Commit
·
7198503
1
Parent(s):
bf1c57e
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,70 +3,45 @@ import pathlib
|
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
| 5 |
from gt4sd.algorithms.generation.hugging_face import (
|
| 6 |
-
|
| 7 |
-
HuggingFaceGenerationAlgorithm
|
| 8 |
-
HuggingFaceGPT2Generator,
|
| 9 |
-
HuggingFaceTransfoXLGenerator,
|
| 10 |
-
HuggingFaceOpenAIGPTGenerator,
|
| 11 |
-
HuggingFaceXLMGenerator,
|
| 12 |
-
HuggingFaceXLNetGenerator,
|
| 13 |
)
|
| 14 |
-
from
|
| 15 |
-
|
| 16 |
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
logger.addHandler(logging.NullHandler())
|
| 19 |
|
| 20 |
-
MODEL_FN = {
|
| 21 |
-
"HuggingFaceCTRLGenerator": HuggingFaceCTRLGenerator,
|
| 22 |
-
"HuggingFaceGPT2Generator": HuggingFaceGPT2Generator,
|
| 23 |
-
"HuggingFaceTransfoXLGenerator": HuggingFaceTransfoXLGenerator,
|
| 24 |
-
"HuggingFaceOpenAIGPTGenerator": HuggingFaceOpenAIGPTGenerator,
|
| 25 |
-
"HuggingFaceXLMGenerator": HuggingFaceXLMGenerator,
|
| 26 |
-
"HuggingFaceXLNetGenerator": HuggingFaceXLNetGenerator,
|
| 27 |
-
}
|
| 28 |
-
|
| 29 |
-
|
| 30 |
def run_inference(
|
| 31 |
-
|
| 32 |
-
prompt: str,
|
| 33 |
-
length: float,
|
| 34 |
-
temperature: float,
|
| 35 |
prefix: str,
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
repetition_penalty: float,
|
| 39 |
):
|
| 40 |
-
model = model_type.split("_")[0]
|
| 41 |
-
version = model_type.split("_")[1]
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
config = MODEL_FN[model](
|
| 46 |
-
algorithm_version=version,
|
| 47 |
-
prompt=prompt,
|
| 48 |
-
length=length,
|
| 49 |
-
temperature=temperature,
|
| 50 |
-
repetition_penalty=repetition_penalty,
|
| 51 |
-
k=k,
|
| 52 |
-
p=p,
|
| 53 |
prefix=prefix,
|
|
|
|
|
|
|
| 54 |
)
|
| 55 |
|
| 56 |
model = HuggingFaceGenerationAlgorithm(config)
|
|
|
|
|
|
|
| 57 |
text = list(model.sample(1))[0]
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
return text
|
| 60 |
|
| 61 |
|
| 62 |
if __name__ == "__main__":
|
| 63 |
|
| 64 |
# Preparation (retrieve all available algorithms)
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
x["algorithm_application"] + "_" + x["algorithm_version"]
|
| 68 |
-
for x in list(filter(lambda x: "HuggingFace" in x["algorithm_name"], all_algos))
|
| 69 |
-
]
|
| 70 |
|
| 71 |
# Load metadata
|
| 72 |
metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards")
|
|
@@ -83,28 +58,22 @@ if __name__ == "__main__":
|
|
| 83 |
|
| 84 |
demo = gr.Interface(
|
| 85 |
fn=run_inference,
|
| 86 |
-
title="
|
| 87 |
inputs=[
|
| 88 |
gr.Dropdown(
|
| 89 |
-
|
| 90 |
label="Language model",
|
| 91 |
-
value="
|
|
|
|
|
|
|
|
|
|
| 92 |
),
|
| 93 |
gr.Textbox(
|
| 94 |
label="Text prompt",
|
| 95 |
placeholder="I'm a stochastic parrot.",
|
| 96 |
lines=1,
|
| 97 |
),
|
| 98 |
-
gr.Slider(minimum=
|
| 99 |
-
gr.Slider(
|
| 100 |
-
minimum=0.6, maximum=1.5, value=1.1, label="Decoding temperature"
