Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from typing import List, Optional, Tuple, Union | |
| from transformers.cache_utils import Cache, DynamicCache, StaticCache | |
| from transformers.models.llama.modeling_llama import LlamaRMSNorm, LlamaDecoderLayer | |
| from transformers.modeling_outputs import BaseModelOutputWithPast | |
| class AR_head(nn.Module): | |
| """ | |
| Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GemmaDecoderLayer`] | |
| Args: | |
| config: GemmaConfig | |
| """ | |
| def __init__(self, config, codebook_size, num_codebooks): | |
| super().__init__() | |
| # import pdb;pdb.set_trace() | |
| self.num_codebooks = num_codebooks | |
| vocab_size = codebook_size | |
| self.sub_vocab_size = vocab_size // self.num_codebooks | |
| # self.layers = nn.ModuleList( | |
| # [GemmaDecoderLayer(config, layer_idx) for layer_idx in range(3)] | |
| # ) | |
| # self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.linear_head = nn.Linear(config.hidden_size, self.sub_vocab_size) | |
| self.layers = nn.ModuleList( | |
| [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(3)] | |
| ) | |
| self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.gradient_checkpointing = False | |
| # vocab_size 16384 | |
| self.codebooks = nn.ModuleList() | |
| for _ in range(self.num_codebooks-1): | |
| codebook = nn.Embedding(self.sub_vocab_size, config.hidden_size) | |
| self.codebooks.append(codebook) | |
| # import pdb;pdb.set_trace() | |
| self.config = config | |
| self.gradient_checkpointing = False | |
| # Initialize weights and apply final processing | |
| self._init_weights(self.layers) | |
| def set_input_embeddings(self, value): | |
| self.embed_tokens = value | |
| def _init_weights(self, module): | |
| std = self.config.initializer_range | |
| if isinstance(module, nn.Linear): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| # Ignore copy | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| ) -> torch.tensor: | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if (input_ids is None) ^ (inputs_embeds is not None): | |
| raise ValueError( | |
| "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" | |
| ) | |
| if self.gradient_checkpointing and self.training and use_cache: | |
| logger.warning_once( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." | |
| ) | |
| use_cache = False | |
| if inputs_embeds is None: | |
| inputs_embeds = self.embed_tokens(input_ids) | |
| past_seen_tokens = 0 | |
| if use_cache: # kept for BC (cache positions) | |
| if not isinstance(past_key_values, StaticCache): | |
| past_key_values = DynamicCache.from_legacy_cache(past_key_values) | |
| past_seen_tokens = past_key_values.get_seq_length() | |
| if cache_position is None: | |
| if isinstance(past_key_values, StaticCache): | |
| raise ValueError("cache_position is a required argument when using StaticCache.") | |
| cache_position = torch.arange( | |
| past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | |
| ) | |
| if position_ids is None: | |
| position_ids = cache_position.unsqueeze(0) | |
| causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position) | |
| # embed positions | |
| hidden_states = inputs_embeds | |
| # decoder layers | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attns = () if output_attentions else None | |
| next_decoder_cache = None | |
| for decoder_layer in self.layers: | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| if self.gradient_checkpointing and self.training: | |
| layer_outputs = self._gradient_checkpointing_func( | |
| decoder_layer.__call__, | |
| hidden_states, | |
| causal_mask, | |
| position_ids, | |
| past_key_values, | |
| output_attentions, | |
| use_cache, | |
| cache_position, | |
| ) | |
| else: | |
| layer_outputs = decoder_layer( | |
| hidden_states, | |
| attention_mask=causal_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_values, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| cache_position=cache_position, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if use_cache: | |
| next_decoder_cache = layer_outputs[2 if output_attentions else 1] | |
| if output_attentions: | |
| all_self_attns += (layer_outputs[1],) | |
| hidden_states = self.norm(hidden_states) | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| next_cache = None | |
| if use_cache: | |
| next_cache = ( | |
| next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache | |
| ) | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | |
| return BaseModelOutputWithPast( | |
| last_hidden_state=hidden_states, | |
| past_key_values=next_cache, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attns, | |
| ) | |
| # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static | |
| # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes. | |
| # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using | |
| # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114 | |
| def _update_causal_mask(self, attention_mask, input_tensor, cache_position): | |
| if self.config._attn_implementation == "flash_attention_2": | |
| if attention_mask is not None and 0.0 in attention_mask: | |
| return attention_mask | |
| return None | |
| dtype, device = input_tensor.dtype, input_tensor.device | |
| min_dtype = torch.finfo(dtype).min | |
| sequence_length = input_tensor.shape[1] | |
| if hasattr(self.layers[0].self_attn, "past_key_value"): # static cache | |
| target_length = self.config.max_position_embeddings | |
| else: # dynamic cache | |
| target_length = ( | |
| attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else cache_position[-1] + 1 | |
| ) | |
| causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) | |
| if sequence_length != 1: | |
| causal_mask = torch.triu(causal_mask, diagonal=1) | |
| causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) | |
| causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) | |
| if attention_mask is not None: | |
| causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit | |
| if attention_mask.dim() == 2: | |
| mask_length = attention_mask.shape[-1] | |
| padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0) | |
| causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype) | |
| elif attention_mask.dim() == 4: | |
| # backwards compatibility: we allow passing a 4D attention mask shorter than the input length with | |
| # cache. In that case, the 4D attention mask attends to the newest tokens only. | |
| if attention_mask.shape[-2] < cache_position[0] + sequence_length: | |
| offset = cache_position[0] | |
| else: | |
| offset = 0 | |
| mask_shape = attention_mask.shape | |
| mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype | |
| causal_mask[ | |
| : mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3] | |
| ] = mask_slice | |
| if ( | |
| self.config._attn_implementation == "sdpa" | |
| and attention_mask is not None | |
| and attention_mask.device.type == "cuda" | |
| ): | |
| # TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400). | |
| is_tracing = ( | |
| torch.jit.is_tracing() | |
| or isinstance(input_tensor, torch.fx.Proxy) | |
| or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling()) | |
| ) | |
| if not is_tracing and torch.any(attention_mask != 1): | |
| # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when | |
| # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. | |
| # Details: https://github.com/pytorch/pytorch/issues/110213 | |
| causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) | |
| return causal_mask | |