Spaces:
Runtime error
Runtime error
| # Gradio YOLOv5 Det v0.4 | |
| # author: Zeng Yifu(曾逸夫) | |
| # creation time: 2022-05-28 | |
| # email: [email protected] | |
| # project homepage: https://gitee.com/CV_Lab/gradio_yolov5_det | |
| import argparse | |
| import csv | |
| import gc | |
| import json | |
| import os | |
| import sys | |
| from collections import Counter | |
| from pathlib import Path | |
| import cv2 | |
| import gradio as gr | |
| import numpy as np | |
| import pandas as pd | |
| import torch | |
| import yaml | |
| from PIL import Image, ImageDraw, ImageFont | |
| from util.fonts_opt import is_fonts | |
| from util.pdf_opt import pdf_generate | |
| ROOT_PATH = sys.path[0] # root directory | |
| # model path | |
| model_path = "ultralytics/yolov5" | |
| # Gradio YOLOv5 Det version | |
| GYD_VERSION = "Gradio YOLOv5 Det v0.4" | |
| # model name temporary variable | |
| model_name_tmp = "" | |
| # Device temporary variables | |
| device_tmp = "" | |
| # File extension | |
| suffix_list = [".csv", ".yaml"] | |
| # font size | |
| FONTSIZE = 25 | |
| # object style | |
| obj_style = ["Small Object", "Medium Object", "Large Object"] | |
| def parse_args(known=False): | |
| parser = argparse.ArgumentParser(description="Gradio YOLOv5 Det v0.4") | |
| parser.add_argument("--source", "-src", default="upload", type=str, help="input source") | |
| parser.add_argument("--source_video", "-src_v", default="webcam", type=str, help="video input source") | |
| parser.add_argument("--img_tool", "-it", default="editor", type=str, help="input image tool") | |
| parser.add_argument("--model_name", "-mn", default="yolov5s", type=str, help="model name") | |
| parser.add_argument( | |
| "--model_cfg", | |
| "-mc", | |
| default="./model_config/model_name_p5_p6_all.yaml", | |
| type=str, | |
| help="model config", | |
| ) | |
| parser.add_argument( | |
| "--cls_name", | |
| "-cls", | |
| default="./cls_name/cls_name_en.yaml", | |
| type=str, | |
| help="cls name", | |
| ) | |
| parser.add_argument( | |
| "--nms_conf", | |
| "-conf", | |
| default=0.5, | |
| type=float, | |
| help="model NMS confidence threshold", | |
| ) | |
| parser.add_argument("--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold") | |
| parser.add_argument( | |
| "--device", | |
| "-dev", | |
| default="cpu", | |
| type=str, | |
| help="cuda or cpu", | |
| ) | |
| parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size") | |
| parser.add_argument("--max_detnum", "-mdn", default=50, type=float, help="model max det num") | |
| parser.add_argument("--slider_step", "-ss", default=0.05, type=float, help="slider step") | |
| parser.add_argument( | |
| "--is_login", | |
| "-isl", | |
| action="store_true", | |
| default=False, | |
| help="is login", | |
| ) | |
| parser.add_argument('--usr_pwd', | |
| "-up", | |
| nargs='+', | |
| type=str, | |
| default=["admin", "admin"], | |
| help="user & password for login") | |
| parser.add_argument( | |
| "--is_share", | |
| "-is", | |
| action="store_true", | |
| default=False, | |
| help="is login", | |
| ) | |
| args = parser.parse_known_args()[0] if known else parser.parse_args() | |
| return args | |
| # yaml file parsing | |
| def yaml_parse(file_path): | |
| return yaml.safe_load(open(file_path, encoding="utf-8").read()) | |
| # yaml csv file parsing | |
| def yaml_csv(file_path, file_tag): | |
| file_suffix = Path(file_path).suffix | |
| if file_suffix == suffix_list[0]: | |
| # model name | |
| file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv version | |
| elif file_suffix == suffix_list[1]: | |
| # model name | |
| file_names = yaml_parse(file_path).get(file_tag) # yaml version | |
