Spaces:
Running
Running
| # import gradio as gr | |
| # from groq import Groq | |
| # client = Groq( | |
| # api_key=("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"), | |
| # ) | |
| # def generate_response(input_text): | |
| # chat_completion = client.chat.completions.create( | |
| # messages=[ | |
| # { | |
| # "role": "user", | |
| # "content": input_text, | |
| # } | |
| # ], | |
| # model="llama3-8b-8192", | |
| # ) | |
| # return chat_completion.choices[0].message.content | |
| # custom_css = """ | |
| # body { | |
| # background-color: #f5f5f5; | |
| # font-family: 'Arial', sans-serif; | |
| # color: #333; | |
| # } | |
| # .gradio-container { | |
| # border-radius: 12px; | |
| # padding: 20px; | |
| # background-color: #ffffff; | |
| # box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1); | |
| # } | |
| # input[type="text"], textarea { | |
| # border-radius: 10px; | |
| # border: 1px solid #ddd; | |
| # padding: 12px; | |
| # width: 100%; | |
| # font-size: 14px; | |
| # color: #333; | |
| # background-color: #f9f9f9; | |
| # } | |
| # button { | |
| # background-color: #007bff; | |
| # color: white; | |
| # border: none; | |
| # padding: 12px 24px; | |
| # border-radius: 10px; | |
| # cursor: pointer; | |
| # font-size: 14px; | |
| # font-weight: bold; | |
| # } | |
| # button:hover { | |
| # background-color: #0056b3; | |
| # } | |
| # h1 { | |
| # font-weight: 600; | |
| # color: #333; | |
| # } | |
| # textarea { | |
| # resize: none; | |
| # } | |
| # """ | |
| # iface = gr.Interface( | |
| # fn=generate_response, | |
| # inputs=gr.Textbox(label="ورودی" , lines=2, placeholder="اینجا یه چی بپرس... "), | |
| # outputs=gr.Textbox(label="جواب"), | |
| # title="💬 Parviz Chatbot", | |
| # description="زنده باد", | |
| # theme="dark", | |
| # allow_flagging="never" | |
| # ) | |
| # iface.launch() | |
| # import gradio as gr | |
| # from groq import Groq | |
| # import time | |
| # client = Groq(api_key="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") | |
| # def generate_response(message, chat_history): | |
| # chat_completion = client.chat.completions.create( | |
| # messages=[{"role": "user", "content": message}], | |
| # model="llama3-8b-8192", | |
| # ) | |
| # bot_message = chat_completion.choices[0].message.content | |
| # for i in range(0, len(bot_message), 10): | |
| # yield chat_history + [(message, bot_message[:i + 10])] | |
| # time.sleep(0.1) | |
| # yield chat_history + [(message, bot_message)] | |
| # with gr.Blocks() as demo: | |
| # gr.Markdown("<h1 style='text-align: center;'>💬 Parviz Chatbot</h1><p style='text-align: center; color: #e0e0e0;'>زنده باد</p>") | |
| # chatbot = gr.Chatbot(label="جواب") | |
| # msg = gr.Textbox(label="ورودی", placeholder="اینجا یه چی بپرس... ", lines=1) | |
| # msg.submit(generate_response, [msg, chatbot], chatbot) | |
| # clear = gr.ClearButton([msg, chatbot]) | |
| # demo.launch() | |
| import gradio as gr | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, GenerationConfig | |
| import re | |
| import time | |
| tokenizer = AutoTokenizer.from_pretrained("universitytehran/PersianMind-v1.0") | |
| model = AutoModelForSeq2SeqLM.from_pretrained("universitytehran/PersianMind-v1.0") | |
| def generate_response(message, chat_history): | |
| TEMPLATE = "{context}\nYou: {prompt}\nParvizGPT " | |
| CONTEXT = "This is a conversation with ParvizGPT. It is an artificial intelligence model designed by Amir Mahdi Parviz " \ | |
| "NLP expert to help you with various tasks such as answering questions, " \ | |
| "providing recommendations, and helping with decision making. You can ask it anything you want and " \ | |
| "it will do its best to give you accurate and relevant information." | |
| prompt = TEMPLATE.format(context=CONTEXT, prompt=message) | |
| generation_config = GenerationConfig( | |
| max_new_tokens=128, | |
| do_sample=True, | |
| top_k=50, | |
| top_p=0.95, | |
| temperature=0.8, | |
| repetition_penalty=1.2 | |
| ) | |
| tokenized_test_text = tokenizer(prompt, return_tensors='pt').input_ids.to("cpu") | |
| model.to("cpu") | |
| outputs = model.generate(tokenized_test_text, generation_config=generation_config, max_new_tokens=128) | |
| result = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
| for i in range(0, len(result), 10): | |
| yield chat_history + [(message, result[:i + 10])] | |
| time.sleep(0.1) | |
| yield chat_history + [(message, result)] | |
| with gr.Blocks() as demo: | |
| gr.Markdown("<h1 style='text-align: center;'>💬 Parviz GPT</h1><p style='text-align: center;'>made by A.M.Parviz \</p>") | |
| chatbot = gr.Chatbot(label="جواب") | |
| msg = gr.Textbox(label="ورودی", placeholder="سوال خودتو رو بپرس", lines=1) | |
| msg.submit(generate_response, [msg, chatbot], chatbot) | |
| clear = gr.ClearButton([msg, chatbot]) | |
| demo.launch() | |