423aa5850d84f7"}, + {file = "yarl-1.18.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:602d98f2c2d929f8e697ed274fbadc09902c4025c5a9963bf4e9edfc3ab6f7ed"}, + {file = "yarl-1.18.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c654d5207c78e0bd6d749f6dae1dcbbfde3403ad3a4b11f3c5544d9906969dde"}, + {file = "yarl-1.18.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5094d9206c64181d0f6e76ebd8fb2f8fe274950a63890ee9e0ebfd58bf9d787b"}, + {file = "yarl-1.18.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:35098b24e0327fc4ebdc8ffe336cee0a87a700c24ffed13161af80124b7dc8e5"}, + {file = "yarl-1.18.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3236da9272872443f81fedc389bace88408f64f89f75d1bdb2256069a8730ccc"}, + {file = "yarl-1.18.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e2c08cc9b16f4f4bc522771d96734c7901e7ebef70c6c5c35dd0f10845270bcd"}, + {file = "yarl-1.18.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:80316a8bd5109320d38eef8833ccf5f89608c9107d02d2a7f985f98ed6876990"}, + {file = "yarl-1.18.3-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:c1e1cc06da1491e6734f0ea1e6294ce00792193c463350626571c287c9a704db"}, + {file = "yarl-1.18.3-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:fea09ca13323376a2fdfb353a5fa2e59f90cd18d7ca4eaa1fd31f0a8b4f91e62"}, + {file = "yarl-1.18.3-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:e3b9fd71836999aad54084906f8663dffcd2a7fb5cdafd6c37713b2e72be1760"}, + {file = "yarl-1.18.3-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:757e81cae69244257d125ff31663249b3013b5dc0a8520d73694aed497fb195b"}, + {file = "yarl-1.18.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:b1771de9944d875f1b98a745bc547e684b863abf8f8287da8466cf470ef52690"}, + {file = "yarl-1.18.3-cp310-cp310-win32.whl", hash = "sha256:8874027a53e3aea659a6d62751800cf6e63314c160fd607489ba5c2edd753cf6"}, + {file = "yarl-1.18.3-cp310-cp310-win_amd64.whl", hash = "sha256:93b2e109287f93db79210f86deb6b9bbb81ac32fc97236b16f7433db7fc437d8"}, + {file = "yarl-1.18.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8503ad47387b8ebd39cbbbdf0bf113e17330ffd339ba1144074da24c545f0069"}, + {file = "yarl-1.18.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:02ddb6756f8f4517a2d5e99d8b2f272488e18dd0bfbc802f31c16c6c20f22193"}, + {file = "yarl-1.18.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:67a283dd2882ac98cc6318384f565bffc751ab564605959df4752d42483ad889"}, + {file = "yarl-1.18.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d980e0325b6eddc81331d3f4551e2a333999fb176fd153e075c6d1c2530aa8a8"}, + {file = "yarl-1.18.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b643562c12680b01e17239be267bc306bbc6aac1f34f6444d1bded0c5ce438ca"}, + {file = "yarl-1.18.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c017a3b6df3a1bd45b9fa49a0f54005e53fbcad16633870104b66fa1a30a29d8"}, + {file = "yarl-1.18.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75674776d96d7b851b6498f17824ba17849d790a44d282929c42dbb77d4f17ae"}, + {file = "yarl-1.18.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ccaa3a4b521b780a7e771cc336a2dba389a0861592bbce09a476190bb0c8b4b3"}, + {file = "yarl-1.18.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:2d06d3005e668744e11ed80812e61efd77d70bb7f03e33c1598c301eea20efbb"}, + {file = "yarl-1.18.3-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:9d41beda9dc97ca9ab0b9888cb71f7539124bc05df02c0cff6e5acc5a19dcc6e"}, + {file = "yarl-1.18.3-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:ba23302c0c61a9999784e73809427c9dbedd79f66a13d84ad1b1943802eaaf59"}, + {file = "yarl-1.18.3-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:6748dbf9bfa5ba1afcc7556b71cda0d7ce5f24768043a02a58846e4a443d808d"}, + {file = "yarl-1.18.3-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:0b0cad37311123211dc91eadcb322ef4d4a66008d3e1bdc404808992260e1a0e"}, + {file = "yarl-1.18.