| else: | |
| print(f"{file_path} is not in the correct format! Program exits!") | |
| sys.exit() | |
| return file_names | |
| # model loading | |
| def model_loading(model_name, device, opt=[]): | |
| # 加载本地模型 | |
| try: | |
| # load model | |
| model = torch.hub.load(model_path, | |
| model_name, | |
| force_reload=[True if "refresh_yolov5" in opt else False][0], | |
| device=device, | |
| _verbose=False) | |
| except Exception as e: | |
| print(e) | |
| else: | |
| print(f"🚀 welcome to {GYD_VERSION},{model_name} loaded successfully!") | |
| return model | |
| # check information | |
| def export_json(results, img_size): | |
| return [[{ | |
| "ID": i, | |
| "CLASS": int(result[i][5]), | |
| "CLASS_NAME": model_cls_name_cp[int(result[i][5])], | |
| "BOUNDING_BOX": { | |
| "XMIN": round(result[i][:4].tolist()[0], 6), | |
| "YMIN": round(result[i][:4].tolist()[1], 6), | |
| "XMAX": round(result[i][:4].tolist()[2], 6), | |
| "YMAX": round(result[i][:4].tolist()[3], 6),}, | |
| "CONF": round(float(result[i][4]), 2), | |
| "FPS": round(1000 / float(results.t[1]), 2), | |
| "IMG_WIDTH": img_size[0], | |
| "IMG_HEIGHT": img_size[1],} for i in range(len(result))] for result in results.xyxyn] | |
| # frame conversion | |
| def pil_draw(img, countdown_msg, textFont, xyxy, font_size, opt, obj_cls_index, color_list): | |
| img_pil = ImageDraw.Draw(img) | |
| img_pil.rectangle(xyxy, fill=None, outline=color_list[obj_cls_index]) # bounding box | |
| if "label" in opt: | |
| text_w, text_h = textFont.getsize(countdown_msg) # Label size | |
| img_pil.rectangle( | |
| (xyxy[0], xyxy[1], xyxy[0] + text_w, xyxy[1] + text_h), | |
| fill=color_list[obj_cls_index], | |
| outline=color_list[obj_cls_index], | |
| ) # label background | |
| img_pil.multiline_text( | |
| (xyxy[0], xyxy[1]), | |
| countdown_msg, | |
| fill=(255, 255, 255), | |
| font=textFont, | |
| align="center", | |
| ) | |
| return img | |
| # Label and bounding box color settings | |
| def color_set(cls_num): | |
| color_list = [] | |
| for i in range(cls_num): | |
| color = tuple(np.random.choice(range(256), size=3)) | |
| # color = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)])] | |
| color_list.append(color) | |
| return color_list | |
| # YOLOv5 image detection function | |
| def yolo_det_img(img, device, model_name, infer_size, conf, iou, max_num, model_cls, opt): | |
| global model, model_name_tmp, device_tmp | |
| # object size num | |
| s_obj, m_obj, l_obj = 0, 0, 0 | |
| # object area list | |
| area_obj_all = [] | |
| # cls num stat | |
| cls_det_stat = [] | |
| if model_name_tmp != model_name: | |
| # Model judgment to avoid repeated loading | |
| model_name_tmp = model_name | |
| print(f"Loading model {model_name_tmp}......") | |
| model = model_loading(model_name_tmp, device, opt) | |
| elif device_tmp != device: | |
| # Device judgment to avoid repeated loading | |
| device_tmp = device | |
| print(f"Loading model {model_name_tmp}......") | |
| model = model_loading(model_name_tmp, device, opt) | |
| else: | |
| print(f"Loading model {model_name_tmp}......") | |
| model = model_loading(model_name_tmp, device, opt) | |
| # -------------Model tuning ------------- | |
| model.conf = conf # NMS confidence threshold | |
| model.iou = iou # NMS IoU threshold | |
| model.max_det = int(max_num) # Maximum number of detection frames | |
| model.classes = model_cls # model classes | |
| color_list = color_set(len(model_cls_name_cp)) # 设置颜色 | |
| img_size = img.size # frame size | |
| results = model(img, size=infer_size) # detection | |
| # ----------------目标裁剪---------------- | |
| crops = results.crop(save=False) | |
| img_crops = [] | |
