Spaces:
Runtime error
Runtime error
first commit
Browse files- README.md +2 -2
- app.py +249 -0
- examples/example_1.jpg +0 -0
- examples/example_2.jpg +0 -0
- examples/example_3.jpeg +0 -0
- examples/example_4.jpg +0 -0
- examples/example_5.jpg +0 -0
- examples/example_6.jpg +0 -0
- examples/example_7.jpg +0 -0
- examples/example_8.jpg +0 -0
- requirements.txt +8 -0
README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
title: Recursive Inpainting
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: green
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 4.40.0
|
| 8 |
app_file: app.py
|
|
|
|
| 1 |
---
|
| 2 |
title: Recursive Inpainting
|
| 3 |
+
emoji: 🧟
|
| 4 |
colorFrom: green
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 4.40.0
|
| 8 |
app_file: app.py
|
app.py
ADDED
|
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
from typing import List, Tuple
|
| 4 |
+
import spaces
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import lpips
|
| 8 |
+
import numpy as np
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import torch
|
| 11 |
+
import torchvision.transforms as transforms
|
| 12 |
+
from diffusers import StableDiffusionInpaintPipeline
|
| 13 |
+
from diffusers.utils import load_image
|
| 14 |
+
from PIL import Image, ImageOps
|
| 15 |
+
|
| 16 |
+
# Constants
|
| 17 |
+
TARGET_SIZE = (512, 512)
|
| 18 |
+
DEVICE = torch.device("cuda")
|
| 19 |
+
LPIPS_MODELS = ['alex', 'vgg', 'squeeze']
|
| 20 |
+
MASK_SIZES = {"64x64": 64, "128x128": 128, "256x256": 256}
|
| 21 |
+
DEFAULT_MASK_SIZE = "256x256"
|
| 22 |
+
MIN_ITERATIONS = 2
|
| 23 |
+
MAX_ITERATIONS = 5
|
| 24 |
+
DEFAULT_ITERATIONS = 2
|
| 25 |
+
|
| 26 |
+
# HTML Content
|
| 27 |
+
TITLE = """
|
| 28 |
+
<h1 style='text-align: center; font-size: 3.2em; margin-bottom: 0.5em; font-family: Arial, sans-serif; margin: 20px;'>
|
| 29 |
+
How Stable is Stable Diffusion under Recursive InPainting (RIP)?🧟
|
| 30 |
+
</h1>
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
AUTHORS = """
|
| 34 |
+
<body>
|
| 35 |
+
<div align="center"; style="font-size: 1.4em; margin-bottom: 0.5em;">
|
| 36 |
+
Javier Conde<sup>1</sup>
|
| 37 |
+
Miguel González<sup>1</sup>
|
| 38 |
+
Gonzalo Martínez<sup>2</sup>
|
| 39 |
+
Fernando Moral<sup>3</sup>
|
| 40 |
+
Elena Merino-Gómez<sup>4</sup>
|
| 41 |
+
Pedro Reviriego<sup>1</sup>
|
| 42 |
+
</div>
|
| 43 |
+
<div align="center"; style="font-size: 1.3em; font-style: italic;">
|
| 44 |
+
<sup>1</sup>Universidad Politécnica de Madrid, <sup>2</sup>Universidad Carlos III de Madrid, <sup>3</sup>Universidad Antonio de Nebrija, <sup>4</sup>Universidad de Valladolid
|
| 45 |
+
</div>
|
| 46 |
+
</body>
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
BUTTONS = """
|
| 50 |
+
<head>
|
| 51 |
+
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-beta3/css/all.min.css">
|
| 52 |
+
<style>
|
| 53 |
+
.button-container {
|
| 54 |
+
display: flex;
|
| 55 |
+
justify-content: center;
|
| 56 |
+
gap: 10px;
|
| 57 |
+
margin-top: 10px;
|
| 58 |
