control1 / app.py
Fred808's picture
Update app.py
19f193d verified
raw
history blame
40.6 kB
import os
import json
from datetime import datetime
import asyncio
import aiohttp
from typing import Dict, List, Optional
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, HttpUrl
import uvicorn
from git_clone import clone_repository
# ===== CONFIG =====
class Settings:
# Server URLs and Ports
CONTROLLER_HOST = "0.0.0.0" # Listen on all interfaces
CONTROLLER_PORT = 8000
# This should be the actual IP or hostname where controller is accessible
CONTROLLER_BASE_URL = os.getenv("CONTROLLER_BASE_URL", "http://192.168.1.100:8000")
# List of tensor server URLs - should be actual IP addresses or hostnames
TENSOR_SERVER_URLS = os.getenv("TENSOR_SERVER_URLS", "").split(",") or [
"https://fred808-ilob.hf.space",
"https://fred808-tserv.hf.space",
"https://fred808-tserve2.hf.space"
]
AGGREGATOR_URL = os.getenv("AGGREGATOR_URL", "http://192.168.1.104:8002")
# Model settings
MODEL_REPO = "https://huggingface.co/facebook/opt-125m"
# Server settings
TENSOR_SERVER_TIMEOUT = 30 # seconds
MAX_ERROR_THRESHOLD = 5 # maximum number of errors
SERVER_TIMEOUT = 60 # seconds before marking as error
MONITORING_INTERVAL = 15 # seconds between health checks
# Dynamic distribution settings
@classmethod
def get_optimal_chunk_size(cls, total_params: int, num_servers: int) -> int:
"""Calculate optimal chunk size based on number of servers"""
# Aim for 2-3 chunks per server for better parallelism
target_chunks = num_servers * 2
return max(1, total_params // target_chunks)
@classmethod
def get_min_servers_required(cls) -> int:
"""Dynamically calculate minimum servers needed based on registered servers"""
return max(2, len(cls.TENSOR_SERVER_URLS) // 3) # At least 1/3 of registered servers
@classmethod
def get_min_replica_count(cls, num_servers: int) -> int:
"""Calculate minimum replicas based on server count"""
return max(2, num_servers // 4) # At least 25% of servers should have each chunk
# Tokenizer settings
MAX_SEQUENCE_LENGTH = 2048
VOCAB_SIZE = 50257
@classmethod
def from_env(cls):
"""Load settings from environment variables"""
cls.CONTROLLER_HOST = os.getenv("CONTROLLER_HOST", cls.CONTROLLER_HOST)
cls.CONTROLLER_PORT = int(os.getenv("CONTROLLER_PORT", cls.CONTROLLER_PORT))
cls.CONTROLLER_BASE_URL = os.getenv("CONTROLLER_BASE_URL", cls.CONTROLLER_BASE_URL)
# Load tensor server URLs from environment
tensor_urls = os.getenv("TENSOR_SERVER_URLS")
if tensor_urls:
cls.TENSOR_SERVER_URLS = tensor_urls.split(",")
cls.AGGREGATOR_HOST = os.getenv("AGGREGATOR_HOST", cls.AGGREGATOR_HOST)
cls.AGGREGATOR_PORT = int(os.getenv("AGGREGATOR_PORT", cls.AGGREGATOR_PORT))
cls.AGGREGATOR_URL = os.getenv("AGGREGATOR_URL",
f"http://{cls.AGGREGATOR_HOST}:{cls.AGGREGATOR_PORT}")
return cls
# ===== State Models =====
class ServerMetrics(BaseModel):
"""Metrics for tensor server performance and load"""
cpu_usage: float = 0.0
memory_usage: float = 0.0
gpu_usage: Optional[float] = None
active_requests: int = 0
total_requests: int = 0
average_response_time: float = 0.0
last_error: Optional[str] = None
error_count: int = 0
class TensorServer(BaseModel):
"""Represents a registered tensor server"""
url: HttpUrl
status: str = "initializing" # initializing, ready, busy, error, degraded
last_heartbeat: datetime = datetime.now()
model_chunks: List[int] = [] # List of chunk IDs assigned to this server
metrics: ServerMetrics = ServerMetrics()
version: str = "1.0.0"
capabilities: Dict[str, bool] = {
"gpu_available": False,
"quantization_support": False,
"tensor_parallelism": False
}
class ModelChunk(BaseModel):
"""Represents a chunk of the model to be sent to a tensor server"""
chunk_id: int
files: List[str] # files included in this chunk
config: Dict # configuration for this chunk
size_bytes: int = 0
server_assignments: List[str] = [] # URLs of servers holding this chunk
