Update myapp.py
Browse files
myapp.py
CHANGED
|
@@ -1,57 +1,56 @@
|
|
| 1 |
-
from flask import Flask,
|
| 2 |
from flask_cors import CORS
|
| 3 |
import torch
|
| 4 |
-
from diffusers import
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
import random
|
| 7 |
-
import io
|
| 8 |
-
from PIL import Image
|
| 9 |
|
| 10 |
# Initialize the Flask app
|
| 11 |
myapp = Flask(__name__)
|
| 12 |
CORS(myapp) # Enable CORS if needed
|
| 13 |
|
| 14 |
# Load the model
|
| 15 |
-
device = "cpu"
|
| 16 |
-
dtype = torch.float32
|
| 17 |
|
| 18 |
-
|
| 19 |
-
pipe =
|
| 20 |
|
|
|
|
| 21 |
MAX_SEED = np.iinfo(np.int32).max
|
| 22 |
MAX_IMAGE_SIZE = 1344
|
| 23 |
|
| 24 |
@app.route('/')
|
| 25 |
def home():
|
| 26 |
-
return "Welcome to the
|
| 27 |
|
| 28 |
@app.route('/generate_image', methods=['POST'])
|
| 29 |
def generate_image():
|
| 30 |
data = request.json
|
| 31 |
|
| 32 |
# Get inputs from request JSON
|
| 33 |
-
prompt = data.get('prompt', '')
|
| 34 |
negative_prompt = data.get('negative_prompt', None)
|
| 35 |
seed = data.get('seed', 0)
|
| 36 |
randomize_seed = data.get('randomize_seed', True)
|
| 37 |
width = data.get('width', 1024)
|
| 38 |
height = data.get('height', 1024)
|
| 39 |
-
guidance_scale = data.get('guidance_scale', 5
|
| 40 |
-
num_inference_steps = data.get('num_inference_steps',
|
| 41 |
-
|
| 42 |
# Randomize seed if requested
|
| 43 |
if randomize_seed:
|
| 44 |
seed = random.randint(0, MAX_SEED)
|
| 45 |
-
|
| 46 |
# Generate the image
|
| 47 |
generator = torch.Generator().manual_seed(seed)
|
| 48 |
image = pipe(
|
| 49 |
prompt=prompt,
|
| 50 |
negative_prompt=negative_prompt,
|
| 51 |
-
guidance_scale=guidance_scale,
|
| 52 |
-
num_inference_steps=num_inference_steps,
|
| 53 |
width=width,
|
| 54 |
height=height,
|
|
|
|
|
|
|
| 55 |
generator=generator
|
| 56 |
).images[0]
|
| 57 |
|
|
|
|
| 1 |
+
from flask import Flask, request, send_file
|
| 2 |
from flask_cors import CORS
|
| 3 |
import torch
|
| 4 |
+
from diffusers import DiffusionPipeline
|
| 5 |
+
import io
|
| 6 |
import numpy as np
|
| 7 |
import random
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Initialize the Flask app
|
| 10 |
myapp = Flask(__name__)
|
| 11 |
CORS(myapp) # Enable CORS if needed
|
| 12 |
|
| 13 |
# Load the model
|
| 14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 15 |
|
| 16 |
+
# Load the DiffusionPipeline for "prompthero/openjourney-v4"
|
| 17 |
+
pipe = DiffusionPipeline.from_pretrained("prompthero/openjourney-v4").to(device)
|
| 18 |
|
| 19 |
+
# Define max values for seed and image size
|
| 20 |
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
MAX_IMAGE_SIZE = 1344
|
| 22 |
|
| 23 |
@app.route('/')
|
| 24 |
def home():
|
| 25 |
+
return "Welcome to the OpenJourney Image Generation API!"
|
| 26 |
|
| 27 |
@app.route('/generate_image', methods=['POST'])
|
| 28 |
def generate_image():
|
| 29 |
data = request.json
|
| 30 |
|
| 31 |
# Get inputs from request JSON
|
| 32 |
+
prompt = data.get('prompt', 'Astronaut in a jungle, cold color palette, muted colors, detailed, 8k')
|
| 33 |
negative_prompt = data.get('negative_prompt', None)
|
| 34 |
seed = data.get('seed', 0)
|
| 35 |
randomize_seed = data.get('randomize_seed', True)
|
| 36 |
width = data.get('width', 1024)
|
| 37 |
height = data.get('height', 1024)
|
| 38 |
+
guidance_scale = data.get('guidance_scale', 7.5) # Default to a higher guidance scale for better results
|
| 39 |
+
num_inference_steps = data.get('num_inference_steps', 50) # Default number of steps
|
| 40 |
+
|
| 41 |
# Randomize seed if requested
|
| 42 |
if randomize_seed:
|
| 43 |
seed = random.randint(0, MAX_SEED)
|
| 44 |
+
|
| 45 |
# Generate the image
|
| 46 |
generator = torch.Generator().manual_seed(seed)
|
| 47 |
image = pipe(
|
| 48 |
prompt=prompt,
|
| 49 |
negative_prompt=negative_prompt,
|
|
|
|
|
|
|
| 50 |
width=width,
|
| 51 |
height=height,
|
| 52 |
+
guidance_scale=guidance_scale,
|
| 53 |
+
num_inference_steps=num_inference_steps,
|
| 54 |
generator=generator
|
| 55 |
).images[0]
|
| 56 |
|