Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,84 +4,44 @@ from huggingface_hub import InferenceClient
|
|
| 4 |
import tempfile
|
| 5 |
import shutil
|
| 6 |
from pathlib import Path
|
| 7 |
-
from typing import Optional, Union
|
| 8 |
-
import time
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
def
|
| 15 |
-
try:
|
| 16 |
-
temp_dir = tempfile.gettempdir()
|
| 17 |
-
for file_path in Path(temp_dir).glob("*.mp4"):
|
| 18 |
-
try:
|
| 19 |
-
if file_path.stat().st_mtime < (time.time() - 300):
|
| 20 |
-
file_path.unlink(missing_ok=True)
|
| 21 |
-
except Exception:
|
| 22 |
-
pass
|
| 23 |
-
except Exception as e:
|
| 24 |
-
print(f"Cleanup error: {e}")
|
| 25 |
-
|
| 26 |
-
def _client_from_token(token: Optional[str]) -> InferenceClient:
|
| 27 |
-
if not token:
|
| 28 |
-
raise gr.Error("Please sign in first. This app requires your Hugging Face login.")
|
| 29 |
-
# IMPORTANT: do not set bill_to when using user OAuth tokens
|
| 30 |
-
return InferenceClient(
|
| 31 |
-
provider="fal-ai",
|
| 32 |
-
api_key=token,
|
| 33 |
-
)
|
| 34 |
-
|
| 35 |
-
def _save_bytes_as_temp_mp4(data: bytes) -> str:
|
| 36 |
-
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
| 37 |
-
try:
|
| 38 |
-
temp_file.write(data)
|
| 39 |
-
temp_file.flush()
|
| 40 |
-
return temp_file.name
|
| 41 |
-
finally:
|
| 42 |
-
temp_file.close()
|
| 43 |
-
|
| 44 |
-
def text_to_video(prompt, token: gr.OAuthToken | None, duration=5, aspect_ratio="16:9", resolution="720p", *_):
|
| 45 |
"""Generate video from text prompt"""
|
| 46 |
try:
|
| 47 |
-
if
|
| 48 |
-
return None, "❌ Sign in with Hugging Face to
|
| 49 |
|
| 50 |
if not prompt or prompt.strip() == "":
|
| 51 |
return None, "Please enter a text prompt"
|
| 52 |
|
| 53 |
-
cleanup_temp_files()
|
| 54 |
-
|
| 55 |
-
# Create client with user's token
|
| 56 |
-
client = _client_from_token(token.token)
|
| 57 |
-
|
| 58 |
# Generate video from text
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
)
|
| 64 |
-
except Exception as e:
|
| 65 |
-
import requests
|
| 66 |
-
if isinstance(e, requests.HTTPError) and getattr(e.response, "status_code", None) == 403:
|
| 67 |
-
return None, "❌ Access denied by provider (403). Make sure your HF account has credits/permission for provider 'fal-ai' and model 'akhaliq/veo3.1-fast'."
|
| 68 |
-
raise
|
| 69 |
|
| 70 |
# Save the video to a temporary file
|
| 71 |
-
|
|
|
|
|
|
|
| 72 |
|
| 73 |
return video_path, f"✅ Video generated successfully from prompt: '{prompt[:50]}...'"