status: str = "unassigned" # unassigned, assigned, loaded, error
metrics: Dict[str, float] = {
"load_time": 0.0,
"memory_usage": 0.0,
"average_inference_time": 0.0
}
# ===== FastAPI App =====
app = FastAPI(
title="Florence-2 Model Controller",
description="Controls model distribution across tensor servers",
version="1.0.0"
)
# ===== Global State =====
class ControllerState:
def __init__(self):
self.model_files: Dict[str, str] = {} # Mapping of filename to file path
self.model_config: Dict = {} # Model configuration
self.tensor_servers: Dict[str, TensorServer] = {}
self.model_chunks: Dict[int, ModelChunk] = {}
self.is_model_loaded = False
self.operation_results: Dict[str, Dict] = {} # Track operation results from tensor servers
self.pending_operations: Dict[str, asyncio.Task] = {} # Track ongoing operations
state = ControllerState()
# ===== Helper Functions =====
async def split_model_weights():
"""Split model weights into chunks based on available servers"""
try:
import torch
import math
# Load the full model weights
model_file = next(f for f in state.model_files.values() if f.endswith('.safetensors') or f.endswith('.bin'))
weights = torch.load(model_file, map_location='cpu')
# Calculate total model size and chunks
total_size_bytes = sum(p.nelement() * p.element_size() for p in weights.values())
num_servers = len(state.tensor_servers) or len(Settings.TENSOR_SERVER_URLS)
# Determine optimal number of chunks based on server count
# If 2 servers -> 2 chunks (500MB each for 1GB)
# If 3 servers -> 3 chunks (333MB each for 1GB)
num_chunks = num_servers
bytes_per_chunk = math.ceil(total_size_bytes / num_chunks)
print(f"[INFO] Total model size: {total_size_bytes / (1024*1024*1024):.2f} GB")
print(f"[INFO] Available servers: {num_servers}")
print(f"[INFO] Creating {num_chunks} chunks")
print(f"[INFO] Target chunk size: {bytes_per_chunk / (1024*1024):.2f} MB")
current_chunk = []
current_chunk_size = 0
chunk_id = 0
chunk_sizes = [] # Track actual chunk sizes for verification
# Sort weights by size for better distribution
sorted_weights = sorted(
weights.items(),
key=lambda x: x[1].nelement() * x[1].element_size(),
reverse=True
)
for key, tensor in weights.items():
tensor_size = tensor.numel()
# Calculate tensor size in bytes
tensor_size = tensor.nelement() * tensor.element_size()
# If adding this tensor would exceed chunk size and we have tensors in current chunk
if (current_chunk_size + tensor_size > bytes_per_chunk and current_chunk) or \
(chunk_id == num_chunks - 1): # Last chunk gets remaining tensors
# Save current chunk
chunk_path = os.path.join(state.model_path, f"chunk_{chunk_id}.safetensors")
chunk_weights = {k: weights[k] for k in current_chunk}
torch.save(chunk_weights, chunk_path)
# Calculate chunk stats
chunk_total_size = sum(weights[k].nelement() * weights[k].element_size()
for k in current_chunk)
chunk_sizes.append(chunk_total_size)
# Create chunk metadata
state.model_chunks[chunk_id] = ModelChunk(
chunk_id=chunk_id,
files=[f"chunk_{chunk_id}.safetensors"],
config={
"weight_keys": current_chunk,
"size_bytes": chunk_total_size,
"num_parameters": sum(weights[k].nelement() for k in current_chunk),
"input_size": weights[current_chunk[0]].size(1) if len(current_chunk) > 0 else 0,
"output_size": weights[current_chunk[-1]].size(0) if len(current_chunk) > 0 else 0
}
)
print(f"[INFO] Created chunk {chunk_id}: {chunk_total_size / (1024*1024):.2f} MB, "
f"{len(current_chunk)} tensors")
# Reset for next chunk
current_chunk = []
current_chunk_size = 0
chunk_id += 1
# If we've created all chunks except last one, put remaining tensors in last chunk
if chunk_id == num_chunks - 1:
remaining_tensors = [k for k, _ in sorted_weights if k not in sum([c.config["weight_keys"]
for c in state.model_chunks.values()], [])]
current_chunk.extend(remaining_tensors)
continue
