File size: 39,507 Bytes
8a520fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501d5b0
 
 
19f193d
501d5b0
 
8a520fb
 
 
 
d3e88f3
8a520fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19f193d
8a520fb
 
 
 
 
19f193d
 
8a520fb
 
19f193d
 
 
 
 
 
 
8a520fb
19f193d
 
8a520fb
 
19f193d
8a520fb
19f193d
 
 
 
 
 
 
 
8a520fb
 
 
 
19f193d
 
 
 
 
 
 
8a520fb
 
19f193d
 
 
 
 
 
 
8a520fb
 
 
 
 
 
 
19f193d
 
 
 
8a520fb
 
 
19f193d
 
 
8a520fb
 
19f193d
8a520fb
19f193d
 
 
 
 
 
 
8a520fb
19f193d
8a520fb
19f193d
8a520fb
 
 
 
19f193d
 
 
 
 
 
 
8a520fb
 
 
 
 
 
19f193d
 
8a520fb
 
 
 
19f193d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a520fb
 
 
 
 
 
 
19f193d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a520fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3e88f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a520fb
 
 
d3e88f3
 
 
8a520fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3e88f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a520fb
 
 
 
 
 
 
d3e88f3
 
 
 
8a520fb
 
 
 
 
501d5b0
8a520fb
d3e88f3
 
 
 
 
501d5b0
 
 
19f193d
501d5b0
 
 
 
 
 
 
 
 
19f193d
501d5b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19f193d
501d5b0
19f193d
d3e88f3
 
8a520fb
501d5b0
8a520fb
 
 
 
 
 
 
 
 
 
 
4d4fb80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
import os
import json
from datetime import datetime
import asyncio
import aiohttp
from typing import Dict, List, Optional
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, HttpUrl
import uvicorn
from git_clone import clone_repository

# ===== CONFIG =====
class Settings:
    # Server URLs and Ports
    CONTROLLER_HOST = "0.0.0.0"  # Listen on all interfaces
    CONTROLLER_PORT = 8000
    # This should be the actual IP or hostname where controller is accessible
    CONTROLLER_BASE_URL = os.getenv("CONTROLLER_BASE_URL", "http://192.168.1.100:8000")

    # List of tensor server URLs - should be actual IP addresses or hostnames
    TENSOR_SERVER_URLS = [
        url for url in os.getenv("TENSOR_SERVER_URLS", "").split(",") if url
    ] or [
        "https://fred808-ilob.hf.space",
        "https://fred808-tserv.hf.space",
        "https://fred808-tserve2.hf.space",
    ]
    AGGREGATOR_URL = os.getenv("AGGREGATOR_URL", "http://192.168.1.104:8002")
    
    # Model settings
    MODEL_REPO = "https://huggingface.co/facebook/opt-125m"
    
    # Server settings
    TENSOR_SERVER_TIMEOUT = 30  # seconds
    MAX_ERROR_THRESHOLD = 5     # maximum number of errors
    SERVER_TIMEOUT = 60         # seconds before marking as error
    MONITORING_INTERVAL = 15    # seconds between health checks
    
    # Dynamic distribution settings
    @classmethod
    def get_optimal_chunk_size(cls, total_params: int, num_servers: int) -> int:
        """Calculate optimal chunk size based on number of servers"""
        # Aim for 2-3 chunks per server for better parallelism
        target_chunks = num_servers * 2
        return max(1, total_params // target_chunks)
    
    @classmethod
    def get_min_servers_required(cls) -> int:
        """Dynamically calculate minimum servers needed based on registered servers"""
        return max(2, len(cls.TENSOR_SERVER_URLS) // 3)  # At least 1/3 of registered servers
        
    @classmethod
    def get_min_replica_count(cls, num_servers: int) -> int:
        """Calculate minimum replicas based on server count"""
        return max(2, num_servers // 4)  # At least 25% of servers should have each chunk
    
    # Tokenizer settings
    MAX_SEQUENCE_LENGTH = 2048
    VOCAB_SIZE = 50257
    
    @classmethod
    def from_env(cls):
        """Load settings from environment variables"""
        cls.CONTROLLER_HOST = os.getenv("CONTROLLER_HOST", cls.CONTROLLER_HOST)
        cls.CONTROLLER_PORT = int(os.getenv("CONTROLLER_PORT", cls.CONTROLLER_PORT))
        cls.CONTROLLER_BASE_URL = os.getenv("CONTROLLER_BASE_URL", cls.CONTROLLER_BASE_URL)
        
