Spaces:
Runtime error
Runtime error
| # Copyright 2023 Haotian Liu | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ------------------------------------------------------------------------ | |
| # Modified from LLaVA (https://github.com/haotian-liu/LLaVA) | |
| # Copyright 2024 Yanwei Li | |
| # ------------------------------------------------------------------------ | |
| # Modified from MiniGemini (https://github.com/dvlab-research/MGM) | |
| # Copyright 2025 ByteDance | |
| # ------------------------------------------------------------------------ | |
| import os | |
| import json | |
| import torch | |
| # import deepspeed | |
| import safetensors | |
| import transformers | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from abc import ABC, abstractmethod | |
| from transformers.deepspeed import is_deepspeed_zero3_enabled | |
| from model.quant import VectorQuantizerM, AttnProjection | |
| from model.multimodal_projector.builder import build_vision_projector | |
| from model.multimodal_encoder.builder import build_vision_tower, build_vision_tower_aux | |
| from constants import ( | |
| DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, | |
| IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN | |
| ) | |
| IS_NEW_TRANSFORMERS = transformers.__version__ >= "4.34.0" | |
| class MiniGeminiMetaModel: | |
| def __init__(self, config): | |
| super(MiniGeminiMetaModel, self).__init__(config) | |
| self.config = config | |
| self.multi_embedder = TokenEmbedder(self.config.hidden_size) | |
| if hasattr(config, "mm_vision_tower"): | |
| self.vision_tower = build_vision_tower(config, delay_load=True) | |
| self.mm_projector = build_vision_projector(config) | |
| if hasattr(config, "mm_vision_tower_aux"): | |
| self.vision_tower_aux = build_vision_tower_aux(config, delay_load=True) | |
| def get_vision_tower(self): | |
| vision_tower = getattr(self, 'vision_tower', None) | |
| if type(vision_tower) is list: | |
| vision_tower = vision_tower[0] | |
| return vision_tower | |
| def get_vision_tower_aux(self): | |
| vision_tower_aux = getattr(self, 'vision_tower_aux', None) | |
| if type(vision_tower_aux) is list: | |
| vision_tower_aux = vision_tower_aux[0] | |
| return vision_tower_aux | |
| def initialize_embedder(self, unitok_pth, mm_projecter_pth=None): | |
| self.multi_embedder = TokenEmbedder(self.config.hidden_size) | |
| if unitok_pth is not None: | |
| ckpt = torch.load(unitok_pth, map_location='cpu') | |
| unitok_ckpt = ckpt['trainer']['unitok'] | |
| quantizer_weights = dict() | |
| for k, v in unitok_ckpt.items(): | |
| if k.startswith('quantizer'): | |
| new_k = k.replace('quantizer.', '') | |
| quantizer_weights[new_k] = v | |
| attn_proj_weights = dict() | |
| for k, v in unitok_ckpt.items(): | |
| if k.startswith('post_quant_proj'): | |
| new_k = k.replace('post_quant_proj.', '') | |
| attn_proj_weights[new_k] = v | |
| if is_deepspeed_zero3_enabled(): | |
| with deepspeed.zero.GatheredParameters(quantizer_weights, modifier_rank=0): | |
| if torch.distributed.get_rank() == 0: | |
| self.multi_embedder.quantizer.load_state_dict(quantizer_weights) | |
| with deepspeed.zero.GatheredParameters(attn_proj_weights, modifier_rank=0): | |
| if torch.distributed.get_rank() == 0: | |
| self.multi_embedder.attn_projection.load_state_dict(attn_proj_weights) | |
| else: | |
| status = self.multi_embedder.quantizer.load_state_dict(quantizer_weights) | |
| print('missing_keys:', status.missing_keys) | |
| status = self.multi_embedder.attn_projection.load_state_dict(attn_proj_weights) | |
| print('missing_keys:', status.missing_keys) | |
| if mm_projecter_pth is not None: | |
| mm_projector_weights = torch.load(mm_projecter_pth, map_location='cpu') | |
| def get_w(weights, keyword): | |
| return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword + '.' in k} | |
| named_parameters = get_w(mm_projector_weights, 'mm_projector') | |
| if is_deepspeed_zero3_enabled(): | |
| with deepspeed.zero.GatheredParameters(named_parameters, modifier_rank=0): | |