# Add tensor to current chunk
current_chunk.append(key)
current_chunk_size += tensor_size
# Save last chunk if not empty
if current_chunk:
chunk_path = os.path.join(state.model_path, f"chunk_{chunk_id}.safetensors")
chunk_weights = {k: weights[k] for k in current_chunk}
torch.save(chunk_weights, chunk_path)
# Calculate final chunk stats
chunk_total_size = sum(weights[k].nelement() * weights[k].element_size()
for k in current_chunk)
chunk_sizes.append(chunk_total_size)
state.model_chunks[chunk_id] = ModelChunk(
chunk_id=chunk_id,
files=[f"chunk_{chunk_id}.safetensors"],
config={
"weight_keys": current_chunk,
"size_bytes": chunk_total_size,
"num_parameters": sum(weights[k].nelement() for k in current_chunk),
"input_size": weights[current_chunk[0]].size(1),
"output_size": weights[current_chunk[-1]].size(0)
}
)
print(f"[INFO] Created final chunk {chunk_id}: {chunk_total_size / (1024*1024):.2f} MB, "
f"{len(current_chunk)} tensors")
# Verify distribution
total_size_actual = sum(chunk_sizes)
size_std_dev = torch.tensor(chunk_sizes).std().item() / (1024*1024) # MB
size_mean = torch.tensor(chunk_sizes).mean().item() / (1024*1024) # MB
print(f"\n[INFO] Distribution Summary:")
print(f"- Total model size: {total_size_actual / (1024*1024*1024):.2f} GB")
print(f"- Number of chunks: {len(state.model_chunks)}")
print(f"- Average chunk size: {size_mean:.2f} MB")
print(f"- Chunk size std dev: {size_std_dev:.2f} MB")
print(f"- Size variation: {(size_std_dev/size_mean*100):.1f}%")
# Verify all weights were distributed
all_distributed = set(sum([c.config["weight_keys"] for c in state.model_chunks.values()], []))
if len(all_distributed) != len(weights):
missing = set(weights.keys()) - all_distributed
print(f"[WARN] Some weights were not distributed: {missing}")
return True
except Exception as e:
print(f"[ERROR] Failed to split model weights: {str(e)}")
return False
async def send_chunk_to_server(server_url: str, chunk_id: int, chunk_info: Dict):
"""Send a model chunk to a tensor server"""
try:
print(f"[INFO] Sending chunk {chunk_id} to server {server_url}")
chunk_path = os.path.join(state.model_path, f"chunk_{chunk_id}.safetensors")
if not os.path.exists(chunk_path):
raise Exception(f"Chunk file not found: {chunk_path}")
chunk_data = {
'chunk_id': chunk_id,
'files': [f"chunk_{chunk_id}.safetensors"],
'config': chunk_info['config']
}
async with aiohttp.ClientSession() as session:
async with session.post(
f"{server_url}/load_chunk",
json=chunk_data,
timeout=Settings.TENSOR_SERVER_TIMEOUT
) as response:
if response.status != 200:
error_msg = await response.text()
raise Exception(f"Failed to load chunk: {error_msg}")
result = await response.json()
print(f"[INFO] Successfully loaded chunk {chunk_id} to {server_url}")
return True
except Exception as e:
print(f"[ERROR] Failed to send chunk {chunk_id} to {server_url}: {str(e)}")
return False
async def distribute_model_chunks():
"""Distribute model chunks across available tensor servers"""
try:
available_servers = [
server for server in state.tensor_servers.values()
if server.status in ["ready", "busy"] and server.metrics.error_count < Settings.MAX_ERROR_THRESHOLD
]
min_required = Settings.get_min_servers_required()
if len(available_servers) < min_required:
raise Exception(f"Not enough healthy servers. Need {min_required}, got {len(available_servers)}")
# Create or update weight chunks based on current server count
if not state.model_chunks or len(state.model_chunks) > len(available_servers) * 3:
if not await split_model_weights():
raise Exception("Failed to split model weights")
# Prepare for parallel distribution
tasks = []
min_replicas = Settings.get_min_replica_count(len(available_servers))
chunks_per_server = len(state.model_chunks) / len(available_servers)
print(f"[INFO] Distributing chunks with min {min_replicas} replicas per chunk")
print(f"[INFO] Target chunks per server: {chunks_per_server:.1f}")