+
}
|
| 59 |
+
.button-container a {
|
| 60 |
+
display: inline-flex;
|
| 61 |
+
align-items: center;
|
| 62 |
+
padding: 10px 20px;
|
| 63 |
+
border-radius: 30px;
|
| 64 |
+
border: 1px solid #ccc;
|
| 65 |
+
text-decoration: none;
|
| 66 |
+
color: #333 !important;
|
| 67 |
+
font-size: 16px;
|
| 68 |
+
text-decoration: none !important;
|
| 69 |
+
}
|
| 70 |
+
.button-container a i {
|
| 71 |
+
margin-right: 8px;
|
| 72 |
+
}
|
| 73 |
+
</style>
|
| 74 |
+
</head>
|
| 75 |
+
<div class="button-container">
|
| 76 |
+
<a href="https://arxiv.org/abs/2407.09549" class="btn btn-outline-primary">
|
| 77 |
+
<i class="fa-solid fa-file-pdf"></i> Paper
|
| 78 |
+
</a>
|
| 79 |
+
<a href="https://zenodo.org/records/11574941" class="btn btn-outline-secondary">
|
| 80 |
+
<i class="fa-regular fa-folder-open"></i> Zenodo
|
| 81 |
+
</a>
|
| 82 |
+
</div>
|
| 83 |
+
"""
|
| 84 |
+
|
| 85 |
+
DESCRIPTION = """
|
| 86 |
+
# 🌟 Official Demo: GenAI Evaluation KDD2024 🌟
|
| 87 |
+
|
| 88 |
+
Welcome to our official demo for our [research paper](https://arxiv.org/abs/2407.09549) presented at the KDD conference workshop on [Evaluation and Trustworthiness of Generative AI Models](https://genai-evaluation-kdd2024.github.io/genai-evalution-kdd2024/).
|
| 89 |
+
|
| 90 |
+
## 🚀 How to Use
|
| 91 |
+
|
| 92 |
+
1. 📤 Upload an image or choose from our examples from the [WikiArt dataset](https://huggingface.co/datasets/huggan/wikiart) used in our paper.
|
| 93 |
+
2. 🎭 Select the mask size for your image.
|
| 94 |
+
3. 🔄 Choose the number of iterations (more iterations = longer processing time).
|
| 95 |
+
4. 🖱️ Click "Submit" and wait for the results!
|
| 96 |
+
|
| 97 |
+
## 📊 Results
|
| 98 |
+
|
| 99 |
+
You'll see the resulting images in the gallery on the right, along with the [LPIPS (Learned Perceptual Image Patch Similarity)](https://github.com/richzhang/PerceptualSimilarity) metric results for each image.
|
| 100 |
+
"""
|
| 101 |
+
|
| 102 |
+
ARTICLE = """
|
| 103 |
+
## **🎨✨To cite our work**
|
| 104 |
+
|
| 105 |
+
```bibtex
|
| 106 |
+
@misc{conde2024stablestablediffusionrecursive,
|
| 107 |
+
title={How Stable is Stable Diffusion under Recursive InPainting (RIP)?},
|
| 108 |
+
author={Javier Conde and Miguel González and Gonzalo Martínez and Fernando Moral and Elena Merino-Gómez and Pedro Reviriego},
|
| 109 |
+
year={2024},
|
| 110 |
+
eprint={2407.09549},
|
| 111 |
+
archivePrefix={arXiv},
|
| 112 |
+
primaryClass={cs.CV},
|
| 113 |
+
url={https://arxiv.org/abs/2407.09549},
|
| 114 |
+
}
|
| 115 |
+
```
|
| 116 |
+
"""
|
| 117 |
+
|
| 118 |
+
CUSTOM_CSS = """
|
| 119 |
+
#centered {
|
| 120 |
+
display: flex;
|
| 121 |
+
justify-content: center;
|
| 122 |
+
width: 60%;
|
| 123 |
+
margin: 0 auto;
|
| 124 |
+
}
|
| 125 |
+
"""
|
| 126 |
+
|
| 127 |
+
@spaces.GPU(duration=180)
|
| 128 |
+
def lpips_distance(img1: Image.Image, img2: Image.Image) -> Tuple[float, float, float]:
|
| 129 |
+
def preprocess(img: Image.Image) -> torch.Tensor:
|
| 130 |
+