| for i in range(len(crops)): | |
| img_crops.append(crops[i]["im"][..., ::-1]) | |
| # Data Frame | |
| dataframe = results.pandas().xyxy[0].round(2) | |
| det_csv = "./Det_Report.csv" | |
| det_excel = "./Det_Report.xlsx" | |
| if "csv" in opt: | |
| dataframe.to_csv(det_csv, index=False) | |
| else: | |
| det_csv = None | |
| if "excel" in opt: | |
| dataframe.to_excel(det_excel, sheet_name='sheet1', index=False) | |
| else: | |
| det_excel = None | |
| # ----------------Load fonts---------------- | |
| yaml_index = cls_name.index(".yaml") | |
| cls_name_lang = cls_name[yaml_index - 2:yaml_index] | |
| if cls_name_lang == "zh": | |
| # Chinese | |
| textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE) | |
| elif cls_name_lang in ["en", "ru", "es", "ar"]: | |
| # English, Russian, Spanish, Arabic | |
| textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE) | |
| elif cls_name_lang == "ko": | |
| # Korean | |
| textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE) | |
| for result in results.xyxyn: | |
| for i in range(len(result)): | |
| id = int(i) # instance ID | |
| obj_cls_index = int(result[i][5]) # category index | |
| obj_cls = model_cls_name_cp[obj_cls_index] # category | |
| cls_det_stat.append(obj_cls) | |
| # ------------ border coordinates ------------ | |
| x0 = float(result[i][:4].tolist()[0]) | |
| y0 = float(result[i][:4].tolist()[1]) | |
| x1 = float(result[i][:4].tolist()[2]) | |
| y1 = float(result[i][:4].tolist()[3]) | |
| # ------------ Actual coordinates of the border ------------ | |
| x0 = int(img_size[0] * x0) | |
| y0 = int(img_size[1] * y0) | |
| x1 = int(img_size[0] * x1) | |
| y1 = int(img_size[1] * y1) | |
| conf = float(result[i][4]) # confidence | |
| # fps = f"{(1000 / float(results.t[1])):.2f}" # FPS | |
| det_img = pil_draw( | |
| img, | |
| f"{id}-{obj_cls}:{conf:.2f}", | |
| textFont, | |
| [x0, y0, x1, y1], | |
| FONTSIZE, | |
| opt, | |
| obj_cls_index, | |
| color_list, | |
| ) | |
| # ----------add object size---------- | |
| w_obj = x1 - x0 | |
| h_obj = y1 - y0 | |
| area_obj = w_obj * h_obj | |
| area_obj_all.append(area_obj) | |
| # ------------JSON generate------------ | |
| det_json = export_json(results, img.size)[0] # Detection information | |
| det_json_format = json.dumps(det_json, sort_keys=False, indent=4, separators=(",", ":"), | |
| ensure_ascii=False) # JSON formatting | |
| if "json" not in opt: | |
| det_json = None | |
| # -------PDF generate------- | |
| report = "./Det_Report.pdf" | |
| if "pdf" in opt: | |
| pdf_generate(f"{det_json_format}", report, GYD_VERSION) | |
| else: | |
| report = None | |
| # --------------object size compute-------------- | |
| for i in range(len(area_obj_all)): | |
| if (0 < area_obj_all[i] <= 32 ** 2): | |
| s_obj = s_obj + 1 | |
| elif (32 ** 2 < area_obj_all[i] <= 96 ** 2): | |
| m_obj = m_obj + 1 | |
| elif (area_obj_all[i] > 96 ** 2): | |
| l_obj = l_obj + 1 | |
| sml_obj_total = s_obj + m_obj + l_obj | |
| objSize_dict = {obj_style[i]: [s_obj, m_obj, l_obj][i] / sml_obj_total for i in range(3)} | |
| # ------------cls stat------------ | |
| clsRatio_dict = {} | |
| clsDet_dict = Counter(cls_det_stat) | |
| clsDet_dict_sum = sum(clsDet_dict.values()) | |
| for k, v in clsDet_dict.items(): | |
| clsRatio_dict[k] = v / clsDet_dict_sum | |
| return det_img, img_crops, objSize_dict, clsRatio_dict, dataframe, det_json, report, det_csv, det_excel | |
| # YOLOv5 video detection function | |
| def yolo_det_video(video, device, model_name, infer_size, conf, iou, max_num, model_cls, opt): | |
| global model, model_name_tmp, device_tmp | |
| os.system(""" | |
| if [ -e './output.mp4' ]; then | |
| rm ./output.mp4 | |