| if torch.distributed.get_rank() == 0: | |
| self.multi_embedder.mm_projector.load_state_dict(named_parameters) | |
| else: | |
| status = self.multi_embedder.mm_projector.load_state_dict(named_parameters) | |
| print('missing_keys:', status.missing_keys) | |
| self.multi_embedder = self.multi_embedder.to(device='cuda') | |
| def initialize_vision_modules(self, model_args, fsdp=None): | |
| vision_tower = model_args.vision_tower | |
| vision_tower_aux = model_args.vision_tower_aux | |
| mm_vision_select_layer = model_args.mm_vision_select_layer | |
| mm_vision_select_feature = model_args.mm_vision_select_feature | |
| pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter | |
| self.config.mm_vision_tower = vision_tower | |
| self.config.mm_vision_tower_aux = vision_tower_aux | |
| if self.get_vision_tower() is None: | |
| vision_tower = build_vision_tower(model_args) | |
| if fsdp is not None and len(fsdp) > 0: | |
| self.vision_tower = [vision_tower] | |
| else: | |
| self.vision_tower = vision_tower | |
| else: | |
| if fsdp is not None and len(fsdp) > 0: | |
| vision_tower = self.vision_tower[0] | |
| else: | |
| vision_tower = self.vision_tower | |
| vision_tower.load_model() | |
| if vision_tower_aux is not None: | |
| if self.get_vision_tower_aux() is None: | |
| vision_tower_aux = build_vision_tower_aux(model_args) | |
| if fsdp is not None and len(fsdp) > 0: | |
| self.vision_tower_aux = [vision_tower_aux] | |
| else: | |
| self.vision_tower_aux = vision_tower_aux | |
| else: | |
| if fsdp is not None and len(fsdp) > 0: | |
| vision_tower_aux = self.vision_tower_aux[0] | |
| else: | |
| vision_tower_aux = self.vision_tower_aux | |
| vision_tower_aux.load_model() | |
| self.config.mm_hidden_size_aux = vision_tower_aux.hidden_size | |
| self.config.use_mm_proj = True | |
| self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') | |
| self.config.mm_hidden_size = vision_tower.hidden_size | |
| self.config.mm_vision_select_layer = mm_vision_select_layer | |
| self.config.mm_vision_select_feature = mm_vision_select_feature | |
| if getattr(self, 'mm_projector', None) is None: | |
| self.mm_projector = build_vision_projector(self.config) | |
| else: | |
| # In case it is frozen by LoRA | |
| for p in self.mm_projector.parameters(): | |
| p.requires_grad = True | |
| if pretrain_mm_mlp_adapter is not None: | |
| mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') | |
| def get_w(weights, keyword): | |
| return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword + '.' in k} | |
| if 'model' in mm_projector_weights.keys(): | |
| mm_projector_weights = mm_projector_weights['model'] | |
| if is_deepspeed_zero3_enabled(): | |
| if len(mm_projector_weights) > 0: | |
| with deepspeed.zero.GatheredParameters(mm_projector_weights, modifier_rank=0): | |
| if torch.distributed.get_rank() == 0: | |
| self.mm_projector.load_state_dict(mm_projector_weights) | |
| else: | |
| status = self.mm_projector.load_state_dict(mm_projector_weights, strict=False) | |
| print('missing_keys:', status.missing_keys) | |
| else: | |
| if is_deepspeed_zero3_enabled(): | |
| named_parameters = get_w(mm_projector_weights, 'mm_projector') | |
| if len(named_parameters) > 0: | |
| with deepspeed.zero.GatheredParameters(named_parameters, modifier_rank=0): | |
| if torch.distributed.get_rank() == 0: | |
| self.mm_projector.load_state_dict(named_parameters) | |
| else: | |
| status = self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'), | |
| strict=False) | |
| print('missing_keys:', status.missing_keys) | |
| self.mm_projector = self.mm_projector.to(device='cuda') | |
| def initialize_uni_modules(self, model_args, for_eval=False): | |
| pretrain_mm_mlp_adapter = getattr(model_args, "pretrain_mm_mlp_adapter", None) | |
| self.config.image_size_aux = getattr(model_args, 'image_size_aux', 320) | |
| self.config.optimize_vision_tower = getattr(model_args, 'optimize_vision_tower', False) | |
| self.config.optimize_vision_tower_aux = getattr(model_args, 'optimize_vision_tower_aux', False) | |