|
| 101 |
-
),
|
| 102 |
-
gr.Textbox(
|
| 103 |
-
label="Prefix", placeholder="Some prefix (before the prompt)", lines=1
|
| 104 |
-
),
|
| 105 |
-
gr.Slider(minimum=2, maximum=500, value=50, label="Top-k", step=1),
|
| 106 |
-
gr.Slider(minimum=0.5, maximum=1, value=1.0, label="Decoding-p", step=1),
|
| 107 |
-
gr.Slider(minimum=0.5, maximum=5, value=1.0, label="Repetition penalty"),
|
| 108 |
],
|
| 109 |
outputs=gr.Textbox(label="Output"),
|
| 110 |
article=article,
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
| 5 |
from gt4sd.algorithms.generation.hugging_face import (
|
| 6 |
+
HuggingFaceSeq2SeqGenerator,
|
| 7 |
+
HuggingFaceGenerationAlgorithm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
)
|
| 9 |
+
from transformers import AutoTokenizer
|
|
|
|
| 10 |
|
| 11 |
logger = logging.getLogger(__name__)
|
| 12 |
logger.addHandler(logging.NullHandler())
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
def run_inference(
|
| 15 |
+
model_name_or_path: str,
|
|
|
|
|
|
|
|
|
|
| 16 |
prefix: str,
|
| 17 |
+
prompt: str,
|
| 18 |
+
num_beams: int,
|
|
|
|
| 19 |
):
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
config = HuggingFaceSeq2SeqGenerator(
|
| 22 |
+
algorithm_version=model_name_or_path,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
prefix=prefix,
|
| 24 |
+
prompt=prompt,
|
| 25 |
+
num_beams=num_beams
|
| 26 |
)
|
| 27 |
|
| 28 |
model = HuggingFaceGenerationAlgorithm(config)
|
| 29 |
+
tokenizer = AutoTokenizer.from_pretrained("t5-small")
|
| 30 |
+
|
| 31 |
text = list(model.sample(1))[0]
|
| 32 |
|
| 33 |
+
text = text.split(tokenizer.eos_token)[0]
|
| 34 |
+
text = text.replace(tokenizer.pad_token, "")
|
| 35 |
+
text = text.strip()
|
| 36 |
+
|
| 37 |
return text
|
| 38 |
|
| 39 |
|
| 40 |
if __name__ == "__main__":
|
| 41 |
|
| 42 |
# Preparation (retrieve all available algorithms)
|
| 43 |
+
models = ["text-chem-t5-small-standard", "text-chem-t5-small-augm",
|
| 44 |
+
"text-chem-t5-base-standard", "text-chem-t5-base-augm"]
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
# Load metadata
|
| 47 |
metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards")
|
|
|
|
| 58 |
|
| 59 |
demo = gr.Interface(
|
| 60 |
fn=run_inference,
|
| 61 |
+
title="Text-chem-T5 model",
|
| 62 |
inputs=[
|
| 63 |
gr.Dropdown(
|
| 64 |
+
models,
|
| 65 |
label="Language model",
|
| 66 |
+
value="text-chem-t5-base-augm",
|
| 67 |
+
),
|
| 68 |
+
gr.Textbox(
|
| 69 |
+
label="Prefix", placeholder="A task-specific prefix", lines=1
|
| 70 |
),
|
| 71 |
gr.Textbox(
|
| 72 |
label="Text prompt",
|
| 73 |
placeholder="I'm a stochastic parrot.",
|
| 74 |
lines=1,
|
| 75 |
),
|
| 76 |
+
gr.Slider(minimum=1, maximum=50, value=10, label="num_beams", step=1),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
],
|
| 78 |
outputs=gr.Textbox(label="Output"),
|
| 79 |
article=article,
|