        # Load tensor server URLs from environment
        tensor_urls = os.getenv("TENSOR_SERVER_URLS")
        if tensor_urls:
            cls.TENSOR_SERVER_URLS = tensor_urls.split(",")
            
        cls.AGGREGATOR_HOST = os.getenv("AGGREGATOR_HOST", cls.AGGREGATOR_HOST)
        cls.AGGREGATOR_PORT = int(os.getenv("AGGREGATOR_PORT", cls.AGGREGATOR_PORT))
        cls.AGGREGATOR_URL = os.getenv("AGGREGATOR_URL", 
            f"http://{cls.AGGREGATOR_HOST}:{cls.AGGREGATOR_PORT}")
        
        return cls

# ===== State Models =====
class ServerMetrics(BaseModel):
    """Metrics for tensor server performance and load"""
    cpu_usage: float = 0.0
    memory_usage: float = 0.0
    gpu_usage: Optional[float] = None
    active_requests: int = 0
    total_requests: int = 0
    average_response_time: float = 0.0
    last_error: Optional[str] = None
    error_count: int = 0

class TensorServer(BaseModel):
    """Represents a registered tensor server"""
    url: HttpUrl
    status: str = "initializing"  # initializing, ready, busy, error, degraded
    last_heartbeat: datetime = datetime.now()
    model_chunks: List[int] = []  # List of chunk IDs assigned to this server
    metrics: ServerMetrics = ServerMetrics()
    version: str = "1.0.0"
    capabilities: Dict[str, bool] = {
        "gpu_available": False,
        "quantization_support": False,
        "tensor_parallelism": False
    }
    
class ModelChunk(BaseModel):
    """Represents a chunk of the model to be sent to a tensor server"""
    chunk_id: int
    files: List[str]  # files included in this chunk
    config: Dict      # configuration for this chunk
    size_bytes: int = 0
    server_assignments: List[str] = []  # URLs of servers holding this chunk
    status: str = "unassigned"  # unassigned, assigned, loaded, error
    metrics: Dict[str, float] = {
        "load_time": 0.0,
        "memory_usage": 0.0,
        "average_inference_time": 0.0
    }

# ===== FastAPI App =====
app = FastAPI(
    title="Florence-2 Model Controller",
    description="Controls model distribution across tensor servers",
    version="1.0.0"
)

# ===== Global State =====
class ControllerState:
    def __init__(self):
        self.model_files: Dict[str, str] = {}  # Mapping of filename to file path
        self.model_config: Dict = {}           # Model configuration
        self.tensor_servers: Dict[str, TensorServer] = {}
        self.model_chunks: Dict[int, ModelChunk] = {}
        self.is_model_loaded = False
        self.operation_results: Dict[str, Dict] = {}  # Track operation results from tensor servers
        self.pending_operations: Dict[str, asyncio.Task] = {}  # Track ongoing operations
        
state = ControllerState()

# ===== Helper Functions =====
async def split_model_weights():
    """Split model weights into chunks based on available servers"""
    try:
        import torch
        import math
        
        # Load the full model weights
        model_file = next(f for f in state.model_files.values() if f.endswith('.safetensors') or f.endswith('.bin'))
        weights = torch.load(model_file, map_location='cpu')
        
        # Calculate total model size and chunks
        total_size_bytes = sum(p.nelement() * p.element_size() for p in weights.values())
        num_servers = len(state.tensor_servers) or len(Settings.TENSOR_SERVER_URLS)
        
        # Determine optimal number of chunks based on server count
        # If 2 servers -> 2 chunks (500MB each for 1GB)
        # If 3 servers -> 3 chunks (333MB each for 1GB)
        num_chunks = num_servers
        bytes_per_chunk = math.ceil(total_size_bytes / num_chunks)
        
        print(f"[INFO] Total model size: {total_size_bytes / (1024*1024*1024):.2f} GB")
        print(f"[INFO] Available servers: {num_servers}")
        print(f"[INFO] Creating {num_chunks} chunks")
        print(f"[INFO] Target chunk size: {bytes_per_chunk / (1024*1024):.2f} MB")
        
        current_chunk = []
        current_chunk_size = 0
        chunk_id = 0
        chunk_sizes = []  # Track actual chunk sizes for verification
        
        # Sort weights by size for better distribution
        sorted_weights = sorted(
            weights.items(),
            key=lambda x: x[1].nelement() * x[1].element_size(),
            reverse=True
        )
        
        for key, tensor in weights.items():
            tensor_size = tensor.numel()
            