| self.vlm_uni_query_projector = nn.Sequential(nn.LayerNorm(self.config.mm_hidden_size), | |
| nn.Linear(self.config.mm_hidden_size, self.config.mm_hidden_size)) | |
| self.vlm_uni_aux_projector = nn.Sequential(nn.LayerNorm(self.config.mm_hidden_size_aux), | |
| nn.Linear(self.config.mm_hidden_size_aux, | |
| self.config.mm_hidden_size)) | |
| self.vlm_uni_val_projector = nn.Sequential(nn.LayerNorm(self.config.mm_hidden_size_aux), | |
| nn.Linear(self.config.mm_hidden_size_aux, | |
| self.config.mm_hidden_size)) | |
| if pretrain_mm_mlp_adapter is not None: | |
| projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') | |
| else: | |
| trainable_module = ['vlm_uni', 'vision_fpn', 'vision_stages'] | |
| if hasattr(model_args, 'model_name_or_path'): | |
| model_save_path = model_args.model_name_or_path | |
| else: | |
| model_save_path = model_args.model_path | |
| model_idx_path = getattr(model_args, 'model_path', model_save_path) | |
| if IS_NEW_TRANSFORMERS: | |
| try: | |
| weight_file = json.load(open(os.path.join(model_idx_path, 'model.safetensors.index.json'), 'r'))[ | |
| 'weight_map'] | |
| except: | |
| weight_file = json.load(open(os.path.join(model_idx_path, 'pytorch_model.bin.index.json'), 'r'))[ | |
| 'weight_map'] | |
| else: | |
| weight_file = json.load(open(os.path.join(model_idx_path, 'pytorch_model.bin.index.json'), 'r'))[ | |
| 'weight_map'] | |
| model_path = set( | |
| [weight_file[_key] for _key in weight_file if any([_module in _key for _module in trainable_module])]) | |
| projector_weights = {} | |
| for _model in model_path: | |
| if not IS_NEW_TRANSFORMERS: | |
| projector_weights.update(torch.load(os.path.join(model_idx_path, _model), map_location='cpu')) | |
| else: | |
| with safetensors.safe_open(os.path.join(model_idx_path, _model), framework="pt", device='cpu') as f: | |
| for _key in f.keys(): | |
| projector_weights.update({_key: f.get_tensor(_key)}) | |
| if len(projector_weights) == 0: | |
| return | |
| def get_w(weights, keyword, main_module, sub_module): | |
| if getattr(main_module, sub_module, None) is None: | |
| return | |
| pretrain_weight = {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword + '.' in k} | |
| if len(pretrain_weight) == 0: | |
| return | |
| if is_deepspeed_zero3_enabled(): | |
| named_parameters = [v for k, v in getattr(main_module, sub_module).named_parameters()] | |
| if len(named_parameters) > 0: | |
| # because zero3 puts placeholders in model params, this context | |
| # manager gathers (unpartitions) the params of the current layer, then loads from | |
| # the state dict and then re-partitions them again | |
| with deepspeed.zero.GatheredParameters(named_parameters, modifier_rank=0): | |
| if torch.distributed.get_rank() == 0: | |
| getattr(main_module, sub_module).load_state_dict(pretrain_weight) | |
| with deepspeed.zero.GatheredParameters(self.mm_projector[0].weight, modifier_rank=None): | |
| weight_type = self.mm_projector[0].weight.dtype | |
| device_type = self.mm_projector[0].weight.device | |
| else: | |
| weight_type = self.mm_projector[0].weight.dtype | |
| device_type = self.mm_projector[0].weight.device | |
| getattr(main_module, sub_module).load_state_dict(pretrain_weight) | |
| if weight_type == torch.uint8 or weight_type == torch.int8 or weight_type == torch.int16: | |
| weight_type = torch.float16 | |
| getattr(main_module, sub_module).to(device=device_type, dtype=weight_type) | |
| print(f"Loading {sub_module} weights...") | |
| # load pretrained weights | |
| get_w(projector_weights, 'vision_tower.vision_tower', self.vision_tower, 'vision_tower') | |
| # load pretrained weights | |
| if self.config.optimize_vision_tower_aux: | |
| # not optimize vision stem, just used to check | |
| get_w(projector_weights, 'vision_tower_aux.vision_stem', self.vision_tower_aux, 'vision_stem') | |
| get_w(projector_weights, 'vision_tower_aux.vision_stages', self.vision_tower_aux, 'vision_stages') | |
| get_w(projector_weights, 'vlm_uni_query_projector', self, 'vlm_uni_query_projector') | |
