Spaces:
Sleeping
Sleeping
| import logging | |
| import pathlib | |
| import gradio as gr | |
| import pandas as pd | |
| from gt4sd.algorithms.controlled_sampling.advanced_manufacturing import ( | |
| CatalystGenerator, | |
| AdvancedManufacturing, | |
| ) | |
| from gt4sd.algorithms.registry import ApplicationsRegistry | |
| from utils import draw_grid_generate | |
| logger = logging.getLogger(__name__) | |
| logger.addHandler(logging.NullHandler()) | |
| def run_inference( | |
| algorithm_version: str, | |
| target_binding_energy: float, | |
| primer_smiles: str, | |
| length: float, | |
| number_of_points: int, | |
| number_of_steps: int, | |
| number_of_samples: int, | |
| ): | |
| config = CatalystGenerator( | |
| algorithm_version=algorithm_version, | |
| number_of_points=number_of_points, | |
| number_of_steps=number_of_steps, | |
| generated_length=length, | |
| primer_smiles=primer_smiles, | |
| ) | |
| model = AdvancedManufacturing(config, target=target_binding_energy) | |
| samples = list(model.sample(number_of_samples)) | |
| seeds = [] if primer_smiles == "" else [primer_smiles] | |
| return draw_grid_generate(samples=samples, n_cols=5, seeds=seeds) | |
| if __name__ == "__main__": | |
| # Preparation (retrieve all available algorithms) | |
| all_algos = ApplicationsRegistry.list_available() | |
| algos = [ | |
| x["algorithm_version"] | |
| for x in list( | |
| filter(lambda x: "AdvancedManufact" in x["algorithm_name"], all_algos) | |
| ) | |
| ] | |
| # Load metadata | |
| metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards") | |
| examples = pd.read_csv(metadata_root.joinpath("examples.csv"), header=None).fillna( | |
| "" | |
| ) | |
| print("Examples: ", examples.values.tolist()) | |
| with open(metadata_root.joinpath("article.md"), "r") as f: | |
| article = f.read() | |
| with open(metadata_root.joinpath("description.md"), "r") as f: | |
| description = f.read() | |
| demo = gr.Interface( | |
| fn=run_inference, | |
| title="Advanced Manufacturing", | |
| inputs=[ | |
| gr.Dropdown( | |
| algos, | |
| label="Algorithm version", | |
| value="v0", | |
| ), | |
| gr.Slider(minimum=1, maximum=100, value=10, label="Target binding energy"), | |
| gr.Textbox( | |
| label="Primer SMILES", | |
| placeholder="FP(F)F.CP(C)c1ccccc1.[Au]", | |
| lines=1, | |
| ), | |
| gr.Slider( | |
| minimum=5, | |
| maximum=400, | |
| value=100, | |
| label="Maximal sequence length", | |
| step=1, | |
| ), | |
| gr.Slider( | |
| minimum=16, maximum=128, value=32, label="Number of points", step=1 | |
| ), | |
| gr.Slider( | |
| minimum=16, maximum=128, value=50, label="Number of steps", step=1 | |
| ), | |
| gr.Slider( | |
| minimum=1, maximum=50, value=10, label="Number of samples", step=1 | |
| ), | |
| ], | |
| outputs=gr.HTML(label="Output"), | |
| article=article, | |
| description=description, | |
| # examples=examples.values.tolist(), | |
| ) | |
| demo.launch(debug=True, show_error=True) | |