Spaces:
Runtime error
Runtime error
restructure dir
Browse files- app.py +3 -3
- src/abstractive_summarizer.py +0 -52
- src/utils.py → utils.py +37 -0
app.py
CHANGED
|
@@ -5,8 +5,9 @@ from transformers import AutoTokenizer, pipeline
|
|
| 5 |
|
| 6 |
# local modules
|
| 7 |
from extractive_summarizer.model_processors import Summarizer
|
| 8 |
-
from
|
| 9 |
-
|
|
|
|
| 10 |
preprocess_text_for_abstractive_summarization,
|
| 11 |
)
|
| 12 |
|
|
@@ -85,7 +86,6 @@ if __name__ == "__main__":
|
|
| 85 |
text_to_summarize = preprocess_text_for_abstractive_summarization(
|
| 86 |
tokenizer=abs_tokenizer, text=clean_txt
|
| 87 |
)
|
| 88 |
-
print(text_to_summarize)
|
| 89 |
tmp_sum = abs_summarizer(
|
| 90 |
text_to_summarize,
|
| 91 |
max_length=abs_max_length,
|
|
|
|
| 5 |
|
| 6 |
# local modules
|
| 7 |
from extractive_summarizer.model_processors import Summarizer
|
| 8 |
+
from utils import (
|
| 9 |
+
clean_text,
|
| 10 |
+
fetch_article_text,
|
| 11 |
preprocess_text_for_abstractive_summarization,
|
| 12 |
)
|
| 13 |
|
|
|
|
| 86 |
text_to_summarize = preprocess_text_for_abstractive_summarization(
|
| 87 |
tokenizer=abs_tokenizer, text=clean_txt
|
| 88 |
)
|
|
|
|
| 89 |
tmp_sum = abs_summarizer(
|
| 90 |
text_to_summarize,
|
| 91 |
max_length=abs_max_length,
|
src/abstractive_summarizer.py
DELETED
|
@@ -1,52 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from nltk.tokenize import sent_tokenize
|
| 3 |
-
from transformers import T5Tokenizer
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
def abstractive_summarizer(tokenizer, model, text):
|
| 7 |
-
# inputs to the model
|
| 8 |
-
inputs = [tokenizer(f"summarize: {chunk}", return_tensors="pt") for chunk in text]
|
| 9 |
-
abs_summarized_text = []
|
| 10 |
-
for input in inputs:
|
| 11 |
-
output = model.generate(input["input_ids"])
|
| 12 |
-
tmp_sum = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 13 |
-
abs_summarized_text.append(tmp_sum)
|
| 14 |
-
|
| 15 |
-
abs_summarized_text = " ".join([summ for summ in abs_summarized_text])
|
| 16 |
-
return abs_summarized_text
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
def preprocess_text_for_abstractive_summarization(tokenizer, text):
|
| 20 |
-
sentences = sent_tokenize(text)
|
| 21 |
-
|
| 22 |
-
# initialize
|
| 23 |
-
length = 0
|
| 24 |
-
chunk = ""
|
| 25 |
-
chunks = []
|
| 26 |
-
count = -1
|
| 27 |
-
for sentence in sentences:
|
| 28 |
-
count += 1
|
| 29 |
-
combined_length = (
|
| 30 |
-
len(tokenizer.tokenize(sentence)) + length
|
| 31 |
-
) # add the no. of sentence tokens to the length counter
|
| 32 |
-
|
| 33 |
-
if combined_length <= tokenizer.max_len_single_sentence: # if it doesn't exceed
|
| 34 |
-
chunk += sentence + " " # add the sentence to the chunk
|
| 35 |
-
length = combined_length # update the length counter
|
| 36 |
-
|
| 37 |
-
# if it is the last sentence
|
| 38 |
-
if count == len(sentences) - 1:
|
| 39 |
-
chunks.append(chunk.strip()) # save the chunk
|
| 40 |
-
|
| 41 |
-
else:
|
| 42 |
-
chunks.append(chunk.strip()) # save the chunk
|
| 43 |
-
|
| 44 |
-
# reset
|
| 45 |
-
length = 0
|
| 46 |
-
chunk = ""
|
| 47 |
-
|
| 48 |
-
# take care of the overflow sentence
|
| 49 |
-
chunk += sentence + " "
|
| 50 |
-
length = len(tokenizer.tokenize(sentence))
|
| 51 |
-
|
| 52 |
-
return chunks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/utils.py → utils.py
RENAMED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import re
|
| 2 |
import requests
|
| 3 |
from bs4 import BeautifulSoup
|
|
|
|
| 4 |
|
| 5 |
emoji_pattern = re.compile(
|
| 6 |
"["
|
|
@@ -59,3 +60,39 @@ def fetch_article_text(url: str):
|
|
| 59 |
chunks[chunk_id] = " ".join(chunks[chunk_id])
|
| 60 |
|
| 61 |
return ARTICLE, chunks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import re
|
| 2 |
import requests
|
| 3 |
from bs4 import BeautifulSoup
|
| 4 |
+
from nltk.tokenize import sent_tokenize
|
| 5 |
|
| 6 |
emoji_pattern = re.compile(
|
| 7 |
"["
|
|
|
|
| 60 |
chunks[chunk_id] = " ".join(chunks[chunk_id])
|
| 61 |
|
| 62 |
return ARTICLE, chunks
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def preprocess_text_for_abstractive_summarization(tokenizer, text):
|
| 66 |
+
sentences = sent_tokenize(text)
|
| 67 |
+
|
| 68 |
+
# initialize
|
| 69 |
+
length = 0
|
| 70 |
+
chunk = ""
|
| 71 |
+
chunks = []
|
| 72 |
+
count = -1
|
| 73 |
+
for sentence in sentences:
|
| 74 |
+
count += 1
|
| 75 |
+
combined_length = (
|
| 76 |
+
len(tokenizer.tokenize(sentence)) + length
|
| 77 |
+
) # add the no. of sentence tokens to the length counter
|
| 78 |
+
|
| 79 |
+
if combined_length <= tokenizer.max_len_single_sentence: # if it doesn't exceed
|
| 80 |
+
chunk += sentence + " " # add the sentence to the chunk
|
| 81 |
+
length = combined_length # update the length counter
|
| 82 |
+
|
| 83 |
+
# if it is the last sentence
|
| 84 |
+
if count == len(sentences) - 1:
|
| 85 |
+
chunks.append(chunk.strip()) # save the chunk
|
| 86 |
+
|
| 87 |
+
else:
|
| 88 |
+
chunks.append(chunk.strip()) # save the chunk
|
| 89 |
+
|
| 90 |
+
# reset
|
| 91 |
+
length = 0
|
| 92 |
+
chunk = ""
|
| 93 |
+
|
| 94 |
+
# take care of the overflow sentence
|
| 95 |
+
chunk += sentence + " "
|
| 96 |
+
length = len(tokenizer.tokenize(sentence))
|
| 97 |
+
|
| 98 |
+
return chunks
|