| get_w(projector_weights, 'vlm_uni_aux_projector', self, 'vlm_uni_aux_projector') | |
| get_w(projector_weights, 'vlm_uni_val_projector', self, 'vlm_uni_val_projector') | |
| class TokenEmbedder(nn.Module): | |
| def __init__(self, hidden_size): | |
| super().__init__() | |
| # hard coding for unitok, need to be fixed | |
| self.num_codebooks = 8 | |
| self.quantizer = VectorQuantizerM(32768, 64, 0.25, False, 0.01, 8) | |
| self.attn_projection = AttnProjection(64, 1024, 16) | |
| self.mm_projector = nn.Sequential( | |
| nn.LayerNorm(1024, eps=1e-6), | |
| nn.Linear(1024, hidden_size), | |
| nn.GELU(), | |
| nn.Linear(hidden_size, hidden_size), | |
| ) | |
| def forward(self, indices): # input [bz,num-codebook,256] | |
| assert indices.shape[1] == self.num_codebooks | |
| features = self.quantizer.idx_to_f(indices) # [bz,256,C] | |
| features = self.attn_projection(features) # [bz,256,1024] | |
| latent_features = self.mm_projector(features) # [bz,256,hidden_size] | |
| return latent_features # [bz,256,hidden_size | |
| class MiniGeminiMetaForCausalLM(ABC): | |
| def get_model(self): | |
| pass | |
| def get_vision_tower(self): | |
| return self.get_model().get_vision_tower() | |
| def get_vision_tower_aux(self): | |
| return self.get_model().get_vision_tower_aux() | |
| def encode_images(self, images, images_aux=None, is_video=False): | |
| image_grid = getattr(self.config, 'image_grid', 1) | |
| image_global = getattr(self.config, 'image_global', False) | |
| if image_grid > 1: | |
| batch_size = images.shape[0] | |
| if image_global: | |
| global_images = images[:, -1:].flatten(0, 1).contiguous() | |
| grid_images = images[:, :-1].flatten(0, 1).contiguous() | |
| images = torch.cat([grid_images, global_images], dim=0) | |
| else: | |
| images = images.flatten(0, 1).contiguous() | |
| image_features = self.get_model().get_vision_tower()(images) | |
| if image_global: | |
| image_feat_global = image_features[-len(global_images):] | |
| image_features = image_features[:len(grid_images)] | |
| if images_aux is not None: | |
| image_aux_features_raw = self.get_model().get_vision_tower_aux()(images_aux).to( | |
| dtype=image_features.dtype, device=image_features.device) | |
| if image_global: | |
| image_aux_features_global = F.interpolate(image_aux_features_raw.float(), | |
| scale_factor=1 / image_grid, | |
| mode='bilinear', | |
| align_corners=False).to(dtype=image_aux_features_raw.dtype) | |
| image_feat_global, image_aux_feat_global = self.unified_resampler(image_feat_global, | |
| image_aux_features_global) | |
| if image_grid > 1: | |
| image_aux_features_raw = image_aux_features_raw.reshape(*image_aux_features_raw.shape[:2], | |
| image_grid, | |
| image_aux_features_raw.shape[-2] // image_grid, | |
| image_grid, | |
| image_aux_features_raw.shape[-1] // image_grid) | |
| image_aux_features_raw = image_aux_features_raw.permute(0, 2, 4, 1, 3, 5).flatten(1, 2).flatten(0, | |
| 1).contiguous() | |
| image_features, image_aux_features = self.unified_resampler(image_features, image_aux_features_raw) | |
| if image_grid > 1: | |
| image_features = image_features.reshape(batch_size, image_grid ** 2, *image_features.shape[1:]) | |
| image_features = image_features.flatten(1, 2).contiguous() | |
| image_aux_features = image_aux_features.reshape(batch_size, image_grid ** 2, | |
| *image_aux_features.shape[1:]) | |
| image_aux_features = image_aux_features.flatten(1, 2).contiguous() | |
| # add global features, [global, local] | |
| if image_global: | |
| image_features = torch.cat([image_feat_global, image_features], dim=1) | |
| image_aux_features = torch.cat([image_aux_feat_global, image_aux_features], dim=1) | |
| # token generation | |
| image_features = image_features + image_aux_features | |
| # process image features after token generation | |
| image_features = self.get_model().mm_projector(image_features) | |
| return image_features | |
| def unified_resampler(self, images, images_aux): | |
| # patchwise with square images | |
| patch_num = int(images.shape[1] ** 0.5) | |