            # Calculate tensor size in bytes
            tensor_size = tensor.nelement() * tensor.element_size()
            
            # If adding this tensor would exceed chunk size and we have tensors in current chunk
            if (current_chunk_size + tensor_size > bytes_per_chunk and current_chunk) or \
               (chunk_id == num_chunks - 1):  # Last chunk gets remaining tensors
                
                # Save current chunk
                chunk_path = os.path.join(state.model_path, f"chunk_{chunk_id}.safetensors")
                chunk_weights = {k: weights[k] for k in current_chunk}
                torch.save(chunk_weights, chunk_path)
                
                # Calculate chunk stats
                chunk_total_size = sum(weights[k].nelement() * weights[k].element_size() 
                                     for k in current_chunk)
                chunk_sizes.append(chunk_total_size)
                
                # Create chunk metadata
                state.model_chunks[chunk_id] = ModelChunk(
                    chunk_id=chunk_id,
                    files=[f"chunk_{chunk_id}.safetensors"],
                    config={
                        "weight_keys": current_chunk,
                        "size_bytes": chunk_total_size,
                        "num_parameters": sum(weights[k].nelement() for k in current_chunk),
                        "input_size": weights[current_chunk[0]].size(1) if len(current_chunk) > 0 else 0,
                        "output_size": weights[current_chunk[-1]].size(0) if len(current_chunk) > 0 else 0
                    }
                )
                
                print(f"[INFO] Created chunk {chunk_id}: {chunk_total_size / (1024*1024):.2f} MB, "
                      f"{len(current_chunk)} tensors")
                
                # Reset for next chunk
                current_chunk = []
                current_chunk_size = 0
                chunk_id += 1
                
                # If we've created all chunks except last one, put remaining tensors in last chunk
                if chunk_id == num_chunks - 1:
                    remaining_tensors = [k for k, _ in sorted_weights if k not in sum([c.config["weight_keys"] 
                                       for c in state.model_chunks.values()], [])]
                    current_chunk.extend(remaining_tensors)
                    continue
            
            # Add tensor to current chunk
            current_chunk.append(key)
            current_chunk_size += tensor_size
        
        # Save last chunk if not empty
        if current_chunk:
            chunk_path = os.path.join(state.model_path, f"chunk_{chunk_id}.safetensors")
            chunk_weights = {k: weights[k] for k in current_chunk}
            torch.save(chunk_weights, chunk_path)
            
            # Calculate final chunk stats
            chunk_total_size = sum(weights[k].nelement() * weights[k].element_size() 
                                 for k in current_chunk)
            chunk_sizes.append(chunk_total_size)
            
            state.model_chunks[chunk_id] = ModelChunk(
                chunk_id=chunk_id,
                files=[f"chunk_{chunk_id}.safetensors"],
                config={
                    "weight_keys": current_chunk,
                    "size_bytes": chunk_total_size,
                    "num_parameters": sum(weights[k].nelement() for k in current_chunk),
                    "input_size": weights[current_chunk[0]].size(1),
                    "output_size": weights[current_chunk[-1]].size(0)
                }
            )
            
            print(f"[INFO] Created final chunk {chunk_id}: {chunk_total_size / (1024*1024):.2f} MB, "
                  f"{len(current_chunk)} tensors")
        
        # Verify distribution
        total_size_actual = sum(chunk_sizes)
        size_std_dev = torch.tensor(chunk_sizes).std().item() / (1024*1024)  # MB
        size_mean = torch.tensor(chunk_sizes).mean().item() / (1024*1024)    # MB
        
        print(f"\n[INFO] Distribution Summary:")
        print(f"- Total model size: {total_size_actual / (1024*1024*1024):.2f} GB")
        print(f"- Number of chunks: {len(state.model_chunks)}")
        print(f"- Average chunk size: {size_mean:.2f} MB")
        print(f"- Chunk size std dev: {size_std_dev:.2f} MB")
        print(f"- Size variation: {(size_std_dev/size_mean*100):.1f}%")
        
