Spaces:
Runtime error
Runtime error
add abs preprocess func
Browse files- app.py +24 -16
- src/abstractive_summarizer.py +37 -0
app.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
import torch
|
|
|
|
| 2 |
import validators
|
| 3 |
import streamlit as st
|
|
|
|
| 4 |
from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration
|
| 5 |
|
| 6 |
# local modules
|
|
@@ -11,7 +13,7 @@ from src.abstractive_summarizer import abstractive_summarizer
|
|
| 11 |
# abstractive summarizer model
|
| 12 |
@st.cache()
|
| 13 |
def load_abs_model():
|
| 14 |
-
tokenizer = T5Tokenizer.from_pretrained("t5-
|
| 15 |
model = T5ForConditionalGeneration.from_pretrained("t5-base")
|
| 16 |
return tokenizer, model
|
| 17 |
|
|
@@ -24,27 +26,30 @@ if __name__ == "__main__":
|
|
| 24 |
summarize_type = st.sidebar.selectbox(
|
| 25 |
"Summarization type", options=["Extractive", "Abstractive"]
|
| 26 |
)
|
|
|
|
| 27 |
|
| 28 |
inp_text = st.text_input("Enter text or a url here")
|
| 29 |
|
| 30 |
is_url = validators.url(inp_text)
|
| 31 |
if is_url:
|
| 32 |
# complete text, chunks to summarize (list of sentences for long docs)
|
| 33 |
-
text,
|
| 34 |
else:
|
| 35 |
-
|
| 36 |
|
| 37 |
# view summarized text (expander)
|
| 38 |
with st.expander("View input text"):
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
summarize = st.button("Summarize")
|
| 42 |
|
| 43 |
# called on toggle button [summarize]
|
| 44 |
if summarize:
|
| 45 |
if summarize_type == "Extractive":
|
| 46 |
if is_url:
|
| 47 |
-
text_to_summarize = " ".join([txt for txt in
|
| 48 |
# extractive summarizer
|
| 49 |
|
| 50 |
with st.spinner(
|
|
@@ -57,16 +62,19 @@ if __name__ == "__main__":
|
|
| 57 |
with st.spinner(
|
| 58 |
text="Creating abstractive summary. This might take a few seconds ..."
|
| 59 |
):
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
# final summarized output
|
| 72 |
st.subheader("Summarized text")
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import nltk
|
| 3 |
import validators
|
| 4 |
import streamlit as st
|
| 5 |
+
from nltk.tokenize import sent_tokenize
|
| 6 |
from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration
|
| 7 |
|
| 8 |
# local modules
|
|
|
|
| 13 |
# abstractive summarizer model
|
| 14 |
@st.cache()
|
| 15 |
def load_abs_model():
|
| 16 |
+
tokenizer = T5Tokenizer.from_pretrained("t5-base")
|
| 17 |
model = T5ForConditionalGeneration.from_pretrained("t5-base")
|
| 18 |
return tokenizer, model
|
| 19 |
|
|
|
|
| 26 |
summarize_type = st.sidebar.selectbox(
|
| 27 |
"Summarization type", options=["Extractive", "Abstractive"]
|
| 28 |
)
|
| 29 |
+
nltk.download("punkt")
|
| 30 |
|
| 31 |
inp_text = st.text_input("Enter text or a url here")
|
| 32 |
|
| 33 |
is_url = validators.url(inp_text)
|
| 34 |
if is_url:
|
| 35 |
# complete text, chunks to summarize (list of sentences for long docs)
|
| 36 |
+
text, clean_txt = fetch_article_text(url=inp_text)
|
| 37 |
else:
|
| 38 |
+
clean_txt = clean_text(inp_text)
|
| 39 |
|
| 40 |
# view summarized text (expander)
|
| 41 |
with st.expander("View input text"):
|
| 42 |
+
if is_url:
|
| 43 |
+
st.write(clean_txt[0])
|
| 44 |
+
else:
|
| 45 |
+
st.write(clean_txt)
|
| 46 |
summarize = st.button("Summarize")
|
| 47 |
|
| 48 |
# called on toggle button [summarize]
|
| 49 |
if summarize:
|
| 50 |
if summarize_type == "Extractive":
|
| 51 |
if is_url:
|
| 52 |
+
text_to_summarize = " ".join([txt for txt in clean_txt])
|
| 53 |
# extractive summarizer
|
| 54 |
|
| 55 |
with st.spinner(
|
|
|
|
| 62 |
with st.spinner(
|
| 63 |
text="Creating abstractive summary. This might take a few seconds ..."