|
| 74 |
|
| 75 |
-
except gr.Error as e:
|
| 76 |
-
return None, f"❌ {str(e)}"
|
| 77 |
except Exception as e:
|
| 78 |
-
return None, f"❌
|
| 79 |
|
| 80 |
-
def image_to_video(image, prompt,
|
| 81 |
"""Generate video from image and prompt"""
|
| 82 |
try:
|
| 83 |
-
if
|
| 84 |
-
return None, "❌ Sign in with Hugging Face to
|
| 85 |
|
| 86 |
if image is None:
|
| 87 |
return None, "Please upload an image"
|
|
@@ -89,8 +49,6 @@ def image_to_video(image, prompt, token: gr.OAuthToken | None, duration=5, aspec
|
|
| 89 |
if not prompt or prompt.strip() == "":
|
| 90 |
return None, "Please enter a prompt describing the motion"
|
| 91 |
|
| 92 |
-
cleanup_temp_files()
|
| 93 |
-
|
| 94 |
# Read the image file
|
| 95 |
if isinstance(image, str):
|
| 96 |
# If image is a file path
|
|
@@ -113,31 +71,22 @@ def image_to_video(image, prompt, token: gr.OAuthToken | None, duration=5, aspec
|
|
| 113 |
pil_image.save(buffer, format='PNG')
|
| 114 |
input_image = buffer.getvalue()
|
| 115 |
|
| 116 |
-
# Create client with user's token
|
| 117 |
-
client = _client_from_token(token.token)
|
| 118 |
-
|
| 119 |
# Generate video from image
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
)
|
| 126 |
-
except Exception as e:
|
| 127 |
-
import requests
|
| 128 |
-
if isinstance(e, requests.HTTPError) and getattr(e.response, "status_code", None) == 403:
|
| 129 |
-
return None, "❌ Access denied by provider (403). Make sure your HF account has credits/permission for provider 'fal-ai' and model 'akhaliq/veo3.1-fast-image-to-video'."
|
| 130 |
-
raise
|
| 131 |
|
| 132 |
# Save the video to a temporary file
|
| 133 |
-
|
|
|
|
|
|
|
| 134 |
|
| 135 |
return video_path, f"✅ Video generated successfully with motion: '{prompt[:50]}...'"
|
| 136 |
|
| 137 |
-
except gr.Error as e:
|
| 138 |
-
return None, f"❌ {str(e)}"
|
| 139 |
except Exception as e:
|
| 140 |
-
return None, f"❌
|
| 141 |
|
| 142 |
def clear_text_tab():
|
| 143 |
"""Clear text-to-video tab"""
|
|
@@ -166,15 +115,14 @@ custom_css = """
|
|
| 166 |
border-radius: 5px;
|
| 167 |
margin-top: 10px;
|
| 168 |
}
|
| 169 |
-
.
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
padding: 14px 16px;
|
| 173 |
-
border-radius: 12px;
|
| 174 |
-
margin: 18px auto 6px;
|
| 175 |
-
max-width: 860px;
|
| 176 |
text-align: center;
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
| 178 |
}
|
| 179 |
.mobile-link-container {
|
| 180 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
|
@@ -208,31 +156,12 @@ custom_css = """
|
|
| 208 |
"""
|
| 209 |
|
| 210 |
# Create the Gradio interface
|
| 211 |
-
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="AI Video Generator
|
| 212 |
gr.Markdown(
|
| 213 |
"""
|
| 214 |
# 🎬 AI Video Generator
|
| 215 |
### Generate stunning videos from text or animate your images with AI
|
| 216 |
-
#### Powered by VEO 3.1 Fast Model
|
| 217 |
-
"""
|
| 218 |
-
)
|
| 219 |
-
|
| 220 |
-
gr.HTML(
|
| 221 |
-
"""
|
| 222 |
-
<div style="text-align:center; max-width:900px; margin:0 auto;">
|
| 223 |
-
<h1 style="font-size:2.2em; margin-bottom:6px;">🎬 Sora-2</h1>
|
| 224 |
-
<p style="color:#777; margin:0 0 8px;">Generate videos via the Hugging Face Inference API (provider: fal-ai)</p>
|
| 225 |
-
<div class="notice">
|
| 226 |
-
<b>Heads up:</b> This is a paid app that uses <b>your</b> inference provider credits when you run generations.
|
| 227 |
-
Free users get <b>$0.10 in included credits</b>. <b>PRO users</b> get <b>$2 in included credits</b>
|
| 228 |
-
and can continue using beyond that (with billing).
|
| 229 |
-
<a href='http://huggingface.co/subscribe/pro?source=veo3' target='_blank' style='color:#fff; text-decoration:underline; font-weight:bold;'>Subscribe to PRO</a>
|
| 230 |
-
for more credits. Please sign in with your Hugging Face account to continue.
