Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,7 +8,6 @@ from langchain.document_loaders import PyPDFLoader
|
|
| 8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 9 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 10 |
from langchain.vectorstores import FAISS
|
| 11 |
-
from langchain_core.vectorstores import InMemoryVectorStore
|
| 12 |
from groq import Groq
|
| 13 |
from langchain.memory import ConversationBufferMemory
|
| 14 |
|
|
@@ -28,7 +27,6 @@ client = Groq(api_key=groq_api_key)
|
|
| 28 |
hf_token = hf_api_key
|
| 29 |
|
| 30 |
embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
|
| 31 |
-
vector_store = InMemoryVectorStore(embeddings)
|
| 32 |
|
| 33 |
DATASET_NAME = "chat_history"
|
| 34 |
try:
|
|
@@ -51,13 +49,17 @@ def save_chat_to_dataset(user_message, bot_message):
|
|
| 51 |
logger.error(f"Error saving chat history to dataset: {e}")
|
| 52 |
|
| 53 |
def process_pdf_with_langchain(pdf_path):
|
|
|
|
| 54 |
try:
|
|
|
|
| 55 |
loader = PyPDFLoader(pdf_path)
|
| 56 |
documents = loader.load()
|
|
|
|
| 57 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 58 |
split_documents = text_splitter.split_documents(documents)
|
| 59 |
-
|
| 60 |
vectorstore = FAISS.from_documents(split_documents, embeddings)
|
|
|
|
| 61 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 62 |
return retriever
|
| 63 |
except Exception as e:
|
|
@@ -65,6 +67,7 @@ def process_pdf_with_langchain(pdf_path):
|
|
| 65 |
raise
|
| 66 |
|
| 67 |
def generate_response(query, memory, retriever=None, use_pdf_context=False):
|
|
|
|
| 68 |
try:
|
| 69 |
knowledge = ""
|
| 70 |
|
|
@@ -88,7 +91,6 @@ def generate_response(query, memory, retriever=None, use_pdf_context=False):
|
|
| 88 |
context += f"\n\nYou: {query}\nParvizGPT:"
|
| 89 |
|
| 90 |
response = "در حال پردازش..."
|
| 91 |
-
|
| 92 |
retries = 3
|
| 93 |
for attempt in range(retries):
|
| 94 |
try:
|
|
@@ -109,7 +111,9 @@ def generate_response(query, memory, retriever=None, use_pdf_context=False):
|
|
| 109 |
return f"Error: {e}", memory
|
| 110 |
|
| 111 |
def gradio_interface(user_message, chat_box, memory, pdf_file=None, use_pdf_context=False):
|
|
|
|
| 112 |
global retriever
|
|
|
|
| 113 |
if pdf_file is not None and use_pdf_context:
|
| 114 |
try:
|
| 115 |
retriever = process_pdf_with_langchain(pdf_file.name)
|
|
@@ -117,7 +121,6 @@ def gradio_interface(user_message, chat_box, memory, pdf_file=None, use_pdf_cont
|
|
| 117 |
return chat_box + [("Error", f"Error processing PDF: {e}")], memory
|
| 118 |
|
| 119 |
chat_box.append(("ParvizGPT", "در حال پردازش..."))