# Distribute chunks
for chunk_id, chunk in state.model_chunks.items():
# Calculate optimal number of replicas based on chunk size and server capacity
target_replicas = max(min_replicas,
int(chunks_per_server * len(available_servers) / len(state.model_chunks)))
current_assignments = set(chunk.server_assignments)
current_healthy = [url for url in current_assignments
if state.tensor_servers[url].status in ["ready", "busy"]]
# Remove unhealthy assignments
chunk.server_assignments = current_healthy
# Add new assignments if needed
while len(chunk.server_assignments) < target_replicas:
# Find least loaded eligible server
eligible_servers = [
server for server in available_servers
if str(server.url) not in chunk.server_assignments
and len(server.model_chunks) < (len(state.model_chunks) / len(available_servers) * 1.5)
]
if not eligible_servers:
break
# Sort by load and error count
eligible_servers.sort(key=lambda s: (
len(s.model_chunks),
s.metrics.error_count,
s.metrics.cpu_usage
))
# Assign to best server
best_server = eligible_servers[0]
chunk.server_assignments.append(str(best_server.url))
best_server.model_chunks.append(chunk_id)
print(f"[INFO] Assigned chunk {chunk_id} to server {best_server.url}")
return True
except Exception as e:
print(f"[ERROR] Failed to distribute model chunks: {str(e)}")
return False
async def monitor_tensor_servers():
"""Periodically check health and update metrics of all tensor servers"""
while True:
for server_url, server in state.tensor_servers.items():
try:
# Check basic health
is_healthy = await check_tensor_server_health(server_url)
if not is_healthy:
server.status = "error"
server.metrics.error_count += 1
print(f"[WARN] Server {server_url} is unhealthy")
continue
# Get detailed metrics
async with aiohttp.ClientSession() as session:
async with session.get(f"{server_url}/metrics", timeout=Settings.TENSOR_SERVER_TIMEOUT) as response:
if response.status == 200:
metrics = await response.json()
server.metrics = ServerMetrics(**metrics)
# Update server status based on metrics
if server.metrics.error_count > Settings.MAX_ERROR_THRESHOLD:
server.status = "degraded"
elif server.metrics.cpu_usage > 90 or server.metrics.memory_usage > 90:
server.status = "busy"
else:
server.status = "ready"
server.last_heartbeat = datetime.now()
except Exception as e:
print(f"[ERROR] Failed to monitor server {server_url}: {str(e)}")
server.status = "error"
server.metrics.last_error = str(e)
server.metrics.error_count += 1
# Check for servers that haven't responded in a while
current_time = datetime.now()
for server_url, server in state.tensor_servers.items():
if (current_time - server.last_heartbeat).seconds > Settings.SERVER_TIMEOUT:
print(f"[WARN] Server {server_url} hasn't responded in {Settings.SERVER_TIMEOUT} seconds")
server.status = "error"
await asyncio.sleep(Settings.MONITORING_INTERVAL)
def get_next_model_version(base_dir: str, model_name: str) -> int:
"""Get the next available version number for the model"""
existing_versions = []
model_base_dir = os.path.join(base_dir, model_name)
if os.path.exists(model_base_dir):
for d in os.listdir(model_base_dir):
if d.startswith('v') and d[1:].isdigit():
existing_versions.append(int(d[1:]))
return max(existing_versions + [0]) + 1
def check_existing_model(model_path: str) -> bool:
"""Check if a model exists and has required files"""
if not os.path.exists(model_path):
return False
# Check for essential files
required_files = ['config.json']
model_files = os.listdir(model_path)
# Check for any weight files
has_weights = any(f.endswith(('.bin', '.safetensors')) for f in model_files)
return all(f in model_files for f in required_files) and has_weights
async def download_model_files():
"""Downloads the model files using git clone from Hugging Face repository"""
try:
print(f"[INFO] Processing model from {Settings.MODEL_REPO}...")
