Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,12 +7,14 @@ from langchain.embeddings import HuggingFaceEmbeddings
|
|
| 7 |
from langchain.vectorstores import FAISS
|
| 8 |
from langchain_core.vectorstores import InMemoryVectorStore
|
| 9 |
from groq import Groq
|
|
|
|
| 10 |
|
| 11 |
logging.basicConfig(level=logging.INFO)
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
| 14 |
client = Groq(api_key="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")
|
| 15 |
|
|
|
|
| 16 |
|
| 17 |
embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
|
| 18 |
vector_store = InMemoryVectorStore(embeddings)
|
|
@@ -24,7 +26,7 @@ def process_pdf_with_langchain(pdf_path):
|
|
| 24 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 25 |
split_documents = text_splitter.split_documents(documents)
|
| 26 |
|
| 27 |
-
vectorstore = FAISS.from_documents(split_documents,
|
| 28 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 29 |
return retriever
|
| 30 |
except Exception as e:
|
|
@@ -49,7 +51,6 @@ def generate_response(query, retriever=None):
|
|
| 49 |
|
| 50 |
context += f"\n\nYou: {query}\nParvizGPT:"
|
| 51 |
|
| 52 |
-
# ابتدا یک پیام موقت نمایش داده شود
|
| 53 |
response = "در حال پردازش..."
|
| 54 |
|
| 55 |
retries = 3
|
|
@@ -71,9 +72,6 @@ def generate_response(query, retriever=None):
|
|
| 71 |
logger.error(f"Error generating response: {e}")
|
| 72 |
return f"Error: {e}"
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
def gradio_interface(user_message, chat_box, pdf_file=None):
|
| 78 |
global retriever
|
| 79 |
if pdf_file is not None:
|
|
@@ -108,4 +106,4 @@ with gr.Blocks() as interface:
|
|
| 108 |
user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file], outputs=chat_box)
|
| 109 |
clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
|
| 110 |
|
| 111 |
-
interface.launch()
|
|
|
|
| 7 |
from langchain.vectorstores import FAISS
|
| 8 |
from langchain_core.vectorstores import InMemoryVectorStore
|
| 9 |
from groq import Groq
|
| 10 |
+
from langchain.memory import ConversationBufferMemory # Import memory
|
| 11 |
|
| 12 |
logging.basicConfig(level=logging.INFO)
|
| 13 |
logger = logging.getLogger(__name__)
|
| 14 |
|
| 15 |
client = Groq(api_key="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")
|
| 16 |
|
| 17 |
+
memory = ConversationBufferMemory()
|
| 18 |
|
| 19 |
embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
|
| 20 |
vector_store = InMemoryVectorStore(embeddings)
|
|
|
|
| 26 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 27 |
split_documents = text_splitter.split_documents(documents)
|
| 28 |
|
| 29 |
+
vectorstore = FAISS.from_documents(split_documents, embeddings)
|
| 30 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 31 |
return retriever
|
| 32 |
except Exception as e:
|
|
|
|
| 51 |
|
| 52 |
context += f"\n\nYou: {query}\nParvizGPT:"
|
| 53 |
|
|
|
|
| 54 |
response = "در حال پردازش..."
|
| 55 |
|
| 56 |
retries = 3
|
|
|
|
| 72 |
logger.error(f"Error generating response: {e}")
|
| 73 |
return f"Error: {e}"
|
| 74 |
|
|
|
|
|
|
|
|
|
|
| 75 |
def gradio_interface(user_message, chat_box, pdf_file=None):
|
| 76 |
global retriever
|
| 77 |
if pdf_file is not None:
|
|
|
|
| 106 |
user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file], outputs=chat_box)
|
| 107 |
clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
|
| 108 |
|
| 109 |
+
interface.launch()
|