if isinstance(img, torch.Tensor):
|
| 131 |
+
return img.float() if img.dim() == 3 else img.unsqueeze(0).float()
|
| 132 |
+
return transforms.ToTensor()(img).unsqueeze(0)
|
| 133 |
+
|
| 134 |
+
tensor_img1, tensor_img2 = map(preprocess, (img1, img2))
|
| 135 |
+
resize = transforms.Resize(TARGET_SIZE)
|
| 136 |
+
tensor_img1, tensor_img2 = map(lambda x: resize(x).to(DEVICE), (tensor_img1, tensor_img2))
|
| 137 |
+
|
| 138 |
+
loss_fns = {model: lpips.LPIPS(net=model, verbose=False).to(DEVICE) for model in LPIPS_MODELS}
|
| 139 |
+
|
| 140 |
+
with torch.no_grad():
|
| 141 |
+
distances = [loss_fns[model](tensor_img1, tensor_img2).item() for model in LPIPS_MODELS]
|
| 142 |
+
|
| 143 |
+
return tuple(distances)
|
| 144 |
+
|
| 145 |
+
def create_square_mask(image: Image.Image, square_size: int = 256) -> Image.Image:
|
| 146 |
+
img_array = np.array(image)
|
| 147 |
+
height, width = img_array.shape[:2]
|
| 148 |
+
mask = np.zeros((height, width), dtype=np.uint8)
|
| 149 |
+
max_y, max_x = max(0, height - square_size), max(0, width - square_size)
|
| 150 |
+
start_y, start_x = random.randint(0, max_y), random.randint(0, max_x)
|
| 151 |
+
end_y, end_x = min(start_y + square_size, height), min(start_x + square_size, width)
|
| 152 |
+
mask[start_y:end_y, start_x:end_x] = 255
|
| 153 |
+
return Image.fromarray(mask)
|
| 154 |
+
|
| 155 |
+
def adjust_size(image: Image.Image) -> Tuple[Image.Image, Image.Image, Image.Image]:
|
| 156 |
+
mask_image = Image.new("RGB", image.size, (255, 255, 255))
|
| 157 |
+
nmask_image = Image.new("RGB", image.size, (0, 0, 0))
|
| 158 |
+
new_image = ImageOps.pad(image, TARGET_SIZE, Image.LANCZOS, (255, 255, 255), (0.5, 0.5))
|
| 159 |
+
mask_image = ImageOps.pad(mask_image, TARGET_SIZE, Image.LANCZOS, (100, 100, 100), (0.5, 0.5))
|
| 160 |
+
nmask_image = ImageOps.pad(nmask_image, TARGET_SIZE, Image.LANCZOS, (100, 100, 100), (0.5, 0.5))
|
| 161 |
+
return new_image, mask_image, nmask_image
|
| 162 |
+
|
| 163 |
+
def execute_experiment(image: Image.Image, iterations: int, mask_size: str) -> Tuple[List[Image.Image], pd.DataFrame]:
|
| 164 |
+
mask_size = MASK_SIZES[mask_size]
|
| 165 |
+
image = adjust_size(load_image(image))[0]
|
| 166 |
+
results = [image]
|
| 167 |
+
lpips_distance_dict = {model: [] for model in LPIPS_MODELS}
|
| 168 |
+
lpips_distance_dict['iteration'] = []
|
| 169 |
+
|
| 170 |
+
for iteration in range(iterations):
|
| 171 |
+
results.append(inpaint_image("", results[-1], create_square_mask(results[-1], square_size=mask_size)))
|
| 172 |
+
distances = lpips_distance(results[0], results[-1])
|
| 173 |
+
for model, distance in zip(LPIPS_MODELS, distances):
|
| 174 |
+
lpips_distance_dict[model].append(distance)
|
| 175 |
+
lpips_distance_dict["iteration"].append(iteration + 1)
|
| 176 |
+
|
| 177 |
+
lpips_df = pd.DataFrame(lpips_distance_dict)
|
| 178 |
+
lpips_df = lpips_df.melt(id_vars="iteration", var_name="model", value_name="lpips")
|
| 179 |
+
lpips_df["iteration"] = lpips_df["iteration"].astype(str)
|
| 180 |
+