# Create models directory
models_dir = os.path.join(os.getcwd(), "models")
os.makedirs(models_dir, exist_ok=True)
print(f"[INFO] Models directory: {models_dir}")
# Get the model name from the repository URL
model_name = Settings.MODEL_REPO.split('/')[-1]
# Create versioned model directory
version = get_next_model_version(models_dir, model_name)
model_base_dir = os.path.join(models_dir, model_name)
model_version_dir = os.path.join(model_base_dir, f"v{version}")
# Check if previous version exists and is valid
if version > 1:
prev_version_dir = os.path.join(model_base_dir, f"v{version-1}")
if check_existing_model(prev_version_dir):
print(f"[INFO] Using existing model from {prev_version_dir}")
model_path = prev_version_dir
state.is_model_loaded = True
else:
# Clone new version if previous is invalid or incomplete
os.makedirs(model_version_dir, exist_ok=True)
success = clone_repository(Settings.MODEL_REPO, model_version_dir)
if not success:
raise Exception("Failed to clone repository")
model_path = model_version_dir
print(f"[INFO] Successfully cloned model to {model_path}")
else:
# First time download
os.makedirs(model_version_dir, exist_ok=True)
success = clone_repository(Settings.MODEL_REPO, model_version_dir)
if not success:
raise Exception("Failed to clone repository")
model_path = model_version_dir
print(f"[INFO] Successfully cloned model to {model_path}")
# Load and parse the config
config_path = os.path.join(model_path, "config.json")
if os.path.exists(config_path):
with open(config_path, 'r') as f:
state.model_config = json.load(f)
print("[INFO] Loaded model configuration")
print(f"[INFO] Model type: {state.model_config.get('model_type', 'unknown')}")
print(f"[INFO] Architecture: {state.model_config.get('architectures', ['unknown'])[0]}")
else:
print("[WARN] No config.json found in model directory")
# Scan for model files
print("[INFO] Scanning for model files...")
for root, _, files in os.walk(model_path):
for file in files:
if file.endswith(('.bin', '.json', '.safetensors')):
file_path = os.path.join(root, file)
state.model_files[file] = file_path
print(f"[INFO] Found model file: {file}")
if state.model_files:
state.is_model_loaded = True
print(f"[INFO] Model files found successfully! Total files: {len(state.model_files)}")
print(f"[INFO] Model location: {model_path}")
return True
else:
raise ValueError("No model files were found in the repository")
except Exception as e:
print(f"[ERROR] Failed to process model files: {e}")
state.is_model_loaded = False
raise
async def check_tensor_server_health(url: HttpUrl) -> bool:
"""Checks if a tensor server is healthy"""
try:
async with aiohttp.ClientSession() as session:
async with session.get(f"{url}/health", timeout=Settings.TENSOR_SERVER_TIMEOUT) as response:
return response.status == 200
except:
return False
# ===== API Endpoints =====
async def execute_tensor_operation(operation_id: str, server_url: HttpUrl, operation: str, data: Dict):
"""Execute an operation on a tensor server and wait for results"""
try:
async with aiohttp.ClientSession() as session:
# Start the operation
async with session.post(
f"{server_url}/{operation}",
json=data,
timeout=Settings.TENSOR_SERVER_TIMEOUT
) as response:
if response.status != 200:
error_msg = await response.text()
raise HTTPException(
status_code=response.status,
detail=f"Operation failed on server {server_url}: {error_msg}"
)
initial_response = await response.json()
if initial_response.get("status") == "completed":
# Operation completed immediately
state.operation_results[operation_id] = initial_response
return initial_response
# Operation is async, poll for results
while True:
await asyncio.sleep(1) # Poll interval
async with session.get(
f"{server_url}/operation/{initial_response['operation_id']}",
timeout=Settings.TENSOR_SERVER_TIMEOUT
) as status_response:
if status_response.status != 200:
raise HTTPException(
