Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| from __future__ import annotations | |
| import argparse | |
| import pathlib | |
| import tarfile | |
| import gradio as gr | |
| from model import AppDetModel, AppPoseModel | |
| DESCRIPTION = '''# ViTPose | |
| This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](https://github.com/ViTAE-Transformer/ViTPose).''' | |
| FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.vitpose" />' | |
| def parse_args() -> argparse.Namespace: | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--device', type=str, default='cpu') | |
| parser.add_argument('--theme', type=str) | |
| parser.add_argument('--share', action='store_true') | |
| parser.add_argument('--port', type=int) | |
| parser.add_argument('--disable-queue', | |
| dest='enable_queue', | |
| action='store_false') | |
| return parser.parse_args() | |
| def set_example_image(example: list) -> dict: | |
| return gr.Image.update(value=example[0]) | |
| def extract_tar() -> None: | |
| if pathlib.Path('mmdet_configs/configs').exists(): | |
| return | |
| with tarfile.open('mmdet_configs/configs.tar') as f: | |
| f.extractall('mmdet_configs') | |
| def main(): | |
| args = parse_args() | |
| extract_tar() | |
| det_model = AppDetModel(device=args.device) | |
| pose_model = AppPoseModel(device=args.device) | |
| with gr.Blocks(theme=args.theme, css='style.css') as demo: | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Box(): | |
| gr.Markdown('## Step 1') | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| input_image = gr.Image(label='Input Image', | |
| type='numpy') | |
| with gr.Row(): | |
| detector_name = gr.Dropdown(list( | |
| det_model.MODEL_DICT.keys()), | |
| value=det_model.model_name, | |
| label='Detector') | |
| with gr.Row(): | |
| detect_button = gr.Button(value='Detect') | |
| det_preds = gr.Variable() | |
| with gr.Column(): | |
| with gr.Row(): | |
| detection_visualization = gr.Image( | |
| label='Detection Result', | |
| type='numpy', | |
| elem_id='det-result') | |
| with gr.Row(): | |
| vis_det_score_threshold = gr.Slider( | |
| 0, | |
| 1, | |
| step=0.05, | |
| value=0.5, | |
| label='Visualization Score Threshold') | |
| with gr.Row(): | |
| redraw_det_button = gr.Button(value='Redraw') | |
| with gr.Row(): | |
| paths = sorted(pathlib.Path('images').rglob('*.jpg')) | |
| example_images = gr.Dataset(components=[input_image], | |
| samples=[[path.as_posix()] | |
| for path in paths]) | |
| with gr.Box(): | |
| gr.Markdown('## Step 2') | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| pose_model_name = gr.Dropdown( | |
| list(pose_model.MODEL_DICT.keys()), | |
| value=pose_model.model_name, | |
| label='Pose Model') | |
| det_score_threshold = gr.Slider( | |
| 0, | |
| 1, | |
| step=0.05, | |
| value=0.5, | |
| label='Box Score Threshold') | |
| with gr.Row(): | |
| predict_button = gr.Button(value='Predict') | |
| pose_preds = gr.Variable() | |
| with gr.Column(): | |
| with gr.Row(): | |
| pose_visualization = gr.Image(label='Result', | |
| type='numpy', | |
| elem_id='pose-result') | |
| with gr.Row(): | |
| vis_kpt_score_threshold = gr.Slider( | |
| 0, | |
| 1, | |
| step=0.05, | |
| value=0.3, | |
| label='Visualization Score Threshold') | |
| with gr.Row(): | |
| vis_dot_radius = gr.Slider(1, | |
| 10, | |
| step=1, | |
| value=4, | |
| label='Dot Radius') | |
| with gr.Row(): | |
| vis_line_thickness = gr.Slider(1, | |
| 10, | |
| step=1, | |
| value=2, | |
| label='Line Thickness') | |
| with gr.Row(): | |
| redraw_pose_button = gr.Button(value='Redraw') | |
| gr.Markdown(FOOTER) | |
| detector_name.change(fn=det_model.set_model, | |
| inputs=detector_name, | |
| outputs=None) | |
| detect_button.click(fn=det_model.run, | |
| inputs=[ | |
| detector_name, | |
| input_image, | |
| vis_det_score_threshold, | |
| ], | |
| outputs=[ | |
| det_preds, | |
| detection_visualization, | |
| ]) | |
| redraw_det_button.click(fn=det_model.visualize_detection_results, | |
| inputs=[ | |
| input_image, | |
| det_preds, | |
| vis_det_score_threshold, | |
| ], | |
| outputs=detection_visualization) | |
| pose_model_name.change(fn=pose_model.set_model, | |
| inputs=pose_model_name, | |
| outputs=None) | |
| predict_button.click(fn=pose_model.run, | |
| inputs=[ | |
| pose_model_name, | |
| input_image, | |
| det_preds, | |
| det_score_threshold, | |
| vis_kpt_score_threshold, | |
| vis_dot_radius, | |
| vis_line_thickness, | |
| ], | |
| outputs=[ | |
| pose_preds, | |
| pose_visualization, | |
| ]) | |
| redraw_pose_button.click(fn=pose_model.visualize_pose_results, | |
| inputs=[ | |
| input_image, | |
| pose_preds, | |
| vis_kpt_score_threshold, | |
| vis_dot_radius, | |
| vis_line_thickness, | |
| ], | |
| outputs=pose_visualization) | |
| example_images.click( | |
| fn=set_example_image, | |
| inputs=example_images, | |
| outputs=input_image, | |
| ) | |
| demo.launch( | |
| enable_queue=args.enable_queue, | |
| server_port=args.port, | |
| share=args.share, | |
| ) | |
| if __name__ == '__main__': | |
| main() | |