| patch_size = images_aux.shape[-1] // patch_num | |
| # within patch attention | |
| images_aux = images_aux.permute(0, 2, 3, 1) | |
| images_aux = images_aux.reshape(len(images_aux), patch_num, patch_size, patch_num, patch_size, | |
| images_aux.shape[-1]) | |
| images_aux = images_aux.permute(0, 1, 3, 2, 4, 5) | |
| images_aux = images_aux.reshape(len(images_aux), patch_num ** 2, patch_size ** 2, | |
| images_aux.shape[-1]).contiguous() | |
| # token attention | |
| embed_query = self.get_model().vlm_uni_query_projector(images) | |
| embed_aux = self.get_model().vlm_uni_aux_projector(images_aux) | |
| embed_value = self.get_model().vlm_uni_val_projector(images_aux) | |
| embed_att = embed_query[:, :, None] @ (embed_aux.transpose(-1, -2) / (embed_aux.shape[-1] ** 0.5)) | |
| embed_att = embed_att.nan_to_num() | |
| embed_feat = (embed_att.softmax(-1) @ embed_value).mean(2) | |
| return images, embed_feat | |
| def prepare_inputs_labels_for_multimodal( | |
| self, input_ids, position_ids, attention_mask, past_key_values, labels, images=None, images_aux=None, | |
| data_types=None, | |
| ): | |
| vision_tower = self.get_vision_tower() | |
| multi_embedder = self.model.multi_embedder | |
| # import pdb;pdb.set_trace() | |
| if vision_tower is None or images is None or input_ids.shape[1] == 1: | |
| if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[ | |
| 1] == 1: | |
| target_shape = past_key_values[-1][-1].shape[-2] + 1 | |
| attention_mask = torch.cat((attention_mask, torch.ones( | |
| (attention_mask.shape[0], target_shape - attention_mask.shape[1]), | |
| dtype=attention_mask.dtype, | |
| device=attention_mask.device | |
| )), dim=1) | |
| position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 | |
| if position_ids is None: | |
| position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) | |
| bug_flag = False | |
| if images is not None: | |
| _labels = labels | |
| _position_ids = position_ids | |
| _attention_mask = attention_mask | |
| new_input_embeds = [] | |
| new_labels = [] | |
| additional_image_labels = [] | |
| additional_image_indexs = [] | |
| if attention_mask is not None: | |
| input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in | |
| zip(input_ids, attention_mask)] | |
| labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in | |
| zip(labels, attention_mask)] | |
| # import pdb;pdb.set_trace() | |
| for image, cur_input_ids, cur_labels, data_type in zip(images, input_ids, labels, data_types): | |
| # import pdb;pdb.set_trace() | |
| num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() | |
| # import pdb;pdb.set_trace() | |
| if num_images == 0: | |
| # import pdb;pdb.set_trace() | |
| empty_image_embed = multi_embedder( | |
| torch.zeros(1, self.model.multi_embedder.num_codebooks, 1).long().to(cur_input_ids))[0, :0] | |
| new_input_embeds.append( | |
| torch.cat([self.get_model().embed_tokens(cur_input_ids), empty_image_embed], dim=0)) | |
| new_labels.append(cur_labels) | |
| continue # pure text data | |
| assert len(image.shape) == 3 # [bz,num-codebook,256] image token id | |
| if len(image) > num_images: | |
| image = image[:num_images] # remove cutted images | |
| image_embedding = multi_embedder(image) # get image embeddings | |
| image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [ | |
| cur_input_ids.shape[0]] | |
| cur_input_ids_noim = [] | |
| cur_labels_noim = [] | |
| for i in range(len(image_token_indices) - 1): | |
| cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1:image_token_indices[i + 1]]) | |
| cur_labels_noim.append(cur_labels[image_token_indices[i] + 1:image_token_indices[i + 1]]) | |
| split_sizes = [x.shape[0] for x in cur_labels_noim] | |
| cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) | |
| cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) | |
| cur_new_input_embeds = [] | |
| cur_new_labels = [] | |
| # import pdb;pdb.set_trace() | |
| max_pos_id = 0 | |
| for i in range(num_images + 1): | |
| cur_new_input_embeds.append(cur_input_embeds_no_im[i]) | |
| cur_new_labels.append(cur_labels_noim[i]) | |