|
| 231 |
-
</div>
|
| 232 |
-
<p style="font-size: 0.9em; color: #999; margin-top: 10px;">
|
| 233 |
-
Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color:#fff; text-decoration:underline;">anycoder</a>
|
| 234 |
-
</p>
|
| 235 |
-
</div>
|
| 236 |
"""
|
| 237 |
)
|
| 238 |
|
|
@@ -250,14 +179,14 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="AI Video Generator
|
|
| 250 |
|
| 251 |
gr.HTML(
|
| 252 |
"""
|
| 253 |
-
<
|
| 254 |
-
|
| 255 |
-
</
|
| 256 |
"""
|
| 257 |
)
|
| 258 |
|
| 259 |
# Add login button - required for OAuth
|
| 260 |
-
|
| 261 |
|
| 262 |
with gr.Tabs() as tabs:
|
| 263 |
# Text-to-Video Tab
|
|
@@ -387,7 +316,7 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="AI Video Generator
|
|
| 387 |
# Event handlers
|
| 388 |
text_generate_btn.click(
|
| 389 |
fn=text_to_video,
|
| 390 |
-
inputs=[text_prompt
|
| 391 |
outputs=[text_video_output, text_status],
|
| 392 |
show_progress="full",
|
| 393 |
queue=False,
|
|
@@ -404,7 +333,7 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="AI Video Generator
|
|
| 404 |
|
| 405 |
image_generate_btn.click(
|
| 406 |
fn=image_to_video,
|
| 407 |
-
inputs=[image_input, image_prompt
|
| 408 |
outputs=[image_video_output, image_status],
|
| 409 |
show_progress="full",
|
| 410 |
queue=False,
|
|
@@ -421,14 +350,6 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="AI Video Generator
|
|
| 421 |
|
| 422 |
# Launch the app
|
| 423 |
if __name__ == "__main__":
|
| 424 |
-
try:
|
| 425 |
-
cleanup_temp_files()
|
| 426 |
-
if os.path.exists("gradio_cached_examples"):
|
| 427 |
-
shutil.rmtree("gradio_cached_examples", ignore_errors=True)
|
| 428 |
-
except Exception as e:
|
| 429 |
-
print(f"Initial cleanup error: {e}")
|
| 430 |
-
|
| 431 |
-
demo.queue(status_update_rate="auto", api_open=False, default_concurrency_limit=None)
|
| 432 |
demo.launch(
|
| 433 |
show_api=False,
|
| 434 |
share=False,
|
|
|
|
| 4 |
import tempfile
|
| 5 |
import shutil
|
| 6 |
from pathlib import Path
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# Initialize the client
|
| 9 |
+
client = InferenceClient(
|
| 10 |
+
provider="fal-ai",
|
| 11 |
+
api_key=os.environ.get("HF_TOKEN"),
|
| 12 |
+
bill_to="huggingface",
|
| 13 |
+
)
|
| 14 |
|
| 15 |
+
def text_to_video(prompt, duration=5, aspect_ratio="16:9", resolution="720p", profile: gr.OAuthProfile | None = None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
"""Generate video from text prompt"""
|
| 17 |
try:
|
| 18 |
+
if profile is None:
|
| 19 |
+
return None, "❌ Click Sign in with Hugging Face button to use this app for free"
|
| 20 |
|
| 21 |
if not prompt or prompt.strip() == "":
|
| 22 |
return None, "Please enter a text prompt"
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
# Generate video from text
|
| 25 |
+
video = client.text_to_video(
|
| 26 |
+
prompt,
|
| 27 |
+
model="akhaliq/veo3.1-fast",
|
| 28 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
# Save the video to a temporary file
|
| 31 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_file:
|
| 32 |
+
tmp_file.write(video)
|
| 33 |
+
video_path = tmp_file.name
|
| 34 |
|
| 35 |
return video_path, f"✅ Video generated successfully from prompt: '{prompt[:50]}...'"