        # Verify all weights were distributed
        all_distributed = set(sum([c.config["weight_keys"] for c in state.model_chunks.values()], []))
        if len(all_distributed) != len(weights):
            missing = set(weights.keys()) - all_distributed
            print(f"[WARN] Some weights were not distributed: {missing}")
        
        return True
        
    except Exception as e:
        print(f"[ERROR] Failed to split model weights: {str(e)}")
        return False

async def send_chunk_to_server(server_url: str, chunk_id: int, chunk_info: Dict):
    """Send a model chunk to a tensor server"""
    try:
        print(f"[INFO] Sending chunk {chunk_id} to server {server_url}")
        chunk_path = os.path.join(state.model_path, f"chunk_{chunk_id}.safetensors")
        
        if not os.path.exists(chunk_path):
            raise Exception(f"Chunk file not found: {chunk_path}")
            
        chunk_data = {
            'chunk_id': chunk_id,
            'files': [f"chunk_{chunk_id}.safetensors"],
            'config': chunk_info['config']
        }
        
        async with aiohttp.ClientSession() as session:
            async with session.post(
                f"{server_url}/load_chunk",
                json=chunk_data,
                timeout=Settings.TENSOR_SERVER_TIMEOUT
            ) as response:
                if response.status != 200:
                    error_msg = await response.text()
                    raise Exception(f"Failed to load chunk: {error_msg}")
                    
                result = await response.json()
                print(f"[INFO] Successfully loaded chunk {chunk_id} to {server_url}")
                return True
                
    except Exception as e:
        print(f"[ERROR] Failed to send chunk {chunk_id} to {server_url}: {str(e)}")
        return False

async def distribute_model_chunks():
    """Distribute model chunks across available tensor servers"""
    try:
        available_servers = [
            server for server in state.tensor_servers.values()
            if server.status in ["ready", "busy"] and server.metrics.error_count < Settings.MAX_ERROR_THRESHOLD
        ]
        
        min_required = Settings.get_min_servers_required()
        if len(available_servers) < min_required:
            raise Exception(f"Not enough healthy servers. Need {min_required}, got {len(available_servers)}")
            
        # Create or update weight chunks based on current server count
        if not state.model_chunks or len(state.model_chunks) > len(available_servers) * 3:
            if not await split_model_weights():
                raise Exception("Failed to split model weights")
        
        # Prepare for parallel distribution
        tasks = []
        min_replicas = Settings.get_min_replica_count(len(available_servers))
        chunks_per_server = len(state.model_chunks) / len(available_servers)
        print(f"[INFO] Distributing chunks with min {min_replicas} replicas per chunk")
        print(f"[INFO] Target chunks per server: {chunks_per_server:.1f}")
        
        # Distribute chunks
        for chunk_id, chunk in state.model_chunks.items():
            # Calculate optimal number of replicas based on chunk size and server capacity
            target_replicas = max(min_replicas,
                                int(chunks_per_server * len(available_servers) / len(state.model_chunks)))
            
            current_assignments = set(chunk.server_assignments)
            current_healthy = [url for url in current_assignments 
                             if state.tensor_servers[url].status in ["ready", "busy"]]
            
            # Remove unhealthy assignments
            chunk.server_assignments = current_healthy
            
            # Add new assignments if needed
            while len(chunk.server_assignments) < target_replicas:
                # Find least loaded eligible server
                eligible_servers = [
                    server for server in available_servers
                    if str(server.url) not in chunk.server_assignments
                    and len(server.model_chunks) < (len(state.model_chunks) / len(available_servers) * 1.5)
                ]
                
                if not eligible_servers:
                    break
                    
                # Sort by load and error count
                eligible_servers.sort(key=lambda s: (
                    len(s.model_chunks),
                    s.metrics.error_count,
                    s.metrics.cpu_usage
                ))
                
                # Assign to best server
                best_server = eligible_servers[0]
                chunk.server_assignments.append(str(best_server.url))
                best_server.model_chunks.append(chunk_id)
                print(f"[INFO] Assigned chunk {chunk_id} to server {best_server.url}")
                
        return True
        
    except Exception as e:
        print(f"[ERROR] Failed to distribute model chunks: {str(e)}")
        return False

async def monitor_tensor_servers():
    """Periodically check health and update metrics of all tensor servers"""
    while True:
        for server_url, server in state.tensor_servers.items():
            try:
                # Check basic health
                is_healthy = await check_tensor_server_health(server_url)
                
                if not is_healthy:
                    server.status = "error"
                    server.metrics.error_count += 1
                    print(f"[WARN] Server {server_url} is unhealthy")
                    continue
                
                # Get detailed metrics
                async with aiohttp.ClientSession() as session:
                    async with session.get(f"{server_url}/metrics", timeout=Settings.TENSOR_SERVER_TIMEOUT) as response:
                        if response.status == 200:
                            metrics = await response.json()
                            server.metrics = ServerMetrics(**metrics)
                            