| # import pdb;pdb.set_trace() | |
| max_pos_id += cur_input_embeds_no_im[i].shape[0] | |
| if i < num_images: | |
| cur_image_features = image_embedding[i] | |
| cur_new_input_embeds.append(cur_image_features) | |
| if data_type == 1: # to Image, loss on 4x image tokens | |
| additional_image_labels.append(image) | |
| additional_image_indexs.append((cur_new_labels[-1].shape[0], | |
| cur_new_labels[-1].shape[0] + cur_image_features.shape[ | |
| 0])) | |
| ### input: describe xxxx: boi 8*[256] (256 embedding) eoi eos | |
| ### labels: -100 -100 -100 -100 -100 -100 -100 -100 -100 eoi eos | |
| cur_new_labels.append( | |
| torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, | |
| dtype=cur_labels.dtype)) | |
| max_pos_id += cur_image_features.shape[0] | |
| cur_new_input_embeds = [x.to(device=cur_input_embeds.device) for x in cur_new_input_embeds] | |
| cur_new_input_embeds = torch.cat(cur_new_input_embeds) | |
| cur_new_labels = torch.cat(cur_new_labels) | |
| new_input_embeds.append(cur_new_input_embeds) | |
| new_labels.append(cur_new_labels) | |
| tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None) | |
| if tokenizer_model_max_length is not None: | |
| new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] | |
| new_labels = [x[:tokenizer_model_max_length] for x in new_labels] | |
| # Combine them | |
| max_len = max(x.shape[0] for x in new_input_embeds) | |
| batch_size = len(new_input_embeds) | |
| assert len(new_labels) == len(data_types) | |
| new_input_embeds_padded = [] | |
| new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, | |
| device=new_labels[0].device) | |
| attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, | |
| device=attention_mask.device) | |
| position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) | |
| # import pdb;pdb.set_trace() | |
| for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): | |
| cur_len = cur_new_embed.shape[0] | |
| if getattr(self.config, 'tokenizer_padding_side', 'right') == "left": | |
| new_input_embeds_padded.append(torch.cat(( | |
| torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, | |
| device=cur_new_embed.device), | |
| cur_new_embed | |
| ), dim=0)) | |
| if cur_len > 0: | |
| new_labels_padded[i, -cur_len:] = cur_new_labels | |
| attention_mask[i, -cur_len:] = True | |
| position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, | |
| device=position_ids.device) | |
| else: | |
| new_input_embeds_padded.append(torch.cat(( | |
| cur_new_embed, | |
| torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, | |
| device=cur_new_embed.device) | |
| ), dim=0)) | |
| if cur_len > 0: | |
| new_labels_padded[i, :cur_len] = cur_new_labels | |
| attention_mask[i, :cur_len] = True | |
| position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, | |
| device=position_ids.device) | |
| new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) | |
| if _labels is None: | |
| new_labels = None | |
| else: | |
| new_labels = new_labels_padded | |
| if _attention_mask is None: | |
| attention_mask = None | |
| else: | |
| attention_mask = attention_mask.to(dtype=_attention_mask.dtype) | |
| if _position_ids is None: | |
| position_ids = None | |
| # import pdb;pdb.set_trace() | |
| return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels, data_types, additional_image_labels, additional_image_indexs | |
| return input_ids, position_ids, attention_mask, past_key_values, None, labels | |
| def prepare_inputs_for_multimodal( | |
| self, input_ids, position_ids, attention_mask, | |
| past_key_values, labels, images=None, images_aux=None, data_types=None, | |
| ): | |
| multi_embedder = self.model.multi_embedder | |
| # import pdb;pdb.set_trace() | |
| _labels = labels | |
| _position_ids = position_ids | |
| _attention_mask = attention_mask | |
| if images is not None: | |
| new_input_embeds = [] | |
| for image, cur_input_ids in zip(images, input_ids): | |
| # import pdb;pdb.set_trace() | |
| num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() | |
