Spaces:
Running
Running
| import gradio as gr | |
| from langchain.document_loaders import PyPDFLoader | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from langchain.embeddings import SentenceTransformerEmbeddings | |
| from langchain.vectorstores import FAISS | |
| from langchain.memory import ConversationBufferMemory | |
| from groq import Groq | |
| import requests | |
| from bs4 import BeautifulSoup | |
| import time | |
| client = Groq(api_key="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") | |
| embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") | |
| memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
| def process_pdf_with_langchain(pdf_path, progress_callback): | |
| # progress_callback("Initializing PDF processing... 0%") | |
| time.sleep(0.5) | |
| loader = PyPDFLoader(pdf_path) | |
| # progress_callback("Loading PDF... 20%") | |
| documents = loader.load() | |
| time.sleep(0.5) | |
| # progress_callback("Splitting documents... 50%") | |
| text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50) | |
| split_documents = text_splitter.split_documents(documents) | |
| time.sleep(0.5) | |
| # progress_callback("Creating vector store... 80%") | |
| vectorstore = FAISS.from_documents(split_documents, embedding_model) | |
| retriever = vectorstore.as_retriever(search_kwargs={"k": 3}) | |
| progress_callback("Processing complete! 100%") | |
| return retriever | |
| def scrape_google_search(query, num_results=3): | |
| headers = {"User-Agent": "Mozilla/5.0"} | |
| search_url = f"https://www.google.com/search?q={query}" | |
| response = requests.get(search_url, headers=headers) | |
| soup = BeautifulSoup(response.text, "html.parser") | |
| results = [] | |
| for g in soup.find_all('div', class_='tF2Cxc')[:num_results]: | |
| title = g.find('h3').text | |
| link = g.find('a')['href'] | |
| results.append(f"{title}: {link}") | |
| return "\n".join(results) | |
| def generate_response(query, retriever=None, use_web_search=False): | |
| knowledge = "" | |
| if retriever: | |
| relevant_docs = retriever.get_relevant_documents(query) | |
| knowledge += "\n".join([doc.page_content for doc in relevant_docs]) | |
| if use_web_search: | |
| web_results = scrape_google_search(query) | |
| knowledge += f"\n\nWeb Search Results:\n{web_results}" | |
| chat_history = memory.load_memory_variables({}).get("chat_history", "") | |
| context = ( | |
| f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from Kermanshah University of Technology (KUT), " | |
| f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making." | |
| ) | |
| if knowledge: | |
| context += f"\n\nRelevant Knowledge:\n{knowledge}" | |
| if chat_history: | |
| context += f"\n\nChat History:\n{chat_history}" | |
| context += f"\n\nYou: {query}\nParvizGPT:" | |
| chat_completion = client.chat.completions.create( | |
| messages=[{"role": "user", "content": context}], | |
| model="llama-3.3-70b-versatile", | |
| ) | |
| response = chat_completion.choices[0].message.content.strip() | |
| memory.save_context({"input": query}, {"output": response}) | |
| return response | |
| def upload_and_process(file, progress_display): | |
| try: | |
| global retriever | |
| progress_updates = [] | |
| retriever = process_pdf_with_langchain(file.name, lambda msg: progress_updates.append(msg)) | |
| return "\n".join(progress_updates), "File uploaded and processed successfully." | |
| except Exception as e: | |
| return "", f"Error processing file: {e}" | |
| def gradio_interface(user_message, chat_box, enable_web_search=False): | |
| global retriever | |
| response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search) | |
| chat_box.append(("You", user_message)) | |
| chat_box.append(("ParvizGPT", response)) | |
| return chat_box | |
| def clear_memory(): | |
| memory.clear() | |
| return [] | |
| retriever = None | |
| with gr.Blocks() as interface: | |
| gr.Markdown("## ParvizGPT") | |
| with gr.Row(): | |
| chat_box = gr.Chatbot(label="Chat History", value=[]) | |
| with gr.Row(): | |
| user_message = gr.Textbox( | |
| label="Your Message", | |
| placeholder="Type your message here and press Enter...", | |
| lines=1, | |
| interactive=True, | |
| ) | |
| with gr.Row(): | |
| clear_memory_btn = gr.Button("Clear Memory", interactive=True) | |
| enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False, interactive=True) | |
| with gr.Row(): | |
| pdf_upload = gr.UploadButton(label="📄 Upload Your PDF", file_types=[".pdf"]) | |
| progress_display = gr.Textbox(label="Progress", placeholder="Progress updates will appear here", interactive=True) | |
| with gr.Row(): | |
| submit_btn = gr.Button("Submit") | |
| pdf_upload.upload(upload_and_process, inputs=[pdf_upload, progress_display], outputs=[progress_display]) | |
| submit_btn.click(gradio_interface, inputs=[user_message, chat_box, enable_web_search], outputs=chat_box) | |
| user_message.submit(gradio_interface, inputs=[user_message, chat_box, enable_web_search], outputs=chat_box) | |
| clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box) | |
| interface.launch() |