                            # Update server status based on metrics
                            if server.metrics.error_count > Settings.MAX_ERROR_THRESHOLD:
                                server.status = "degraded"
                            elif server.metrics.cpu_usage > 90 or server.metrics.memory_usage > 90:
                                server.status = "busy"
                            else:
                                server.status = "ready"
                                
                server.last_heartbeat = datetime.now()
                
            except Exception as e:
                print(f"[ERROR] Failed to monitor server {server_url}: {str(e)}")
                server.status = "error"
                server.metrics.last_error = str(e)
                server.metrics.error_count += 1
        
        # Check for servers that haven't responded in a while
        current_time = datetime.now()
        for server_url, server in state.tensor_servers.items():
            if (current_time - server.last_heartbeat).seconds > Settings.SERVER_TIMEOUT:
                print(f"[WARN] Server {server_url} hasn't responded in {Settings.SERVER_TIMEOUT} seconds")
                server.status = "error"
                
        await asyncio.sleep(Settings.MONITORING_INTERVAL)

def get_next_model_version(base_dir: str, model_name: str) -> int:
    """Get the next available version number for the model"""
    existing_versions = []
    model_base_dir = os.path.join(base_dir, model_name)
    if os.path.exists(model_base_dir):
        for d in os.listdir(model_base_dir):
            if d.startswith('v') and d[1:].isdigit():
                existing_versions.append(int(d[1:]))
    return max(existing_versions + [0]) + 1

def check_existing_model(model_path: str) -> bool:
    """Check if a model exists and has required files"""
    if not os.path.exists(model_path):
        return False
    
    # Check for essential files
    required_files = ['config.json']
    model_files = os.listdir(model_path)
    
    # Check for any weight files
    has_weights = any(f.endswith(('.bin', '.safetensors')) for f in model_files)
    
    return all(f in model_files for f in required_files) and has_weights

async def download_model_files():
    """Downloads the model files using git clone from Hugging Face repository"""
    try:
        print(f"[INFO] Processing model from {Settings.MODEL_REPO}...")
        
        # Create models directory
        models_dir = os.path.join(os.getcwd(), "models")
        os.makedirs(models_dir, exist_ok=True)
        print(f"[INFO] Models directory: {models_dir}")
        
        # Get the model name from the repository URL
        model_name = Settings.MODEL_REPO.split('/')[-1]
        
        # Create versioned model directory
        version = get_next_model_version(models_dir, model_name)
        model_base_dir = os.path.join(models_dir, model_name)
        model_version_dir = os.path.join(model_base_dir, f"v{version}")
        
        # Check if previous version exists and is valid
        if version > 1:
            prev_version_dir = os.path.join(model_base_dir, f"v{version-1}")
            if check_existing_model(prev_version_dir):
                print(f"[INFO] Using existing model from {prev_version_dir}")
                model_path = prev_version_dir
                state.is_model_loaded = True
            else:
                # Clone new version if previous is invalid or incomplete
                os.makedirs(model_version_dir, exist_ok=True)
                success = clone_repository(Settings.MODEL_REPO, model_version_dir)
                if not success:
                    raise Exception("Failed to clone repository")
                model_path = model_version_dir
                print(f"[INFO] Successfully cloned model to {model_path}")
        else:
            # First time download
            os.makedirs(model_version_dir, exist_ok=True)
            success = clone_repository(Settings.MODEL_REPO, model_version_dir)
            if not success:
                raise Exception("Failed to clone repository")
            model_path = model_version_dir
            print(f"[INFO] Successfully cloned model to {model_path}")
        
        # Load and parse the config
        config_path = os.path.join(model_path, "config.json")
        if os.path.exists(config_path):
            with open(config_path, 'r') as f:
                state.model_config = json.load(f)
                print("[INFO] Loaded model configuration")
                print(f"[INFO] Model type: {state.model_config.get('model_type', 'unknown')}")
                print(f"[INFO] Architecture: {state.model_config.get('architectures', ['unknown'])[0]}")
        else:
            print("[WARN] No config.json found in model directory")
        
        # Scan for model files
        print("[INFO] Scanning for model files...")
        for root, _, files in os.walk(model_path):
            for file in files:
                if file.endswith(('.bin', '.json', '.safetensors')):
                    file_path = os.path.join(root, file)
                    state.model_files[file] = file_path
                    print(f"[INFO] Found model file: {file}")
        
        if state.model_files:
            state.is_model_loaded = True
            print(f"[INFO] Model files found successfully! Total files: {len(state.model_files)}")
            print(f"[INFO] Model location: {model_path}")
            return True
        else:
            raise ValueError("No model files were found in the repository")
            
    except Exception as e:
        print(f"[ERROR] Failed to process model files: {e}")
        state.is_model_loaded = False
        raise

async def check_tensor_server_health(url: HttpUrl) -> bool:
    """Checks if a tensor server is healthy"""
    try:
        async with aiohttp.ClientSession() as session:
            async with session.get(f"{url}/health", timeout=Settings.TENSOR_SERVER_TIMEOUT) as response:
                return response.status == 200
    except:
        return False