| fi | |
| """) | |
| if model_name_tmp != model_name: | |
| # Model judgment to avoid repeated loading | |
| model_name_tmp = model_name | |
| print(f"Loading model {model_name_tmp}......") | |
| model = model_loading(model_name_tmp, device, opt) | |
| elif device_tmp != device: | |
| # Device judgment to avoid repeated loading | |
| device_tmp = device | |
| print(f"Loading model {model_name_tmp}......") | |
| model = model_loading(model_name_tmp, device, opt) | |
| else: | |
| print(f"Loading model {model_name_tmp}......") | |
| model = model_loading(model_name_tmp, device, opt) | |
| # -------------Model tuning ------------- | |
| model.conf = conf # NMS confidence threshold | |
| model.iou = iou # NMS IOU threshold | |
| model.max_det = int(max_num) # Maximum number of detection frames | |
| model.classes = model_cls # model classes | |
| color_list = color_set(len(model_cls_name_cp)) # 设置颜色 | |
| # ----------------Load fonts---------------- | |
| yaml_index = cls_name.index(".yaml") | |
| cls_name_lang = cls_name[yaml_index - 2:yaml_index] | |
| if cls_name_lang == "zh": | |
| # Chinese | |
| textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE) | |
| elif cls_name_lang in ["en", "ru", "es", "ar"]: | |
| # English, Russian, Spanish, Arabic | |
| textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE) | |
| elif cls_name_lang == "ko": | |
| # Korean | |
| textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE) | |
| # video->frame | |
| gc.collect() | |
| output_video_path = "./output.avi" | |
| cap = cv2.VideoCapture(video) | |
| fourcc = cv2.VideoWriter_fourcc(*"I420") # encoder | |
| out = cv2.VideoWriter(output_video_path, fourcc, 30.0, (int(cap.get(3)), int(cap.get(4)))) | |
| while cap.isOpened(): | |
| ret, frame = cap.read() | |
| # Determine empty frame | |
| if not ret: | |
| break | |
| results = model(frame, size=infer_size) # detection | |
| h, w, _ = frame.shape # frame size | |
| img_size = (w, h) # frame size | |
| for result in results.xyxyn: | |
| for i in range(len(result)): | |
| id = int(i) # instance ID | |
| obj_cls_index = int(result[i][5]) # category index | |
| obj_cls = model_cls_name_cp[obj_cls_index] # category | |
| # ------------ border coordinates ------------ | |
| x0 = float(result[i][:4].tolist()[0]) | |
| y0 = float(result[i][:4].tolist()[1]) | |
| x1 = float(result[i][:4].tolist()[2]) | |
| y1 = float(result[i][:4].tolist()[3]) | |
| # ------------ Actual coordinates of the border ------------ | |
| x0 = int(img_size[0] * x0) | |
| y0 = int(img_size[1] * y0) | |
| x1 = int(img_size[0] * x1) | |
| y1 = int(img_size[1] * y1) | |
| conf = float(result[i][4]) # confidence | |
| # fps = f"{(1000 / float(results.t[1])):.2f}" # FPS | |
| frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
| frame = pil_draw( | |
| frame, | |
| f"{id}-{obj_cls}:{conf:.2f}", | |
| textFont, | |
| [x0, y0, x1, y1], | |
| FONTSIZE, | |
| opt, | |
| obj_cls_index, | |
| color_list, | |
| ) | |
| frame = cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR) | |
| # frame->video | |
| out.write(frame) | |
| out.release() | |
| cap.release() | |
| # cv2.destroyAllWindows() | |
| return output_video_path | |
| def main(args): | |
| gr.close_all() | |
| global model, model_cls_name_cp, cls_name | |
| source = args.source | |
| source_video = args.source_video | |
| img_tool = args.img_tool | |
| nms_conf = args.nms_conf | |
| nms_iou = args.nms_iou | |
| model_name = args.model_name | |
| model_cfg = args.model_cfg | |
| cls_name = args.cls_name | |
| device = args.device | |
| inference_size = args.inference_size | |
| max_detnum = args.max_detnum | |
| slider_step = args.slider_step | |
