Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| from __future__ import annotations | |
| import os | |
| import pathlib | |
| import shlex | |
| import subprocess | |
| import tarfile | |
| if os.getenv("SYSTEM") == "spaces": | |
| subprocess.run(shlex.split("pip install click==7.1.2")) | |
| subprocess.run(shlex.split("pip install typer==0.9.4")) | |
| import mim | |
| mim.uninstall("mmcv-full", confirm_yes=True) | |
| mim.install("mmcv-full==1.5.0", is_yes=True) | |
| subprocess.run(shlex.split("pip uninstall -y opencv-python")) | |
| subprocess.run(shlex.split("pip uninstall -y opencv-python-headless")) | |
| subprocess.run(shlex.split("pip install opencv-python-headless==4.8.0.74")) | |
| import gradio as gr | |
| from model import AppDetModel, AppPoseModel | |
| DESCRIPTION = "# [ViTPose](https://github.com/ViTAE-Transformer/ViTPose)" | |
| def extract_tar() -> None: | |
| if pathlib.Path("mmdet_configs/configs").exists(): | |
| return | |
| with tarfile.open("mmdet_configs/configs.tar") as f: | |
| f.extractall("mmdet_configs") | |
| extract_tar() | |
| det_model = AppDetModel() | |
| pose_model = AppPoseModel() | |
| with gr.Blocks(css="style.css") as demo: | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Group(): | |
| gr.Markdown("## Step 1") | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| input_image = gr.Image(label="Input Image", type="numpy") | |
| with gr.Row(): | |
| detector_name = gr.Dropdown( | |
| label="Detector", choices=list(det_model.MODEL_DICT.keys()), value=det_model.model_name | |
| ) | |
| with gr.Row(): | |
| detect_button = gr.Button("Detect") | |
| det_preds = gr.State() | |
| with gr.Column(): | |
| with gr.Row(): | |
| detection_visualization = gr.Image(label="Detection Result", type="numpy", elem_id="det-result") | |
| with gr.Row(): | |
| vis_det_score_threshold = gr.Slider( | |
| label="Visualization Score Threshold", minimum=0, maximum=1, step=0.05, value=0.5 | |
| ) | |
| with gr.Row(): | |
| redraw_det_button = gr.Button(value="Redraw") | |
| with gr.Row(): | |
| paths = sorted(pathlib.Path("images").rglob("*.jpg")) | |
| example_images = gr.Examples(examples=[[path.as_posix()] for path in paths], inputs=input_image) | |
| with gr.Group(): | |
| gr.Markdown("## Step 2") | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| pose_model_name = gr.Dropdown( | |
| label="Pose Model", choices=list(pose_model.MODEL_DICT.keys()), value=pose_model.model_name | |
| ) | |
| det_score_threshold = gr.Slider( | |
| label="Box Score Threshold", minimum=0, maximum=1, step=0.05, value=0.5 | |
| ) | |
| with gr.Row(): | |
| predict_button = gr.Button("Predict") | |
| pose_preds = gr.State() | |
| with gr.Column(): | |
| with gr.Row(): | |
| pose_visualization = gr.Image(label="Result", type="numpy", elem_id="pose-result") | |
| with gr.Row(): | |
| vis_kpt_score_threshold = gr.Slider( | |
| label="Visualization Score Threshold", minimum=0, maximum=1, step=0.05, value=0.3 | |
| ) | |
| with gr.Row(): | |
| vis_dot_radius = gr.Slider(label="Dot Radius", minimum=1, maximum=10, step=1, value=4) | |
| with gr.Row(): | |
| vis_line_thickness = gr.Slider(label="Line Thickness", minimum=1, maximum=10, step=1, value=2) | |
| with gr.Row(): | |
| redraw_pose_button = gr.Button("Redraw") | |
| detector_name.change(fn=det_model.set_model, inputs=detector_name) | |
| detect_button.click( | |
| fn=det_model.run, | |
| inputs=[ | |
| detector_name, | |
| input_image, | |
| vis_det_score_threshold, | |
| ], | |
| outputs=[ | |
| det_preds, | |
| detection_visualization, | |
| ], | |
| ) | |
| redraw_det_button.click( | |
| fn=det_model.visualize_detection_results, | |
| inputs=[ | |
| input_image, | |
| det_preds, | |
| vis_det_score_threshold, | |
| ], | |
| outputs=detection_visualization, | |
| ) | |
| pose_model_name.change(fn=pose_model.set_model, inputs=pose_model_name) | |
| predict_button.click( | |
| fn=pose_model.run, | |
| inputs=[ | |
| pose_model_name, | |
| input_image, | |
| det_preds, | |
| det_score_threshold, | |
| vis_kpt_score_threshold, | |
| vis_dot_radius, | |
| vis_line_thickness, | |
| ], | |
| outputs=[ | |
| pose_preds, | |
| pose_visualization, | |
| ], | |
| ) | |
| redraw_pose_button.click( | |
| fn=pose_model.visualize_pose_results, | |
| inputs=[ | |
| input_image, | |
| pose_preds, | |
| vis_kpt_score_threshold, | |
| vis_dot_radius, | |
| vis_line_thickness, | |
| ], | |
| outputs=pose_visualization, | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=10).launch() | |