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0fb2171a4486bb075316ee754c6d8382ea6eb8b399d4ec62fde2b591f879778a"}, + {file = "yarl-1.18.3-cp311-cp311-win32.whl", hash = "sha256:61b1a825a13bef4a5f10b1885245377d3cd0bf87cba068e1d9a88c2ae36880e1"}, + {file = "yarl-1.18.3-cp311-cp311-win_amd64.whl", hash = "sha256:b9d60031cf568c627d028239693fd718025719c02c9f55df0a53e587aab951b5"}, + {file = "yarl-1.18.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:1dd4bdd05407ced96fed3d7f25dbbf88d2ffb045a0db60dbc247f5b3c5c25d50"}, + {file = "yarl-1.18.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7c33dd1931a95e5d9a772d0ac5e44cac8957eaf58e3c8da8c1414de7dd27c576"}, + {file = "yarl-1.18.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:25b411eddcfd56a2f0cd6a384e9f4f7aa3efee14b188de13048c25b5e91f1640"}, + {file = "yarl-1.18.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:436c4fc0a4d66b2badc6c5fc5ef4e47bb10e4fd9bf0c79524ac719a01f3607c2"}, + {file = "yarl-1.18.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e35ef8683211db69ffe129a25d5634319a677570ab6b2eba4afa860f54eeaf75"}, + {file = "yarl-1.18.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:84b2deecba4a3f1a398df819151eb72d29bfeb3b69abb145a00ddc8d30094512"}, + {file = "yarl-1.18.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:00e5a1fea0fd4f5bfa7440a47eff01d9822a65b4488f7cff83155a0f31a2ecba"}, + {file = "yarl-1.18.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d0e883008013c0e4aef84dcfe2a0b172c4d23c2669412cf5b3371003941f72bb"}, + {file = "yarl-1.18.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:5a3f356548e34a70b0172d8890006c37be92995f62d95a07b4a42e90fba54272"}, + {file = "yarl-1.18.3-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:ccd17349166b1bee6e529b4add61727d3f55edb7babbe4069b5764c9587a8cc6"}, + {file = "yarl-1.18.3-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b958ddd075ddba5b09bb0be8a6d9906d2ce933aee81100db289badbeb966f54e"}, + {file = "yarl-1.18.3-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:c7d79f7d9aabd6011004e33b22bc13056a3e3fb54794d138af57f5ee9d9032cb"}, + {file = "yarl-1.18.3-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:4891ed92157e5430874dad17b15eb1fda57627710756c27422200c52d8a4e393"}, + {file = "yarl-1.18.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ce1af883b94304f493698b00d0f006d56aea98aeb49d75ec7d98cd4a777e9285"}, + {file = "yarl-1.18.3-cp312-cp312-win32.whl", hash = "sha256:f91c4803173928a25e1a55b943c81f55b8872f0018be83e3ad4938adffb77dd2"}, + {file = "yarl-1.18.3-cp312-cp312-win_amd64.whl", hash = "sha256:7e2ee16578af3b52ac2f334c3b1f92262f47e02cc6193c598502bd46f5cd1477"}, + {file = "yarl-1.18.3-py3-none-any.whl", hash = "sha256:b57f4f58099328dfb26c6a771d09fb20dbbae81d20cfb66141251ea063bd101b"}, + {file = "yarl-1.18.3.tar.gz", hash = "sha256:ac1801c45cbf77b6c99242eeff4fffb5e4e73a800b5c4ad4fc0be5def634d2e1"}, +] diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000000000000000000000000000000000000..b9625204b6a9382965bf1bdecfcc73c4be20a7d3 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,40 @@ +[project] +name = "synthetic-dataset-generator" +version = "0.2.0" +description = "Build datasets using natural language" +authors = [ + {name = "davidberenstein1957", email = "david.m.berenstein@gmail.com"}, +] +keywords = [ + "gradio", + "synthetic-data", + "huggingface", + "argilla", + "generative-ai", + "ai", +] +requires-python = "<3.13,>=3.10" +readme = "README.md" +license = {text = "Apache 2"} + +dependencies = [ + "argilla>=2.4.0,<3.0.0", + "distilabel[argilla,hf-inference-endpoints,hf-transformers,instructor,llama-cpp,ollama,openai,outlines,vllm,vision]>=1.5.0,<2.00", + "gradio[oauth]>=5.4.0,<6.0.0", + "gradio-huggingfacehub-search>=0.0.12,<1.0.0", + "huggingface-hub>=0.26.0,<0.28.0", + "model2vec>=0.2.4,<1.0.0", + "nltk>=3.9.1,<4.0.0", + "pydantic>=2.10.5,<3.0.0", + "sentence-transformers>=3.2.0,<4.0.0", + "transformers>=4.44.2,<5.0.0", + "unstructured[md,pdf,docx]>=0.16.3,<1.0.0", + "setuptools", +] + +[build-system] +requires = ["pdm-backend"] +build-backend = "pdm.backend" + +[tool.pdm] +distribution = true diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..05ddf6b0dff6718b255d03f567ac46e3e4edba36 --- /dev/null +++ b/requirements.txt @@ -0,0 +1 @@ +-e git+https://github.com/argilla-io/synthetic-data-generator.git#egg=synthetic-dataset-generator \ No newline at end of file diff --git a/src/synthetic_dataset_generator/__init__.py b/src/synthetic_dataset_generator/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..86d513b8efcd172826806ffa4b6b2ea9ef038036 --- /dev/null +++ b/src/synthetic_dataset_generator/__init__.py @@ -0,0 +1,20 @@ +import inspect +from gradio import TabbedInterface + +from synthetic_dataset_generator import ( # noqa + _distiset, + _inference_endpoints, +) + +def launch(*args, **kwargs): + """Launch the synthetic dataset generator. + Based on the `TabbedInterface` from Gradio. + Parameters: https://www.gradio.app/docs/gradio/tabbedinterface + """ + from synthetic_dataset_generator.app import demo + return demo.launch(*args, server_name="0.0.0.0", **kwargs) + + +launch.__doc__ = TabbedInterface.launch.__doc__ +launch.__signature__ = inspect.signature(TabbedInterface.launch) +launch.__annotations__ = TabbedInterface.launch.__annotations__ diff --git a/src/synthetic_dataset_generator/__main__.py b/src/synthetic_dataset_generator/__main__.py new file mode 100644 index 0000000000000000000000000000000000000000..8c9ea6bbfe136925cecc3d811ccfb03d524df690 --- /dev/null +++ b/src/synthetic_dataset_generator/__main__.py @@ -0,0 +1,4 @@ +if __name__ == "__main__": + from synthetic_dataset_generator import launch + + launch() diff --git a/src/synthetic_dataset_generator/_distiset.py b/src/synthetic_dataset_generator/_distiset.py new file mode 100644 index 0000000000000000000000000000000000000000..7bf05222762180939af3eb8076264894f7357b7d --- /dev/null +++ b/src/synthetic_dataset_generator/_distiset.py @@ -0,0 +1,148 @@ +from typing import Optional + +import distilabel +import distilabel.distiset +import gradio as gr +from distilabel.utils.card.dataset_card import ( + DistilabelDatasetCard, + size_categories_parser, +) +from huggingface_hub import DatasetCardData, HfApi + + +class CustomDistisetWithAdditionalTag(distilabel.distiset.Distiset): + def _generate_card( + self, + repo_id: str, + token: str, + include_script: bool = False, + filename_py: Optional[str] = None, + ) -> None: + """Generates a dataset card and pushes it to the Hugging Face Hub, and + if the `pipeline.yaml` path is available in the `Distiset`, uploads that + to the same repository. + + Args: + repo_id: The ID of the repository to push to, from the `push_to_hub` method. + token: The token to authenticate with the Hugging Face Hub, from the `push_to_hub` method. + include_script: Whether to upload the script to the hugging face repository. + filename_py: The name of the script. If `include_script` is True, the script will + be uploaded to the repository using this name, otherwise it won't be used. + """ + card = self._get_card( + repo_id=repo_id, + token=token, + include_script=include_script, + filename_py=filename_py, + ) + + card.push_to_hub( + repo_id, + repo_type="dataset", + token=token, + ) + if self.pipeline_path: + # If the pipeline.yaml is available, upload it to the Hugging Face Hub as well. + HfApi().upload_file( + path_or_fileobj=self.pipeline_path, + path_in_repo=distilabel.distiset.PIPELINE_CONFIG_FILENAME, + repo_id=repo_id, + repo_type="dataset", + token=token, + ) + + def _get_card( + self, + repo_id: str, + token: Optional[str] = None, + include_script: bool = False, + filename_py: Optional[str] = None, + ) -> DistilabelDatasetCard: + """Generates the dataset card for the `Distiset`. + + Note: + If `repo_id` and `token` are provided, it will extract the metadata from the README.md file + on the hub. + + Args: + repo_id: Name of the repository to push to, or the path for the distiset if saved to disk. + token: The token to authenticate with the Hugging Face Hub. + We assume that if it's provided, the dataset will be in the Hugging Face Hub, + so the README metadata will be extracted from there. + include_script: Whether to upload the script to the hugging face repository. + filename_py: The name of the script. If `include_script` is True, the script will + be uploaded to the repository using this name, otherwise it won't be used. + + Returns: + The dataset card for the `Distiset`. + """ + sample_records = {} + for name, dataset in self.items(): + sample_records[name] = ( + dataset[0] if not isinstance(dataset, dict) else dataset["train"][0] + ) + + columns = self["default"].column_names + columns = self["default"].column_names + + if ("label" in columns and "text" in columns) or ( + "labels" in columns and "text" in columns + ): + task_categories = ["text-classification"] + elif ("prompt" in columns and "completion" in columns) or ( + "messages" in columns + ): + task_categories: list[str] = [ + "text-generation", + "text2text-generation", + "question-answering", + ] + elif "context" in columns and "question" in columns and "response" in columns: + task_categories: list[str] = [ + "text-generation", + "text2text-generation", + "text-retrieval", + "question-answering" + ] + if ( + "positive_retrieval" in columns and "negative_retrieval" in columns + ) or ("positive_reranking" in columns and "negative_reranking" in columns): + task_categories.append("sentence-similarity") + else: + task_categories: list[str] = [] + gr.Info( + f"No task categories found for dataset with columns: {columns}. " + "Please notify the distilabel team if you think this is an error." + ) + + readme_metadata = {} + if repo_id and token: + readme_metadata = self._extract_readme_metadata(repo_id, token) + + metadata = { + **readme_metadata, + "size_categories": size_categories_parser( + max(len(dataset) for dataset in self.values()) + ), + "task_categories": task_categories, + "tags": [ + "synthetic", + "distilabel", + "rlaif", + "datacraft", + ], + } + + card = DistilabelDatasetCard.from_template( + card_data=DatasetCardData(**metadata), + repo_id=repo_id, + sample_records=sample_records, + include_script=include_script, + filename_py=filename_py, + references=self.citations, + ) + + return card + + +distilabel.distiset.Distiset = CustomDistisetWithAdditionalTag diff --git a/src/synthetic_dataset_generator/_inference_endpoints.py b/src/synthetic_dataset_generator/_inference_endpoints.py new file mode 100644 index 0000000000000000000000000000000000000000..830ecbc42e52af277d203a7b70391c750a9b2d1b --- /dev/null +++ b/src/synthetic_dataset_generator/_inference_endpoints.py @@ -0,0 +1,58 @@ +import warnings + +import distilabel +import distilabel.distiset +from distilabel.models import InferenceEndpointsLLM +from pydantic import ( + ValidationError, + model_validator, +) + + +class CustomInferenceEndpointsLLM(InferenceEndpointsLLM): + @model_validator(mode="after") # type: ignore + def only_one_of_model_id_endpoint_name_or_base_url_provided( + self, + ) -> "InferenceEndpointsLLM": + """Validates that only one of `model_id` or `endpoint_name` is provided; and if `base_url` is also + provided, a warning will be shown informing the user