# ===== API Endpoints =====
async def execute_tensor_operation(operation_id: str, server_url: HttpUrl, operation: str, data: Dict):
    """Execute an operation on a tensor server and wait for results"""
    try:
        async with aiohttp.ClientSession() as session:
            # Start the operation
            async with session.post(
                f"{server_url}/{operation}",
                json=data,
                timeout=Settings.TENSOR_SERVER_TIMEOUT
            ) as response:
                if response.status != 200:
                    error_msg = await response.text()
                    raise HTTPException(
                        status_code=response.status,
                        detail=f"Operation failed on server {server_url}: {error_msg}"
                    )
                
                initial_response = await response.json()
                if initial_response.get("status") == "completed":
                    # Operation completed immediately
                    state.operation_results[operation_id] = initial_response
                    return initial_response
                
                # Operation is async, poll for results
                while True:
                    await asyncio.sleep(1)  # Poll interval
                    async with session.get(
                        f"{server_url}/operation/{initial_response['operation_id']}",
                        timeout=Settings.TENSOR_SERVER_TIMEOUT
                    ) as status_response:
                        if status_response.status != 200:
                            raise HTTPException(
                                status_code=status_response.status,
                                detail=f"Failed to get operation status from {server_url}"
                            )
                        
                        status_data = await status_response.json()
                        if status_data["status"] in ["completed", "failed"]:
                            state.operation_results[operation_id] = status_data
                            if status_data["status"] == "failed":
                                raise HTTPException(
                                    status_code=500,
                                    detail=f"Operation failed on server {server_url}: {status_data.get('error')}"
                                )
                            return status_data
                            
    except asyncio.TimeoutError:
        raise HTTPException(
            status_code=504,
            detail=f"Operation timed out on server {server_url}"
        )
    except Exception as e:
        raise HTTPException(
            status_code=500,
            detail=f"Error executing operation on {server_url}: {str(e)}"
        )

@app.post("/execute/{operation}")
async def execute_operation(operation: str, data: Dict):
    """Execute an operation across tensor servers and collect results"""
    operation_id = f"{operation}_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{len(state.operation_results)}"
    
    # Get available servers with required chunks
    available_servers = [
        server for server in state.tensor_servers.values()
        if server.status in ["ready", "busy"] 
        and server.metrics.error_count < Settings.MAX_ERROR_THRESHOLD
    ]
    
    if not available_servers:
        raise HTTPException(
            status_code=503,
            detail="No available tensor servers"
        )
    
    # Start operations on all relevant servers in parallel
    tasks = []
    for server in available_servers:
        if operation in ["compute", "forward"]:
            # For compute operations, only use servers with required chunks
            required_chunks = data.get("required_chunks", [])
            if not all(chunk_id in server.model_chunks for chunk_id in required_chunks):
                continue
                
        task = asyncio.create_task(
            execute_tensor_operation(
                f"{operation_id}_{server.url}",
                server.url,
                operation,
                data
            )
        )
        tasks.append(task)
        state.pending_operations[f"{operation_id}_{server.url}"] = task
    
    if not tasks:
        raise HTTPException(
            status_code=400,
            detail="No servers available with required model chunks"
        )
    
    try:
        # Wait for all operations to complete
        results = await asyncio.gather(*tasks)
        
        # Process and aggregate results
        aggregated_result = {
            "operation_id": operation_id,
            "status": "completed",
            "server_results": results,
            "timestamp": datetime.now().isoformat()
        }
        
        # Clean up
        for task_id in list(state.pending_operations.keys()):
            if task_id.startswith(operation_id):
                del state.pending_operations[task_id]
        
        return aggregated_result
        
    except Exception as e:
        # Cancel any remaining tasks
        for task in tasks:
            if not task.done():
                task.cancel()
        
        # Clean up
        for task_id in list(state.pending_operations.keys()):
            if task_id.startswith(operation_id):
                del state.pending_operations[task_id]
        
        raise HTTPException(
            status_code=500,
            detail=f"Operation failed: {str(e)}"
        )

