Update myapp.py
Browse files
myapp.py
CHANGED
|
@@ -1,11 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from flask import Flask, jsonify, request, send_file
|
| 2 |
from flask_cors import CORS
|
| 3 |
-
import torch
|
| 4 |
from diffusers import DiffusionPipeline
|
| 5 |
import numpy as np
|
| 6 |
-
import random
|
| 7 |
-
import io
|
| 8 |
-
from PIL import Image
|
| 9 |
|
| 10 |
# Initialize the Flask app
|
| 11 |
myapp = Flask(__name__)
|
|
@@ -13,17 +13,14 @@ CORS(myapp) # Enable CORS if needed
|
|
| 13 |
|
| 14 |
# Load the model
|
| 15 |
device = "cpu"
|
| 16 |
-
dtype = torch.float16
|
| 17 |
-
|
| 18 |
repo = "prompthero/openjourney-v4"
|
| 19 |
-
pipe = DiffusionPipeline.from_pretrained(repo
|
| 20 |
|
| 21 |
MAX_SEED = np.iinfo(np.int32).max
|
| 22 |
-
MAX_IMAGE_SIZE = 1344
|
| 23 |
|
| 24 |
-
@myapp.route('/')
|
| 25 |
def home():
|
| 26 |
-
return "Welcome to the
|
| 27 |
|
| 28 |
@myapp.route('/generate_image', methods=['POST'])
|
| 29 |
def generate_image():
|
|
@@ -34,8 +31,15 @@ def generate_image():
|
|
| 34 |
negative_prompt = data.get('negative_prompt', None)
|
| 35 |
seed = data.get('seed', 0)
|
| 36 |
randomize_seed = data.get('randomize_seed', True)
|
|
|
|
|
|
|
| 37 |
width = data.get('width', 1024)
|
| 38 |
height = data.get('height', 1024)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
guidance_scale = data.get('guidance_scale', 5.0)
|
| 40 |
num_inference_steps = data.get('num_inference_steps', 28)
|
| 41 |
|
|
@@ -47,6 +51,7 @@ def generate_image():
|
|
| 47 |
generator = torch.Generator().manual_seed(seed)
|
| 48 |
image = pipe(
|
| 49 |
prompt=prompt,
|
|
|
|
| 50 |
guidance_scale=guidance_scale,
|
| 51 |
num_inference_steps=num_inference_steps,
|
| 52 |
width=width,
|
|
@@ -64,4 +69,5 @@ def generate_image():
|
|
| 64 |
|
| 65 |
# Add this block to make sure your app runs when called
|
| 66 |
if __name__ == "__main__":
|
| 67 |
-
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import io
|
| 3 |
+
import random
|
| 4 |
+
import torch
|
| 5 |
from flask import Flask, jsonify, request, send_file
|
| 6 |
from flask_cors import CORS
|
|
|
|
| 7 |
from diffusers import DiffusionPipeline
|
| 8 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Initialize the Flask app
|
| 11 |
myapp = Flask(__name__)
|
|
|
|
| 13 |
|
| 14 |
# Load the model
|
| 15 |
device = "cpu"
|
|
|
|
|
|
|
| 16 |
repo = "prompthero/openjourney-v4"
|
| 17 |
+
pipe = DiffusionPipeline.from_pretrained(repo).to(device)
|
| 18 |
|
| 19 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 20 |
|
| 21 |
+
@myapp.route('/')
|
| 22 |
def home():
|
| 23 |
+
return "Welcome to the Image Generation API!" # Basic home response
|
| 24 |
|
| 25 |
@myapp.route('/generate_image', methods=['POST'])
|
| 26 |
def generate_image():
|
|
|
|
| 31 |
negative_prompt = data.get('negative_prompt', None)
|
| 32 |
seed = data.get('seed', 0)
|
| 33 |
randomize_seed = data.get('randomize_seed', True)
|
| 34 |
+
|
| 35 |
+
# Get width and height and ensure they are divisible by 8
|
| 36 |
width = data.get('width', 1024)
|
| 37 |
height = data.get('height', 1024)
|
| 38 |
+
|
| 39 |
+
# Round width and height to the nearest multiple of 8
|
| 40 |
+
width = (width // 8) * 8
|
| 41 |
+
height = (height // 8) * 8
|
| 42 |
+
|
| 43 |
guidance_scale = data.get('guidance_scale', 5.0)
|
| 44 |
num_inference_steps = data.get('num_inference_steps', 28)
|
| 45 |
|
|
|
|
| 51 |
generator = torch.Generator().manual_seed(seed)
|
| 52 |
image = pipe(
|
| 53 |
prompt=prompt,
|
| 54 |
+
negative_prompt=negative_prompt,
|
| 55 |
guidance_scale=guidance_scale,
|
| 56 |
num_inference_steps=num_inference_steps,
|
| 57 |
width=width,
|
|
|
|
| 69 |
|
| 70 |
# Add this block to make sure your app runs when called
|
| 71 |
if __name__ == "__main__":
|
| 72 |
+
# Run the Flask app using Gunicorn
|
| 73 |
+
os.system("gunicorn -w 4 -b 0.0.0.0:7860 myapp:myapp") # 4 worker processes
|