status_code=status_response.status,
detail=f"Failed to get operation status from {server_url}"
)
status_data = await status_response.json()
if status_data["status"] in ["completed", "failed"]:
state.operation_results[operation_id] = status_data
if status_data["status"] == "failed":
raise HTTPException(
status_code=500,
detail=f"Operation failed on server {server_url}: {status_data.get('error')}"
)
return status_data
except asyncio.TimeoutError:
raise HTTPException(
status_code=504,
detail=f"Operation timed out on server {server_url}"
)
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Error executing operation on {server_url}: {str(e)}"
)
@app.post("/execute/{operation}")
async def execute_operation(operation: str, data: Dict):
"""Execute an operation across tensor servers and collect results"""
operation_id = f"{operation}_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{len(state.operation_results)}"
# Get available servers with required chunks
available_servers = [
server for server in state.tensor_servers.values()
if server.status in ["ready", "busy"]
and server.metrics.error_count < Settings.MAX_ERROR_THRESHOLD
]
if not available_servers:
raise HTTPException(
status_code=503,
detail="No available tensor servers"
)
# Start operations on all relevant servers in parallel
tasks = []
for server in available_servers:
if operation in ["compute", "forward"]:
# For compute operations, only use servers with required chunks
required_chunks = data.get("required_chunks", [])
if not all(chunk_id in server.model_chunks for chunk_id in required_chunks):
continue
task = asyncio.create_task(
execute_tensor_operation(
f"{operation_id}_{server.url}",
server.url,
operation,
data
)
)
tasks.append(task)
state.pending_operations[f"{operation_id}_{server.url}"] = task
if not tasks:
raise HTTPException(
status_code=400,
detail="No servers available with required model chunks"
)
try:
# Wait for all operations to complete
results = await asyncio.gather(*tasks)
# Process and aggregate results
aggregated_result = {
"operation_id": operation_id,
"status": "completed",
"server_results": results,
"timestamp": datetime.now().isoformat()
}
# Clean up
for task_id in list(state.pending_operations.keys()):
if task_id.startswith(operation_id):
del state.pending_operations[task_id]
return aggregated_result
except Exception as e:
# Cancel any remaining tasks
for task in tasks:
if not task.done():
task.cancel()
# Clean up
for task_id in list(state.pending_operations.keys()):
if task_id.startswith(operation_id):
del state.pending_operations[task_id]
raise HTTPException(
status_code=500,
detail=f"Operation failed: {str(e)}"
)
@app.get("/operation/{operation_id}")
async def get_operation_status(operation_id: str):
"""Get the status of an operation"""
# Check completed operations
results = {
k: v for k, v in state.operation_results.items()
if k.startswith(operation_id)
}
if results:
return {
"operation_id": operation_id,
"status": "completed",
"results": results
}
# Check pending operations
pending = {
k: "running" for k in state.pending_operations.keys()
if k.startswith(operation_id)
}
if pending:
return {
"operation_id": operation_id,
"status": "running",
"pending_servers": list(pending.keys())
}
raise HTTPException(
status_code=404,
detail=f"Operation {operation_id} not found"
)
@app.get("/")
async def root():
"""Health check endpoint"""
return {
"status": "running",
"model_loaded": state.is_model_loaded,
"registered_servers": len(state.tensor_servers),
"downloaded_files": len(state.model_files),
"config_loaded": bool(state.model_config)
}
@app.get("/health")
async def health_check():
"""Detailed health check"""
return {
"status": "healthy",
"model_loaded": state.is_model_loaded,
"registered_servers": len(state.tensor_servers),
"downloaded_files": list(state.model_files.keys()),
"config_loaded": bool(state.model_config),
"model_type": state.model_config.get("model_type", "unknown")