@app.get("/operation/{operation_id}")
async def get_operation_status(operation_id: str):
    """Get the status of an operation"""
    # Check completed operations
    results = {
        k: v for k, v in state.operation_results.items()
        if k.startswith(operation_id)
    }
    
    if results:
        return {
            "operation_id": operation_id,
            "status": "completed",
            "results": results
        }
    
    # Check pending operations
    pending = {
        k: "running" for k in state.pending_operations.keys()
        if k.startswith(operation_id)
    }
    
    if pending:
        return {
            "operation_id": operation_id,
            "status": "running",
            "pending_servers": list(pending.keys())
        }
    
    raise HTTPException(
        status_code=404,
        detail=f"Operation {operation_id} not found"
    )

@app.get("/")
async def root():
    """Health check endpoint"""
    return {
        "status": "running",
        "model_loaded": state.is_model_loaded,
        "registered_servers": len(state.tensor_servers),
        "downloaded_files": len(state.model_files),
        "config_loaded": bool(state.model_config)
    }

@app.get("/health")
async def health_check():
    """Detailed health check"""
    return {
        "status": "healthy",
        "model_loaded": state.is_model_loaded,
        "registered_servers": len(state.tensor_servers),
        "downloaded_files": list(state.model_files.keys()),
        "config_loaded": bool(state.model_config),
        "model_type": state.model_config.get("model_type", "unknown")
    }

@app.post("/register_tensor_server")
async def register_tensor_server(server_url: HttpUrl):
    """Register a new tensor server"""
    if not await check_tensor_server_health(server_url):
        raise HTTPException(status_code=400, detail="Tensor server is not healthy")
    
    state.tensor_servers[str(server_url)] = TensorServer(url=server_url)
    print(f"[INFO] Registered new tensor server at {server_url}")
    
    # If model is loaded, automatically distribute chunks
    if state.is_model_loaded:
        print(f"[INFO] Model is loaded, starting distribution for new server {server_url}")
        try:
            # Create chunks if they don't exist
            if not state.model_chunks:
                if await split_model_weights():
                    print(f"[INFO] Successfully split model into {len(state.model_chunks)} chunks")
                else:
                    print("[ERROR] Failed to split model weights")
                    
            # Distribute chunks
            if await distribute_model_chunks():
                print("[INFO] Successfully distributed chunks to tensor servers")
            else:
                print("[ERROR] Failed to distribute chunks")
        except Exception as e:
            print(f"[ERROR] Distribution error during server registration: {str(e)}")
    
    return {
        "status": "registered", 
        "registered_servers": len(state.tensor_servers),
        "server_id": str(server_url),
        "model_loaded": state.is_model_loaded,
        "chunks_distributed": len(state.model_chunks) if state.model_chunks else 0
    }

@app.delete("/unregister_tensor_server")
async def unregister_tensor_server(server_url: HttpUrl):
    """Unregister a tensor server"""
    if str(server_url) in state.tensor_servers:
        # Remove server assignments from chunks
        for chunk in state.model_chunks.values():
            if str(server_url) in chunk.server_assignments:
                chunk.server_assignments.remove(str(server_url))
        
        del state.tensor_servers[str(server_url)]
        print(f"[INFO] Unregistered tensor server at {server_url}")
        
        # Trigger redistribution of chunks
        await distribute_model_chunks()
        return {"status": "unregistered"}
    raise HTTPException(status_code=404, detail="Server not found")

@app.get("/server/{server_url}/chunks")
async def get_server_chunks(server_url: HttpUrl):
    """Get the chunks assigned to a specific server"""
    if str(server_url) not in state.tensor_servers:
        raise HTTPException(status_code=404, detail="Server not found")
        
    server = state.tensor_servers[str(server_url)]
    assigned_chunks = [
        state.model_chunks[chunk_id] 
        for chunk_id in server.model_chunks
    ]
    
    return {
        "server_status": server.status,
        "assigned_chunks": assigned_chunks,
        "metrics": server.metrics.dict()
    }

@app.post("/redistribute")
async def redistribute_chunks():
    """Manually trigger redistribution of model chunks"""
    success = await distribute_model_chunks()
    if not success:
        raise HTTPException(status_code=500, detail="Failed to redistribute chunks")
    
    return {
        "status": "redistributed",
        "chunk_assignments": {
            chunk_id: chunk.server_assignments
            for chunk_id, chunk in state.model_chunks.items()
        }
    }

