Spaces:
Running
Running
| import gradio as gr | |
| from langchain.document_loaders import PyPDFLoader | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from langchain.embeddings import SentenceTransformerEmbeddings | |
| from langchain.vectorstores import FAISS | |
| from langchain.memory import ConversationBufferMemory | |
| from groq import Groq | |
| import requests | |
| from bs4 import BeautifulSoup | |
| client = Groq(api_key="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") | |
| embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") | |
| memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
| def process_pdf_with_langchain(pdf_path): | |
| loader = PyPDFLoader(pdf_path) | |
| documents = loader.load() | |
| text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50) | |
| split_documents = text_splitter.split_documents(documents) | |
| vectorstore = FAISS.from_documents(split_documents, embedding_model) | |
| retriever = vectorstore.as_retriever(search_kwargs={"k": 3}) | |
| return retriever | |
| SERPAPI_KEY = "8a20e83850a3be0a0b4e3aed98bd3addbad56e82d52e639e1a692a02d021bca1" | |
| def scrape_google_search(query, num_results=3): | |
| params = { | |
| "q": query, | |
| "hl": "fa", | |
| "gl": "ir", | |
| "num": num_results, | |
| "api_key": SERPAPI_KEY, | |
| } | |
| search = GoogleSearch(params) | |
| results = search.get_dict() | |
| if "error" in results: | |
| return f"Error: {results['error']}" | |
| search_results = [] | |
| for result in results.get("organic_results", []): | |
| title = result.get("title", "No Title") | |
| link = result.get("link", "No Link") | |
| search_results.append(f"{title}: {link}") | |
| return "\n".join(search_results) if search_results else "No results found" | |
| def generate_response(query, retriever=None, use_web_search=False): | |
| knowledge = "" | |
| if retriever: | |
| relevant_docs = retriever.get_relevant_documents(query) | |
| knowledge += "\n".join([doc.page_content for doc in relevant_docs]) | |
| if use_web_search: | |
| web_results = scrape_google_search(query) | |
| knowledge += f"\n\nWeb Search Results:\n{web_results}" | |
| chat_history = memory.load_memory_variables({}).get("chat_history", "") | |
| context = ( | |
| f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from Kermanshah University of Technology (KUT), " | |
| f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making." | |
| ) | |
| if knowledge: | |
| context += f"\n\nRelevant Knowledge:\n{knowledge}" | |
| if chat_history: | |
| context += f"\n\nChat History:\n{chat_history}" | |
| context += f"\n\nYou: {query}\nParvizGPT:" | |
| chat_completion = client.chat.completions.create( | |
| messages=[{"role": "user", "content": context}], | |
| model="llama-3.3-70b-versatile", | |
| ) | |
| response = chat_completion.choices[0].message.content.strip() | |
| memory.save_context({"input": query}, {"output": response}) | |
| return response | |
| def gradio_interface(user_message, chat_box, pdf_file=None, enable_web_search=False): | |
| global retriever | |
| if pdf_file is not None: | |
| try: | |
| retriever = process_pdf_with_langchain(pdf_file.name) | |
| except Exception as e: | |
| return chat_box + [("Error", f"Error processing PDF: {e}")] | |
| response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search) | |
| chat_box.append(("You", user_message)) | |
| chat_box.append(("ParvizGPT", response)) | |
| return chat_box | |
| def clear_memory(): | |
| memory.clear() | |
| return [] | |
| retriever = None | |
| with gr.Blocks() as interface: | |
| gr.Markdown("## ParvizGPT") | |
| # with gr.Row(): | |
| chat_box = gr.Chatbot(label="Chat History", value=[]) | |
| # with gr.Row(): | |
| user_message = gr.Textbox( | |
| label="Your Message", | |
| placeholder="Type your message here and press Enter...", | |
| lines=1, | |
| interactive=True, | |
| ) | |
| enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False) | |
| # with gr.Row(): | |
| clear_memory_btn = gr.Button("Clear Memory", interactive=True) | |
| # enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False, interactive=True) | |
| pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True , scale=1) | |
| submit_btn = gr.Button("Submit") | |
| submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search], outputs=chat_box) | |
| user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search], outputs=chat_box) | |
| clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box) | |
| interface.launch() |