|
| 36 |
|
|
|
|
|
|
|
| 37 |
except Exception as e:
|
| 38 |
+
return None, f"❌ Error generating video: {str(e)}"
|
| 39 |
|
| 40 |
+
def image_to_video(image, prompt, duration=5, aspect_ratio="16:9", resolution="720p", profile: gr.OAuthProfile | None = None):
|
| 41 |
"""Generate video from image and prompt"""
|
| 42 |
try:
|
| 43 |
+
if profile is None:
|
| 44 |
+
return None, "❌ Click Sign in with Hugging Face button to use this app for free"
|
| 45 |
|
| 46 |
if image is None:
|
| 47 |
return None, "Please upload an image"
|
|
|
|
| 49 |
if not prompt or prompt.strip() == "":
|
| 50 |
return None, "Please enter a prompt describing the motion"
|
| 51 |
|
|
|
|
|
|
|
| 52 |
# Read the image file
|
| 53 |
if isinstance(image, str):
|
| 54 |
# If image is a file path
|
|
|
|
| 71 |
pil_image.save(buffer, format='PNG')
|
| 72 |
input_image = buffer.getvalue()
|
| 73 |
|
|
|
|
|
|
|
|
|
|
| 74 |
# Generate video from image
|
| 75 |
+
video = client.image_to_video(
|
| 76 |
+
input_image,
|
| 77 |
+
prompt=prompt,
|
| 78 |
+
model="akhaliq/veo3.1-fast-image-to-video",
|
| 79 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
# Save the video to a temporary file
|
| 82 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_file:
|
| 83 |
+
tmp_file.write(video)
|
| 84 |
+
video_path = tmp_file.name
|
| 85 |
|
| 86 |
return video_path, f"✅ Video generated successfully with motion: '{prompt[:50]}...'"
|
| 87 |
|
|
|
|
|
|
|
| 88 |
except Exception as e:
|
| 89 |
+
return None, f"❌ Error generating video: {str(e)}"
|
| 90 |
|
| 91 |
def clear_text_tab():
|
| 92 |
"""Clear text-to-video tab"""
|
|
|
|
| 115 |
border-radius: 5px;
|
| 116 |
margin-top: 10px;
|
| 117 |
}
|
| 118 |
+
.auth-warning {
|
| 119 |
+
color: #ff6b00;
|
| 120 |
+
font-weight: bold;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
text-align: center;
|
| 122 |
+
margin: 1em 0;
|
| 123 |
+
padding: 1em;
|
| 124 |
+
background-color: #fff3e0;
|
| 125 |
+
border-radius: 5px;
|
| 126 |
}
|
| 127 |
.mobile-link-container {
|
| 128 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
|
|
|
| 156 |
"""
|
| 157 |
|
| 158 |
# Create the Gradio interface
|
| 159 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="AI Video Generator") as demo:
|
| 160 |
gr.Markdown(
|
| 161 |
"""
|
| 162 |
# 🎬 AI Video Generator
|
| 163 |
### Generate stunning videos from text or animate your images with AI
|
| 164 |
+
#### Powered by VEO 3.1 Fast Model | [Built with anycoder](https://huggingface.co/spaces/akhaliq/anycoder)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
"""
|
| 166 |
)
|
| 167 |
|
|
|
|
| 179 |
|
| 180 |
gr.HTML(
|
| 181 |
"""
|
| 182 |
+
<div class="auth-warning">
|
| 183 |
+
⚠️ You must Sign in with Hugging Face using the button below to use this app.
|
| 184 |
+
</div>
|
| 185 |
"""
|
| 186 |
)
|
| 187 |
|
| 188 |
# Add login button - required for OAuth
|
| 189 |
+
gr.LoginButton()
|
| 190 |
|
| 191 |
with gr.Tabs() as tabs:
|
| 192 |
# Text-to-Video Tab
|
|
|
|
| 316 |
# Event handlers
|
| 317 |
text_generate_btn.click(
|
| 318 |
fn=text_to_video,
|
| 319 |
+
inputs=[text_prompt],
|
| 320 |
outputs=[text_video_output, text_status],
|
| 321 |
show_progress="full",
|
| 322 |
queue=False,
|
|
|
|
| 333 |
|
| 334 |
image_generate_btn.click(
|
| 335 |
fn=image_to_video,
|
| 336 |
+
inputs=[image_input, image_prompt],
|
| 337 |
outputs=[image_video_output, image_status],
|
| 338 |
show_progress="full",
|
| 339 |
queue=False,
|
|
|
|
| 350 |
|
| 351 |
# Launch the app
|
| 352 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
demo.launch(
|
| 354 |
show_api=False,
|
| 355 |
share=False,
|