| if num_images == 0: | |
| new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) | |
| continue # pure text data | |
| image_embedding = multi_embedder(image) | |
| # import pdb;pdb.set_trace() | |
| image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [ | |
| cur_input_ids.shape[0]] | |
| cur_input_ids_noim = [] | |
| for i in range(len(image_token_indices) - 1): | |
| cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1:image_token_indices[i + 1]]) | |
| split_sizes = [x.shape[0] for x in cur_input_ids_noim] | |
| cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) | |
| cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) | |
| cur_new_input_embeds = [] | |
| # import pdb;pdb.set_trace() | |
| max_pos_id = 0 | |
| for i in range(num_images + 1): | |
| cur_new_input_embeds.append(cur_input_embeds_no_im[i]) | |
| # import pdb;pdb.set_trace() | |
| max_pos_id += cur_input_embeds_no_im[i].shape[0] | |
| if i < num_images: | |
| cur_image_features = image_embedding[i] | |
| cur_new_input_embeds.append(cur_image_features) | |
| max_pos_id += cur_image_features.shape[0] | |
| cur_new_input_embeds = [x.to(device=cur_input_embeds.device) for x in cur_new_input_embeds] | |
| cur_new_input_embeds = torch.cat(cur_new_input_embeds) | |
| new_input_embeds.append(cur_new_input_embeds) | |
| tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None) | |
| if tokenizer_model_max_length is not None: | |
| new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] | |
| # import pdb;pdb.set_trace() | |
| # Combine them | |
| max_len = max(x.shape[0] for x in new_input_embeds) | |
| batch_size = len(new_input_embeds) | |
| new_input_embeds_padded = [] | |
| new_input_embeds = torch.stack(new_input_embeds, dim=0) | |
| # import pdb;pdb.set_trace() | |
| if _labels is None: | |
| new_labels = None | |
| else: | |
| new_labels = new_labels_padded | |
| if _attention_mask is None: | |
| attention_mask = None | |
| else: | |
| attention_mask = attention_mask.to(dtype=_attention_mask.dtype) | |
| if _position_ids is None: | |
| position_ids = None | |
| # import pdb;pdb.set_trace() | |
| return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels | |
| def initialize_vision_tokenizer(self, model_args, tokenizer): | |
| if model_args.mm_use_im_patch_token: | |
| tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
| self.resize_token_embeddings(len(tokenizer)) | |
| if model_args.mm_use_im_start_end: | |
| num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
| self.resize_token_embeddings(len(tokenizer)) | |
| if num_new_tokens > 0: | |
| input_embeddings = self.get_input_embeddings().weight.data | |
| output_embeddings = self.get_output_embeddings().weight.data | |
| input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( | |
| dim=0, keepdim=True) | |
| output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( | |
| dim=0, keepdim=True) | |
| input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
| output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
| if model_args.tune_mm_mlp_adapter: | |
| for p in self.get_input_embeddings().parameters(): | |
| p.requires_grad = True | |
| for p in self.get_output_embeddings().parameters(): | |
| p.requires_grad = False | |
| if model_args.pretrain_mm_mlp_adapter: | |
| mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') | |
| embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] | |
| assert num_new_tokens == 2 | |
| if input_embeddings.shape == embed_tokens_weight.shape: | |
| input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] | |
| elif embed_tokens_weight.shape[0] == num_new_tokens: | |
| input_embeddings[-num_new_tokens:] = embed_tokens_weight | |
| else: | |
| raise ValueError( | |
| f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") | |
| elif model_args.mm_use_im_patch_token: | |
| if model_args.tune_mm_mlp_adapter: | |
| for p in self.get_input_embeddings().parameters(): | |
| p.requires_grad = False | |
| for p in self.get_output_embeddings().parameters(): | |
| p.requires_grad = False | |