|
| 64 |
):
|
| 65 |
+
if not is_url:
|
| 66 |
+
text_to_summarize = sent_tokenize(clean_txt)
|
| 67 |
+
|
| 68 |
+
# abs_tokenizer, abs_model = load_abs_model()
|
| 69 |
+
# summarized_text = abstractive_summarizer(
|
| 70 |
+
# abs_tokenizer, abs_model, text_to_summarize
|
| 71 |
+
# )
|
| 72 |
+
# elif summarize_type == "Abstractive" and is_url:
|
| 73 |
+
# abs_url_summarizer = pipeline("summarization")
|
| 74 |
+
# tmp_sum = abs_url_summarizer(
|
| 75 |
+
# text_to_summarize, max_length=120, min_length=30, do_sample=False
|
| 76 |
+
# )
|
| 77 |
+
# summarized_text = " ".join([summ["summary_text"] for summ in tmp_sum])
|
| 78 |
|
| 79 |
# final summarized output
|
| 80 |
st.subheader("Summarized text")
|
src/abstractive_summarizer.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import torch
|
|
|
|
| 2 |
from transformers import T5Tokenizer
|
| 3 |
|
| 4 |
|
|
@@ -20,3 +21,39 @@ def abstractive_summarizer(tokenizer, model, text):
|
|
| 20 |
abs_summarized_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 21 |
|
| 22 |
return abs_summarized_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from nltk.tokenize import sent_tokenize
|
| 3 |
from transformers import T5Tokenizer
|
| 4 |
|
| 5 |
|
|
|
|
| 21 |
abs_summarized_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 22 |
|
| 23 |
return abs_summarized_text
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def preprocess_text_for_abstractive_summarization(tokenizer, text):
|
| 27 |
+
sentences = sent_tokenize(text)
|
| 28 |
+
|
| 29 |
+
# initialize
|
| 30 |
+
length = 0
|
| 31 |
+
chunk = ""
|
| 32 |
+
chunks = []
|
| 33 |
+
count = -1
|
| 34 |
+
for sentence in sentences:
|
| 35 |
+
count += 1
|
| 36 |
+
combined_length = (
|
| 37 |
+
len(tokenizer.tokenize(sentence)) + length
|
| 38 |
+
) # add the no. of sentence tokens to the length counter
|
| 39 |
+
|
| 40 |
+
if combined_length <= tokenizer.max_len_single_sentence: # if it doesn't exceed
|
| 41 |
+
chunk += sentence + " " # add the sentence to the chunk
|
| 42 |
+
length = combined_length # update the length counter
|
| 43 |
+
|
| 44 |
+
# if it is the last sentence
|
| 45 |
+
if count == len(sentences) - 1:
|
| 46 |
+
chunks.append(chunk.strip()) # save the chunk
|
| 47 |
+
|
| 48 |
+
else:
|
| 49 |
+
chunks.append(chunk.strip()) # save the chunk
|
| 50 |
+
|
| 51 |
+
# reset
|
| 52 |
+
length = 0
|
| 53 |
+
chunk = ""
|
| 54 |
+
|
| 55 |
+
# take care of the overflow sentence
|
| 56 |
+
chunk += sentence + " "
|
| 57 |
+
length = len(tokenizer.tokenize(sentence))
|
| 58 |
+
|
| 59 |
+
return chunks
|