}
@app.post("/register_tensor_server")
async def register_tensor_server(server_url: HttpUrl):
"""Register a new tensor server"""
if not await check_tensor_server_health(server_url):
raise HTTPException(status_code=400, detail="Tensor server is not healthy")
state.tensor_servers[str(server_url)] = TensorServer(url=server_url)
print(f"[INFO] Registered new tensor server at {server_url}")
# If model is loaded, automatically distribute chunks
if state.is_model_loaded:
print(f"[INFO] Model is loaded, starting distribution for new server {server_url}")
try:
# Create chunks if they don't exist
if not state.model_chunks:
if await split_model_weights():
print(f"[INFO] Successfully split model into {len(state.model_chunks)} chunks")
else:
print("[ERROR] Failed to split model weights")
# Distribute chunks
if await distribute_model_chunks():
print("[INFO] Successfully distributed chunks to tensor servers")
else:
print("[ERROR] Failed to distribute chunks")
except Exception as e:
print(f"[ERROR] Distribution error during server registration: {str(e)}")
return {
"status": "registered",
"registered_servers": len(state.tensor_servers),
"server_id": str(server_url),
"model_loaded": state.is_model_loaded,
"chunks_distributed": len(state.model_chunks) if state.model_chunks else 0
}
@app.delete("/unregister_tensor_server")
async def unregister_tensor_server(server_url: HttpUrl):
"""Unregister a tensor server"""
if str(server_url) in state.tensor_servers:
# Remove server assignments from chunks
for chunk in state.model_chunks.values():
if str(server_url) in chunk.server_assignments:
chunk.server_assignments.remove(str(server_url))
del state.tensor_servers[str(server_url)]
print(f"[INFO] Unregistered tensor server at {server_url}")
# Trigger redistribution of chunks
await distribute_model_chunks()
return {"status": "unregistered"}
raise HTTPException(status_code=404, detail="Server not found")
@app.get("/server/{server_url}/chunks")
async def get_server_chunks(server_url: HttpUrl):
"""Get the chunks assigned to a specific server"""
if str(server_url) not in state.tensor_servers:
raise HTTPException(status_code=404, detail="Server not found")
server = state.tensor_servers[str(server_url)]
assigned_chunks = [
state.model_chunks[chunk_id]
for chunk_id in server.model_chunks
]
return {
"server_status": server.status,
"assigned_chunks": assigned_chunks,
"metrics": server.metrics.dict()
}
@app.post("/redistribute")
async def redistribute_chunks():
"""Manually trigger redistribution of model chunks"""
success = await distribute_model_chunks()
if not success:
raise HTTPException(status_code=500, detail="Failed to redistribute chunks")
return {
"status": "redistributed",
"chunk_assignments": {
chunk_id: chunk.server_assignments
for chunk_id, chunk in state.model_chunks.items()
}
}
@app.get("/chunks/{chunk_id}/status")
async def get_chunk_status(chunk_id: int):
"""Get the status and assignments of a specific chunk"""
if chunk_id not in state.model_chunks:
raise HTTPException(status_code=404, detail="Chunk not found")
chunk = state.model_chunks[chunk_id]
return {
"chunk_id": chunk_id,
"status": chunk.status,
"server_assignments": chunk.server_assignments,
"metrics": chunk.metrics
}
@app.post("/initialize")
async def initialize_system():
"""Download model files and prepare for distribution"""
await download_model_files()
# Verify downloaded files
files_status = {}
total_size = 0
for filename, filepath in state.model_files.items():
exists = os.path.exists(filepath)
if exists:
size = os.path.getsize(filepath)
total_size += size
files_status[filename] = {"exists": exists, "size_bytes": size}
else:
files_status[filename] = {"exists": exists, "size_bytes": 0}
# Start model distribution if we have tensor servers
distribution_status = "not_started"
if state.tensor_servers:
print("[INFO] Starting automatic model distribution...")