return results, lpips_df
|
| 181 |
+
|
| 182 |
+
@spaces.GPU(duration=180)
|
| 183 |
+
def inpaint_image(prompt: str, image: Image.Image, mask_image: Image.Image) -> Image.Image:
|
| 184 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
| 185 |
+
"stabilityai/stable-diffusion-2-inpainting",
|
| 186 |
+
torch_dtype=torch.float16,
|
| 187 |
+
).to(DEVICE)
|
| 188 |
+
return pipe(prompt=prompt, image=image, mask_image=mask_image).images[0]
|
| 189 |
+
|
| 190 |
+
def create_gradio_interface():
|
| 191 |
+
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Default(primary_hue="red", secondary_hue="blue")) as demo:
|
| 192 |
+
gr.Markdown(TITLE)
|
| 193 |
+
gr.Markdown(AUTHORS)
|
| 194 |
+
gr.HTML(BUTTONS)
|
| 195 |
+
gr.Markdown(DESCRIPTION)
|
| 196 |
+
|
| 197 |
+
with gr.Row():
|
| 198 |
+
with gr.Column():
|
| 199 |
+
files = gr.Image(
|
| 200 |
+
elem_id="image_upload",
|
| 201 |
+
type="pil",
|
| 202 |
+
height=500,
|
| 203 |
+
sources=["upload", "clipboard"],
|
| 204 |
+
label="Upload"
|
| 205 |
+
)
|
| 206 |
+
iterations = gr.Slider(MIN_ITERATIONS, MAX_ITERATIONS, value=DEFAULT_ITERATIONS, label="Iterations", step=1)
|
| 207 |
+
mask_size = gr.Radio(list(MASK_SIZES.keys()), value=DEFAULT_MASK_SIZE, label="Mask Size")
|
| 208 |
+
submit = gr.Button("Submit")
|
| 209 |
+
|
| 210 |
+
with gr.Column():
|
| 211 |
+
gallery = gr.Gallery(label="Generated Images")
|
| 212 |
+
lineplot = gr.LinePlot(
|
| 213 |
+
label="LPIPS Distance",
|
| 214 |
+
x="iteration",
|
| 215 |
+
y="lpips",
|
| 216 |
+
color="model",
|
| 217 |
+
overlay_point=True,
|
| 218 |
+
width=500,
|
| 219 |
+
height=500,
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
submit.click(
|
| 223 |
+
fn=execute_experiment,
|
| 224 |
+
inputs=[files, iterations, mask_size],
|
| 225 |
+
outputs=[gallery, lineplot]
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
gr.Examples(
|
| 229 |
+
examples=[
|
| 230 |
+
["./examples/example_1.jpg"],
|
| 231 |
+
["./examples/example_2.jpg"],
|
| 232 |
+
["./examples/example_3.jpeg"],
|
| 233 |
+
["./examples/example_4.jpg"],
|
| 234 |
+
["./examples/example_5.jpg"],
|
| 235 |
+
["./examples/example_6.jpg"],
|
| 236 |
+
["./examples/example_7.jpg"],
|
| 237 |
+
["./examples/example_8.jpg"],
|
| 238 |
+
],
|
| 239 |
+
inputs=[files],
|
| 240 |
+
cache_examples=False,
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
gr.Markdown(ARTICLE)
|
| 244 |
+
|
| 245 |
+
return demo
|
| 246 |
+
|
| 247 |
+
if __name__ == "__main__":
|
| 248 |
+
demo = create_gradio_interface()
|
| 249 |
+
demo.launch()
|
examples/example_1.jpg
ADDED
|
examples/example_2.jpg
ADDED
|
examples/example_3.jpeg
ADDED
|
examples/example_4.jpg
ADDED
|
examples/example_5.jpg
ADDED
|
examples/example_6.jpg
ADDED
|
examples/example_7.jpg
ADDED
|
examples/example_8.jpg
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
lpips
|
| 2 |
+
diffusers
|
| 3 |
+
gradio==4.37.2
|
| 4 |
+
numpy==1.24.3
|
| 5 |
+
pandas==2.1.4
|
| 6 |
+
Pillow==9.4.0
|
| 7 |
+
PyYAML==6.0
|
| 8 |
+
transformers
|