|
| 120 |
-
|
| 121 |
response, memory = generate_response(user_message, memory, retriever=retriever, use_pdf_context=use_pdf_context)
|
| 122 |
|
| 123 |
chat_box[-1] = ("You", user_message)
|
|
@@ -128,6 +131,7 @@ def gradio_interface(user_message, chat_box, memory, pdf_file=None, use_pdf_cont
|
|
| 128 |
return chat_box, memory
|
| 129 |
|
| 130 |
def clear_memory(memory):
|
|
|
|
| 131 |
memory.clear()
|
| 132 |
return [], memory
|
| 133 |
|
|
@@ -137,7 +141,7 @@ with gr.Blocks() as interface:
|
|
| 137 |
gr.Markdown("## ParvizGPT")
|
| 138 |
chat_box = gr.Chatbot(label="Chat History", value=[])
|
| 139 |
user_message = gr.Textbox(label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True)
|
| 140 |
-
use_pdf_context = gr.Checkbox(label="Use PDF Context", value=False, interactive=True)
|
| 141 |
clear_memory_btn = gr.Button("Clear Memory", interactive=True)
|
| 142 |
pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True, scale=1)
|
| 143 |
submit_btn = gr.Button("Submit")
|
|
|
|
| 8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 9 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 10 |
from langchain.vectorstores import FAISS
|
|
|
|
| 11 |
from groq import Groq
|
| 12 |
from langchain.memory import ConversationBufferMemory
|
| 13 |
|
|
|
|
| 27 |
hf_token = hf_api_key
|
| 28 |
|
| 29 |
embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
|
|
|
|
| 30 |
|
| 31 |
DATASET_NAME = "chat_history"
|
| 32 |
try:
|
|
|
|
| 49 |
logger.error(f"Error saving chat history to dataset: {e}")
|
| 50 |
|
| 51 |
def process_pdf_with_langchain(pdf_path):
|
| 52 |
+
"""Process a PDF file and create a FAISS retriever."""
|
| 53 |
try:
|
| 54 |
+
# Load the PDF
|
| 55 |
loader = PyPDFLoader(pdf_path)
|
| 56 |
documents = loader.load()
|
| 57 |
+
|
| 58 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 59 |
split_documents = text_splitter.split_documents(documents)
|
| 60 |
+
|
| 61 |
vectorstore = FAISS.from_documents(split_documents, embeddings)
|
| 62 |
+
|
| 63 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 64 |
return retriever
|
| 65 |
except Exception as e:
|
|
|
|
| 67 |
raise
|
| 68 |
|
| 69 |
def generate_response(query, memory, retriever=None, use_pdf_context=False):
|
| 70 |
+
"""Generate a response using the Groq model and retrieved PDF context."""
|
| 71 |
try:
|
| 72 |
knowledge = ""
|
| 73 |
|
|
|
|
| 91 |
context += f"\n\nYou: {query}\nParvizGPT:"
|
| 92 |
|
| 93 |
response = "در حال پردازش..."
|
|
|
|
| 94 |
retries = 3
|
| 95 |
for attempt in range(retries):
|
| 96 |
try:
|
|
|
|
| 111 |
return f"Error: {e}", memory
|
| 112 |
|
| 113 |
def gradio_interface(user_message, chat_box, memory, pdf_file=None, use_pdf_context=False):
|
| 114 |
+
"""Handle the Gradio interface interactions."""
|
| 115 |
global retriever
|
| 116 |
+
|
| 117 |
if pdf_file is not None and use_pdf_context:
|
| 118 |
try:
|
| 119 |
retriever = process_pdf_with_langchain(pdf_file.name)
|
|
|
|
| 121 |
return chat_box + [("Error", f"Error processing PDF: {e}")], memory
|
| 122 |
|
| 123 |
chat_box.append(("ParvizGPT", "در حال پردازش..."))
|
|
|
|
| 124 |
response, memory = generate_response(user_message, memory, retriever=retriever, use_pdf_context=use_pdf_context)
|
| 125 |
|
| 126 |
chat_box[-1] = ("You", user_message)
|
|
|
|
| 131 |
return chat_box, memory
|
| 132 |
|
| 133 |
def clear_memory(memory):
|
| 134 |
+
"""Clear the conversation memory."""
|
| 135 |
memory.clear()
|
| 136 |
return [], memory
|
| 137 |
|
|
|
|
| 141 |
gr.Markdown("## ParvizGPT")
|
| 142 |
chat_box = gr.Chatbot(label="Chat History", value=[])
|
| 143 |
user_message = gr.Textbox(label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True)
|
| 144 |
+
use_pdf_context = gr.Checkbox(label="Use PDF Context", value=False, interactive=True)
|
| 145 |
clear_memory_btn = gr.Button("Clear Memory", interactive=True)
|
| 146 |
pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True, scale=1)
|
| 147 |
submit_btn = gr.Button("Submit")
|