| is_login = args.is_login | |
| usr_pwd = args.usr_pwd | |
| is_share = args.is_share | |
| is_fonts(f"{ROOT_PATH}/fonts") # Check font files | |
| # model loading | |
| model = model_loading(model_name, device) | |
| model_names = yaml_csv(model_cfg, "model_names") # model names | |
| model_cls_name = yaml_csv(cls_name, "model_cls_name") # class name | |
| model_cls_name_cp = model_cls_name.copy() # class name | |
| # ------------------- Input Components ------------------- | |
| inputs_img = gr.Image(image_mode="RGB", source=source, tool=img_tool, type="pil", label="original image") | |
| inputs_device01 = gr.Radio(choices=["cuda:0", "cpu"], value=device, label="device") | |
| inputs_model01 = gr.Dropdown(choices=model_names, value=model_name, type="value", label="model") | |
| inputs_size01 = gr.Radio(choices=[320, 640, 1280], value=inference_size, label="inference size") | |
| input_conf01 = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="confidence threshold") | |
| inputs_iou01 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU threshold") | |
| inputs_maxnum01 = gr.Number(value=max_detnum, label="Maximum number of detections") | |
| inputs_clsName01 = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="category") | |
| inputs_opt01 = gr.CheckboxGroup(choices=["refresh_yolov5", "label", "pdf", "json", "csv", "excel"], | |
| value=["label", "pdf"], | |
| type="value", | |
| label="operate") | |
| # ------------------- Input Components ------------------- | |
| inputs_video = gr.Video(format="mp4", source=source_video, label="original video") # webcam | |
| inputs_device02 = gr.Radio(choices=["cuda:0", "cpu"], value=device, label="device") | |
| inputs_model02 = gr.Dropdown(choices=model_names, value=model_name, type="value", label="model") | |
| inputs_size02 = gr.Radio(choices=[320, 640, 1280], value=inference_size, label="inference size") | |
| input_conf02 = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="confidence threshold") | |
| inputs_iou02 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU threshold") | |
| inputs_maxnum02 = gr.Number(value=max_detnum, label="Maximum number of detections") | |
| inputs_clsName02 = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="category") | |
| inputs_opt02 = gr.CheckboxGroup(choices=["refresh_yolov5", "label"], value=["label"], type="value", label="operate") | |
| # Input parameters | |
| inputs_img_list = [ | |
| inputs_img, # input image | |
| inputs_device01, # device | |
| inputs_model01, # model | |
| inputs_size01, # inference size | |
| input_conf01, # confidence threshold | |
| inputs_iou01, # IoU threshold | |
| inputs_maxnum01, # maximum number of detections | |
| inputs_clsName01, # category | |
| inputs_opt01, # detect operations | |
| ] | |
| inputs_video_list = [ | |
| inputs_video, # input image | |
| inputs_device02, # device | |
| inputs_model02, # model | |
| inputs_size02, # inference size | |
| input_conf02, # confidence threshold | |
| inputs_iou02, # IoU threshold | |
| inputs_maxnum02, # maximum number of detections | |
| inputs_clsName02, # category | |
| inputs_opt02, # detect operation | |
| ] | |
| # -------------------output component------------------- | |
| outputs_img = gr.Image(type="pil", label="Detection image") | |
| outputs_crops = gr.Gallery(label="Object crop") | |
| outputs_df = gr.Dataframe(max_rows=5, | |
| overflow_row_behaviour="paginate", | |
| type="pandas", | |
| label="List of detection information") | |
| outputs_objSize = gr.Label(label="Object size ratio statistics") | |
| outputs_clsSize = gr.Label(label="Category detection proportion statistics") | |
