Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
import fitz # PyMuPDF for PDF extraction
|
| 3 |
import spacy
|
| 4 |
-
from langchain.
|
|
|
|
|
|
|
| 5 |
import torch
|
| 6 |
from transformers import AutoTokenizer, AutoModel
|
| 7 |
import gradio as gr
|
| 8 |
-
from langchain_community.vectorstores import FAISS
|
| 9 |
-
|
| 10 |
|
| 11 |
# Load and preprocess PDF text
|
| 12 |
def extract_text_from_pdf(pdf_path):
|
|
@@ -18,13 +18,12 @@ def extract_text_from_pdf(pdf_path):
|
|
| 18 |
return text
|
| 19 |
|
| 20 |
# Extract text from the PDF
|
| 21 |
-
pdf_text = extract_text_from_pdf('Getting Started with Ubuntu 16.04.pdf')
|
| 22 |
-
|
| 23 |
|
| 24 |
# Convert the text to a DataFrame
|
| 25 |
df = pd.DataFrame({'text': [pdf_text]})
|
| 26 |
|
| 27 |
-
#
|
| 28 |
class CustomEmbeddingModel:
|
| 29 |
def __init__(self, model_name):
|
| 30 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
@@ -39,7 +38,7 @@ class CustomEmbeddingModel:
|
|
| 39 |
embedding_model = CustomEmbeddingModel('distilbert-base-uncased') # Replace with your model name
|
| 40 |
|
| 41 |
# Load Spacy model for preprocessing
|
| 42 |
-
nlp = spacy.load("en_core_web_sm")
|
| 43 |
|
| 44 |
def preprocess_text(text):
|
| 45 |
doc = nlp(text)
|
|
@@ -55,16 +54,15 @@ documents = df['text'].tolist()
|
|
| 55 |
embeddings = df['text_embeddings'].tolist()
|
| 56 |
vector_store = FAISS.from_documents(documents, embeddings)
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
# Function to generate a response
|
| 59 |
-
def generate_response(
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
# Find the closest document in the vector store
|
| 63 |
-
distances, indices = vector_store.search(query_embedding, k=1) # k=1 for the closest document
|
| 64 |
-
if indices:
|
| 65 |
-
response = documents[indices[0]]
|
| 66 |
-
else:
|
| 67 |
-
response = "No relevant information found."
|
| 68 |
return response
|
| 69 |
|
| 70 |
# Gradio interface
|
|
@@ -79,3 +77,4 @@ iface = gr.Interface(
|
|
| 79 |
if __name__ == "__main__":
|
| 80 |
iface.launch()
|
| 81 |
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import fitz # PyMuPDF for PDF extraction
|
| 3 |
import spacy
|
| 4 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 5 |
+
from langchain.llms import OpenAI
|
| 6 |
+
from langchain_community.vectorstores import FAISS # Updated import
|
| 7 |
import torch
|
| 8 |
from transformers import AutoTokenizer, AutoModel
|
| 9 |
import gradio as gr
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Load and preprocess PDF text
|
| 12 |
def extract_text_from_pdf(pdf_path):
|
|
|
|
| 18 |
return text
|
| 19 |
|
| 20 |
# Extract text from the PDF
|
| 21 |
+
pdf_text = extract_text_from_pdf('Getting Started with Ubuntu 16.04.pdf') # Ensure this path is correct
|
|
|
|
| 22 |
|
| 23 |
# Convert the text to a DataFrame
|
| 24 |
df = pd.DataFrame({'text': [pdf_text]})
|
| 25 |
|
| 26 |
+
# Load the custom embedding model
|
| 27 |
class CustomEmbeddingModel:
|
| 28 |
def __init__(self, model_name):
|
| 29 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
| 38 |
embedding_model = CustomEmbeddingModel('distilbert-base-uncased') # Replace with your model name
|
| 39 |
|
| 40 |
# Load Spacy model for preprocessing
|
| 41 |
+
nlp = spacy.load("en_core_web_sm") # Ensure the model is installed
|
| 42 |
|
| 43 |
def preprocess_text(text):
|
| 44 |
doc = nlp(text)
|
|
|
|
| 54 |
embeddings = df['text_embeddings'].tolist()
|
| 55 |
vector_store = FAISS.from_documents(documents, embeddings)
|
| 56 |
|
| 57 |
+
# Create LangChain model and chain
|
| 58 |
+
llm_model = OpenAI('gpt-3.5-turbo') # You can replace this with a different LLM if desired
|
| 59 |
+
retriever = vector_store.as_retriever()
|
| 60 |
+
chain = ConversationalRetrievalChain.from_llm(llm_model, retriever=retriever)
|
| 61 |
+
|
| 62 |
# Function to generate a response
|
| 63 |
+
def generate_response(prompt):
|
| 64 |
+
result = chain({"query": prompt})
|
| 65 |
+
response = result["result"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
return response
|
| 67 |
|
| 68 |
# Gradio interface
|
|
|
|
| 77 |
if __name__ == "__main__":
|
| 78 |
iface.launch()
|
| 79 |
|
| 80 |
+
|