Spaces:
Runtime error
Runtime error
| import torch | |
| import validators | |
| import streamlit as st | |
| from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration | |
| # local modules | |
| from extractive_summarizer.model_processors import Summarizer | |
| from src.utils import clean_text, fetch_article_text | |
| from src.abstractive_summarizer import abstractive_summarizer | |
| # abstractive summarizer model | |
| def load_abs_model(): | |
| tokenizer = T5Tokenizer.from_pretrained("t5-large") | |
| model = T5ForConditionalGeneration.from_pretrained("t5-base") | |
| return tokenizer, model | |
| if __name__ == "__main__": | |
| # --------------------------------- | |
| # Main Application | |
| # --------------------------------- | |
| st.title("Text Summarizer π") | |
| summarize_type = st.sidebar.selectbox( | |
| "Summarization type", options=["Extractive", "Abstractive"] | |
| ) | |
| inp_text = st.text_input("Enter text or a url here") | |
| is_url = validators.url(inp_text) | |
| if is_url: | |
| # complete text, chunks to summarize (list of sentences for long docs) | |
| text, text_to_summarize = fetch_article_text(url=inp_text) | |
| else: | |
| text_to_summarize = clean_text(inp_text) | |
| # view summarized text (expander) | |
| with st.expander("View input text"): | |
| st.write(inp_text) | |
| summarize = st.button("Summarize") | |
| # called on toggle button [summarize] | |
| if summarize: | |
| if summarize_type == "Extractive": | |
| # extractive summarizer | |
| with st.spinner( | |
| text="Creating extractive summary. This might take a few seconds ..." | |
| ): | |
| ext_model = Summarizer() | |
| summarized_text = ext_model(text_to_summarize, num_sentences=6) | |
| elif summarize_type == "Abstractive": | |
| with st.spinner( | |
| text="Creating abstractive summary. This might take a few seconds ..." | |
| ): | |
| abs_tokenizer, abs_model = load_abs_model() | |
| summarized_text = abstractive_summarizer( | |
| abs_tokenizer, abs_model, text_to_summarize | |
| ) | |
| elif summarize_type == "Abstractive" and is_url: | |
| abs_url_summarizer = pipeline("summarization") | |
| tmp_sum = abs_url_summarizer( | |
| text_to_summarize, max_length=120, min_length=30, do_sample=False | |
| ) | |
| summarized_text = " ".join([summ["summary_text"] for summ in tmp_sum]) | |
| # final summarized output | |
| st.subheader("Summarized text") | |
| st.info(summarized_text) | |