Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,27 +1,25 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
-
import
|
| 3 |
import spacy
|
| 4 |
-
from
|
| 5 |
-
from
|
|
|
|
| 6 |
import torch
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
-
import numpy as np
|
| 9 |
-
from faiss import IndexFlatL2, normalize_L2
|
| 10 |
-
from langchain.llms import OpenAI
|
| 11 |
-
from langchain.chains import ConversationalRetrievalChain
|
| 12 |
|
| 13 |
# Load and preprocess PDF text
|
| 14 |
def extract_text_from_pdf(pdf_path):
|
| 15 |
text = ""
|
| 16 |
-
with
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
| 20 |
return text
|
| 21 |
|
| 22 |
# Extract text from the PDF
|
| 23 |
-
|
| 24 |
-
pdf_text = extract_text_from_pdf(pdf_path)
|
| 25 |
|
| 26 |
# Convert the text to a DataFrame
|
| 27 |
df = pd.DataFrame({'text': [pdf_text]})
|
|
@@ -38,7 +36,7 @@ class CustomEmbeddingModel:
|
|
| 38 |
embeddings = self.model(**inputs).last_hidden_state.mean(dim=1)
|
| 39 |
return embeddings[0].numpy()
|
| 40 |
|
| 41 |
-
embedding_model = CustomEmbeddingModel('
|
| 42 |
|
| 43 |
# Load Spacy model for preprocessing
|
| 44 |
nlp = spacy.load("en_core_web_sm")
|
|
@@ -53,34 +51,13 @@ df['text'] = df['text'].apply(preprocess_text)
|
|
| 53 |
df['text_embeddings'] = df['text'].apply(lambda x: embedding_model.embed_text(x))
|
| 54 |
|
| 55 |
# Create FAISS vector store
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
normalize_L2(embeddings)
|
| 60 |
-
self.index.add(embeddings)
|
| 61 |
-
|
| 62 |
-
def search(self, query_embedding, k=1):
|
| 63 |
-
normalize_L2(query_embedding)
|
| 64 |
-
distances, indices = self.index.search(query_embedding, k)
|
| 65 |
-
return indices[0], distances[0]
|
| 66 |
-
|
| 67 |
-
embeddings = np.array(df['text_embeddings'].tolist())
|
| 68 |
-
vector_store = SimpleFAISSIndex(embeddings)
|
| 69 |
|
| 70 |
# Create LangChain model and chain
|
| 71 |
llm_model = OpenAI('gpt-3.5-turbo') # You can replace this with a different LLM if desired
|
| 72 |
-
|
| 73 |
-
class SimpleRetriever:
|
| 74 |
-
def __init__(self, vector_store, documents):
|
| 75 |
-
self.vector_store = vector_store
|
| 76 |
-
self.documents = documents
|
| 77 |
-
|
| 78 |
-
def retrieve(self, query):
|
| 79 |
-
query_embedding = embedding_model.embed_text(query).reshape(1, -1)
|
| 80 |
-
indices, _ = self.vector_store.search(query_embedding)
|
| 81 |
-
return [self.documents[idx] for idx in indices]
|
| 82 |
-
|
| 83 |
-
retriever = SimpleRetriever(vector_store, df['text'].tolist())
|
| 84 |
chain = ConversationalRetrievalChain.from_llm(llm_model, retriever=retriever)
|
| 85 |
|
| 86 |
# Function to generate a response
|
|
@@ -102,3 +79,4 @@ if __name__ == "__main__":
|
|
| 102 |
iface.launch()
|
| 103 |
|
| 104 |
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
+
import PyPDF2 # For PDF extraction
|
| 3 |
import spacy
|
| 4 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 5 |
+
from langchain.llms import OpenAI
|
| 6 |
+
from langchain.vectorstores import FAISS
|
| 7 |
import torch
|
| 8 |
+
from transformers import AutoTokenizer, AutoModel
|
| 9 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Load and preprocess PDF text
|
| 12 |
def extract_text_from_pdf(pdf_path):
|
| 13 |
text = ""
|
| 14 |
+
with open(pdf_path, 'rb') as pdf_file:
|
| 15 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 16 |
+
for page_num in range(len(pdf_reader.pages)):
|
| 17 |
+
page = pdf_reader.pages[page_num]
|
| 18 |
+
text += page.extract_text()
|
| 19 |
return text
|
| 20 |
|
| 21 |
# Extract text from the PDF
|
| 22 |
+
pdf_text = extract_text_from_pdf('Getting_Started_with_Ubuntu_16.04.pdf') # Replace with your PDF path
|
|
|
|
| 23 |
|
| 24 |
# Convert the text to a DataFrame
|
| 25 |
df = pd.DataFrame({'text': [pdf_text]})
|
|
|
|
| 36 |
embeddings = self.model(**inputs).last_hidden_state.mean(dim=1)
|
| 37 |
return embeddings[0].numpy()
|
| 38 |
|
| 39 |
+
embedding_model = CustomEmbeddingModel('distilbert-base-uncased') # Replace with your model name
|
| 40 |
|
| 41 |
# Load Spacy model for preprocessing
|
| 42 |
nlp = spacy.load("en_core_web_sm")
|
|
|
|
| 51 |
df['text_embeddings'] = df['text'].apply(lambda x: embedding_model.embed_text(x))
|
| 52 |
|
| 53 |
# Create FAISS vector store
|
| 54 |
+
documents = df['text'].tolist()
|
| 55 |
+
embeddings = df['text_embeddings'].tolist()
|
| 56 |
+
vector_store = FAISS.from_documents(documents, embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
# Create LangChain model and chain
|
| 59 |
llm_model = OpenAI('gpt-3.5-turbo') # You can replace this with a different LLM if desired
|
| 60 |
+
retriever = vector_store.as_retriever()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
chain = ConversationalRetrievalChain.from_llm(llm_model, retriever=retriever)
|
| 62 |
|
| 63 |
# Function to generate a response
|
|
|
|
| 79 |
iface.launch()
|
| 80 |
|
| 81 |
|
| 82 |
+
|