that the provided `base_url` will be ignored in + favour of the dynamically calculated one..""" + + if self.base_url and (self.model_id or self.endpoint_name): + warnings.warn( # type: ignore + f"Since the `base_url={self.base_url}` is available and either one of `model_id`" + " or `endpoint_name` is also provided, the `base_url` will either be ignored" + " or overwritten with the one generated from either of those args, for serverless" + " or dedicated inference endpoints, respectively." + ) + + if self.use_magpie_template and self.tokenizer_id is None: + raise ValueError( + "`use_magpie_template` cannot be `True` if `tokenizer_id` is `None`. Please," + " set a `tokenizer_id` and try again." + ) + + if ( + self.model_id + and self.tokenizer_id is None + and self.structured_output is not None + ): + self.tokenizer_id = self.model_id + + if self.base_url and not (self.model_id or self.endpoint_name): + return self + + if self.model_id and not self.endpoint_name: + return self + + if self.endpoint_name and not self.model_id: + return self + + raise ValidationError( + f"Only one of `model_id` or `endpoint_name` must be provided. If `base_url` is" + f" provided too, it will be overwritten instead. Found `model_id`={self.model_id}," + f" `endpoint_name`={self.endpoint_name}, and `base_url`={self.base_url}." + ) + + +distilabel.models.llms.InferenceEndpointsLLM = CustomInferenceEndpointsLLM diff --git a/src/synthetic_dataset_generator/_tabbedinterface.py b/src/synthetic_dataset_generator/_tabbedinterface.py new file mode 100644 index 0000000000000000000000000000000000000000..e334019794ea05e05fa922c88ea0ca81bbe3ada3 --- /dev/null +++ b/src/synthetic_dataset_generator/_tabbedinterface.py @@ -0,0 +1,69 @@ +""" +This file defines two useful high-level abstractions to build Gradio apps: Interface and TabbedInterface. +""" + +from __future__ import annotations + +from collections.abc import Sequence + +import gradio as gr +from gradio.blocks import Blocks +from gradio.layouts import Tab, Tabs +from gradio.themes import ThemeClass as Theme +from gradio_client.documentation import document + + +@document() +class TabbedInterface(Blocks): + """ + A TabbedInterface is created by providing a list of Interfaces or Blocks, each of which gets + rendered in a separate tab. Only the components from the Interface/Blocks will be rendered in the tab. + Certain high-level attributes of the Blocks (e.g. custom `css`, `js`, and `head` attributes) will not be loaded. + + Demos: tabbed_interface_lite + """ + + def __init__( + self, + interface_list: Sequence[Blocks], + tab_names: list[str] | None = None, + title: str | None = None, + theme: Theme | str | None = None, + analytics_enabled: bool | None = None, + css: str | None = None, + js: str | None = None, + head: str | None = None, + ): + """ + Parameters: + interface_list: A list of Interfaces (or Blocks) to be rendered in the tabs. + tab_names: A list of tab names. If None, the tab names will be "Tab 1", "Tab 2", etc. + title: The tab title to display when this demo is opened in a browser window. + theme: A Theme object or a string representing a theme. If a string, will look for a built-in theme with that name (e.g. "soft" or "default"), or will attempt to load a theme from the Hugging Face Hub (e.g. "gradio/monochrome"). If None, will use the Default theme. + analytics_enabled: Whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable or default to True. + css: Custom css as a string or path to a css file. This css will be included in the demo webpage. + js: Custom js as a string or path to a js file. The custom js should in the form of a single js function. This function will automatically be executed when the page loads. For more flexibility, use the head parameter to insert js inside