@app.get("/chunks/{chunk_id}/status")
async def get_chunk_status(chunk_id: int):
    """Get the status and assignments of a specific chunk"""
    if chunk_id not in state.model_chunks:
        raise HTTPException(status_code=404, detail="Chunk not found")
        
    chunk = state.model_chunks[chunk_id]
    return {
        "chunk_id": chunk_id,
        "status": chunk.status,
        "server_assignments": chunk.server_assignments,
        "metrics": chunk.metrics
    }

@app.post("/initialize")
async def initialize_system():
    """Download model files and prepare for distribution"""
    await download_model_files()
    
    # Verify downloaded files
    files_status = {}
    total_size = 0
    for filename, filepath in state.model_files.items():
        exists = os.path.exists(filepath)
        if exists:
            size = os.path.getsize(filepath)
            total_size += size
            files_status[filename] = {"exists": exists, "size_bytes": size}
        else:
            files_status[filename] = {"exists": exists, "size_bytes": 0}
    
    # Start model distribution if we have tensor servers
    distribution_status = "not_started"
    if state.tensor_servers:
        print("[INFO] Starting automatic model distribution...")
        try:
            # Split model into chunks
            if await split_model_weights():
                print(f"[INFO] Successfully split model into {len(state.model_chunks)} chunks")
                # Distribute chunks to servers
                if await distribute_model_chunks():
                    print("[INFO] Successfully distributed chunks to tensor servers")
                    distribution_status = "completed"
                else:
                    print("[ERROR] Failed to distribute chunks")
                    distribution_status = "distribution_failed"
            else:
                print("[ERROR] Failed to split model weights")
                distribution_status = "split_failed"
        except Exception as e:
            print(f"[ERROR] Distribution error: {str(e)}")
            distribution_status = f"error: {str(e)}"
    else:
        print("[INFO] No tensor servers registered yet. Will distribute when servers register.")
    
    return {
        "status": "initialized",
        "model_loaded": state.is_model_loaded,
        "files_status": files_status,
        "total_size_bytes": total_size,
        "config_loaded": bool(state.model_config),
        "model_type": state.model_config.get("model_type", "unknown"),
        "architecture": state.model_config.get("architectures", ["unknown"])[0],
        "distribution_status": distribution_status,
        "registered_servers": len(state.tensor_servers),
        "chunks_created": len(state.model_chunks) if state.model_chunks else 0
    }

# ===== Main Execution =====
@app.on_event("startup")
async def startup_event():
    """Initialize the server and start distribution"""
    print("[INFO] Initializing system...")
    try:
        # Initialize system and download model
        await initialize_system()
        print("[INFO] Model initialization complete")
        
        # Split model into chunks
        if await split_model_weights():
            print(f"[INFO] Successfully split model into {len(state.model_chunks)} chunks")
            
            # Distribute chunks to tensor servers
            print("[INFO] Starting chunk distribution...")
            distribution_tasks = []
            
            # Round-robin distribution to tensor servers
            for chunk_id, chunk in state.model_chunks.items():
                # Determine target servers (distribute each chunk to 2 servers for redundancy)
                server_indices = [i % len(Settings.TENSOR_SERVER_URLS) for i in range(chunk_id * 2, chunk_id * 2 + 2)]
                target_servers = [Settings.TENSOR_SERVER_URLS[i] for i in server_indices]
                
                for server_url in target_servers:
                    print(f"[INFO] Sending chunk {chunk_id} to {server_url}")
                    task = asyncio.create_task(
                        send_chunk_to_server(server_url, chunk_id, chunk)
                    )
                    distribution_tasks.append(task)
                    
                    # Track assignments for future reference
                    chunk.server_assignments.append(server_url)
            
            if distribution_tasks:
                print(f"[INFO] Distributing {len(distribution_tasks)} chunks...")
                results = await asyncio.gather(*distribution_tasks, return_exceptions=True)
                success_count = sum(1 for r in results if r is True)
                print(f"[INFO] Successfully distributed {success_count} chunks out of {len(distribution_tasks)} attempts")
        else:
            print("[ERROR] Failed to split model weights")
            
    except Exception as e:
        print(f"[ERROR] Startup error: {str(e)}")
    
    print("[INFO] Startup complete")

if __name__ == "__main__":
    port = int(os.getenv("PORT", 8000))
    print(f"[INFO] Starting controller server on port {port}")
    print(f"[INFO] API Documentation available at http://localhost:{port}/docs")
    
    uvicorn.run(
        "controller_server_new:app",
        host="0.0.0.0",
        port=port,
        reload=False
    )