try:
# Split model into chunks
if await split_model_weights():
print(f"[INFO] Successfully split model into {len(state.model_chunks)} chunks")
# Distribute chunks to servers
if await distribute_model_chunks():
print("[INFO] Successfully distributed chunks to tensor servers")
distribution_status = "completed"
else:
print("[ERROR] Failed to distribute chunks")
distribution_status = "distribution_failed"
else:
print("[ERROR] Failed to split model weights")
distribution_status = "split_failed"
except Exception as e:
print(f"[ERROR] Distribution error: {str(e)}")
distribution_status = f"error: {str(e)}"
else:
print("[INFO] No tensor servers registered yet. Will distribute when servers register.")
return {
"status": "initialized",
"model_loaded": state.is_model_loaded,
"files_status": files_status,
"total_size_bytes": total_size,
"config_loaded": bool(state.model_config),
"model_type": state.model_config.get("model_type", "unknown"),
"architecture": state.model_config.get("architectures", ["unknown"])[0],
"distribution_status": distribution_status,
"registered_servers": len(state.tensor_servers),
"chunks_created": len(state.model_chunks) if state.model_chunks else 0
}
# ===== Main Execution =====
@app.on_event("startup")
async def startup_event():
"""Initialize the server and start background tasks"""
print("[INFO] Initializing system...")
try:
# Initialize system and download model
await initialize_system()
print("[INFO] Model initialization complete")
# Try to connect to pre-configured tensor servers
connected_servers = []
print(f"[INFO] Attempting to connect to tensor servers...")
for url in Settings.TENSOR_SERVER_URLS:
try:
print(f"[INFO] Testing connection to {url}...")
if await check_tensor_server_health(url):
server = TensorServer(url=url)
state.tensor_servers[str(url)] = server
connected_servers.append(server)
print(f"[INFO] Successfully connected to tensor server at {url}")
except Exception as e:
print(f"[WARN] Failed to connect to tensor server {url}: {str(e)}")
if connected_servers:
print(f"[INFO] Connected to {len(connected_servers)} tensor servers")
# Split model into chunks
print("[INFO] Splitting model into chunks...")
if await split_model_weights():
print(f"[INFO] Successfully split model into {len(state.model_chunks)} chunks")
# Actively distribute chunks to servers
print("[INFO] Starting chunk distribution...")
distribution_tasks = []
for chunk_id, chunk in state.model_chunks.items():
# Send each chunk to at least 2 servers if available
target_servers = connected_servers[:2]
for server in target_servers:
print(f"[INFO] Preparing to send chunk {chunk_id} to {server.url}")
task = asyncio.create_task(
send_chunk_to_server(str(server.url), chunk_id, chunk)
)
distribution_tasks.append(task)
# Update assignments
if str(server.url) not in chunk.server_assignments:
chunk.server_assignments.append(str(server.url))
if chunk_id not in server.model_chunks:
server.model_chunks.append(chunk_id)
if distribution_tasks:
print(f"[INFO] Waiting for {len(distribution_tasks)} distribution tasks to complete...")
results = await asyncio.gather(*distribution_tasks, return_exceptions=True)
success_count = sum(1 for r in results if r is True)
print(f"[INFO] Successfully distributed {success_count} chunks out of {len(distribution_tasks)} attempts")
else:
print("[ERROR] Failed to split model weights")
else:
print("[WARN] No tensor servers available for distribution")
except Exception as e:
print(f"[ERROR] Startup error: {str(e)}")
# Start monitoring task
asyncio.create_task(monitor_tensor_servers())
print("[INFO] Server monitoring started")
if __name__ == "__main__":
port = int(os.getenv("PORT", 8000))
print(f"[INFO] Starting controller server on port {port}")
print(f"[INFO] API Documentation available at http://localhost:{port}/docs")
uvicorn.run(
"controller_server_new:app",
host="0.0.0.0",
port=port,
reload=False
)