| outputs_json = gr.JSON(label="Detection information") | |
| outputs_pdf = gr.File(label="pdf detection report") | |
| outputs_csv = gr.File(label="csv detection report") | |
| outputs_excel = gr.File(label="xlsx detection report") | |
| # -------------------output component------------------- | |
| outputs_video = gr.Video(format='mp4', label="Detection video") | |
| # output parameters | |
| outputs_img_list = [ | |
| outputs_img, outputs_crops, outputs_objSize, outputs_clsSize, outputs_df, outputs_json, outputs_pdf, | |
| outputs_csv, outputs_excel] | |
| outputs_video_list = [outputs_video] | |
| # title | |
| title = "Gradio YOLOv5 Det v0.4" | |
| # describe | |
| description = "Author: 曾逸夫(Zeng Yifu), Project Address: https://gitee.com/CV_Lab/gradio_yolov5_det, Github: https://github.com/Zengyf-CVer, thanks to [Gradio](https://github.com/gradio-app/gradio) & [YOLOv5](https://github.com/ultralytics/yolov5)" | |
| # article="https://gitee.com/CV_Lab/gradio_yolov5_det" | |
| # example image | |
| examples = [ | |
| [ | |
| "./img_example/bus.jpg", | |
| "cpu", | |
| "yolov5s", | |
| 640, | |
| 0.6, | |
| 0.5, | |
| 10, | |
| ["person", "bus"], | |
| ["label", "pdf"],], | |
| [ | |
| "./img_example/giraffe.jpg", | |
| "cpu", | |
| "yolov5l", | |
| 320, | |
| 0.5, | |
| 0.45, | |
| 12, | |
| ["giraffe"], | |
| ["label", "pdf"],], | |
| [ | |
| "./img_example/zidane.jpg", | |
| "cpu", | |
| "yolov5m", | |
| 640, | |
| 0.6, | |
| 0.5, | |
| 15, | |
| ["person", "tie"], | |
| ["pdf", "json"],], | |
| [ | |
| "./img_example/Millenial-at-work.jpg", | |
| "cpu", | |
| "yolov5s6", | |
| 1280, | |
| 0.5, | |
| 0.5, | |
| 20, | |
| ["person", "chair", "cup", "laptop"], | |
| ["label", "pdf"],],] | |
| # interface | |
| gyd_img = gr.Interface( | |
| fn=yolo_det_img, | |
| inputs=inputs_img_list, | |
| outputs=outputs_img_list, | |
| title=title, | |
| description=description, | |
| # article=article, | |
| examples=examples, | |
| cache_examples=False, | |
| # theme="seafoam", | |
| # live=True, # Change output in real time | |
| flagging_dir="run", # output directory | |
| # allow_flagging="manual", | |
| # flagging_options=["good", "generally", "bad"], | |
| ) | |
| gyd_video = gr.Interface( | |
| # fn=yolo_det_video_test, | |
| fn=yolo_det_video, | |
| inputs=inputs_video_list, | |
| outputs=outputs_video_list, | |
| title=title, | |
| description=description, | |
| # article=article, | |
| # examples=examples, | |
| # theme="seafoam", | |
| # live=True, # Change output in real time | |
| flagging_dir="run", # output directory | |
| allow_flagging="never", | |
| # flagging_options=["good", "generally", "bad"], | |
| ) | |
| gyd = gr.TabbedInterface(interface_list=[gyd_img, gyd_video], tab_names=["Image Mode", "Video Mode"]) | |
| if not is_login: | |
| gyd.launch( | |
| inbrowser=True, # Automatically open default browser | |
| show_tips=True, # Automatically display the latest features of gradio | |
| share=is_share, # Project sharing, other devices can access | |
| favicon_path="./icon/logo.ico", # web icon | |
| show_error=True, # Display error message in browser console | |
| quiet=True, # Suppress most print statements | |
| ) | |
| else: | |
| gyd.launch( | |
| inbrowser=True, # Automatically open default browser | |
| show_tips=True, # Automatically display the latest features of gradio | |
| auth=usr_pwd, # login interface | |
| share=is_share, # Project sharing, other devices can access | |
| favicon_path="./icon/logo.ico", # web icon | |
| show_error=True, # Display error message in browser console | |
| quiet=True, # Suppress most print statements | |
| ) | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| main(args) | |