Spaces:
Running
on
T4
Running
on
T4
| import os | |
| import spaces | |
| os.system("git clone --branch v3.1 https://github.com/DigitalPhonetics/IMS-Toucan.git toucan_codebase") | |
| os.system("mv toucan_codebase/* .") | |
| from run_model_downloader import download_models | |
| download_models() | |
| import gradio as gr | |
| import torch.cuda | |
| from Preprocessing.multilinguality.SimilaritySolver import load_json_from_path | |
| from Utility.utils import float2pcm | |
| import os | |
| import torch | |
| from Architectures.ControllabilityGAN.GAN import GanWrapper | |
| from InferenceInterfaces.ToucanTTSInterface import ToucanTTSInterface | |
| from Utility.storage_config import MODELS_DIR | |
| class ControllableInterface(torch.nn.Module): | |
| def __init__(self, available_artificial_voices=1000): | |
| super().__init__() | |
| self.model = ToucanTTSInterface(device="cpu", tts_model_path="Meta") | |
| self.wgan = GanWrapper(os.path.join(MODELS_DIR, "Embedding", "embedding_gan.pt"), device="cpu") | |
| self.generated_speaker_embeds = list() | |
| self.available_artificial_voices = available_artificial_voices | |
| self.current_language = "" | |
| self.current_accent = "" | |
| def read(self, | |
| prompt, | |
| language, | |
| accent, | |
| voice_seed, | |
| prosody_creativity, | |
| duration_scaling_factor, | |
| pause_duration_scaling_factor, | |
| pitch_variance_scale, | |
| energy_variance_scale, | |
| emb_slider_1, | |
| emb_slider_2, | |
| emb_slider_3, | |
| emb_slider_4, | |
| emb_slider_5, | |
| emb_slider_6, | |
| loudness_in_db | |
| ): | |
| if self.current_language != language: | |
| self.model.set_phonemizer_language(language) | |
| self.current_language = language | |
| if self.current_accent != accent: | |
| self.model.set_accent_language(accent) | |
| self.current_accent = accent | |
| self.wgan.set_latent(voice_seed) | |
| controllability_vector = torch.tensor([emb_slider_1, | |
| emb_slider_2, | |
| emb_slider_3, | |
| emb_slider_4, | |
| emb_slider_5, | |
| emb_slider_6], dtype=torch.float32) | |
| embedding = self.wgan.modify_embed(controllability_vector) | |
| self.model.set_utterance_embedding(embedding=embedding) | |
| phones = self.model.text2phone.get_phone_string(prompt) | |
| if len(phones) > 1800: | |
| if language == "deu": | |
| prompt = "Deine Eingabe war zu lang. Bitte versuche es entweder mit einem kürzeren Text oder teile ihn in mehrere Teile auf." | |
| elif language == "ell": | |
| prompt = "Η εισήγησή σας ήταν πολύ μεγάλη. Παρακαλώ δοκιμάστε είτε ένα μικρότερο κείμενο είτε χωρίστε το σε διάφορα μέρη." | |
| elif language == "spa": | |
| prompt = "Su entrada es demasiado larga. Por favor, intente un texto más corto o divídalo en varias partes." | |
| elif language == "fin": | |
| prompt = "Vastauksesi oli liian pitkä. Kokeile joko lyhyempää tekstiä tai jaa se useampaan osaan." | |
| elif language == "rus": | |
| prompt = "Ваш текст слишком длинный. Пожалуйста, попробуйте либо сократить текст, либо разделить его на несколько частей." | |
| elif language == "hun": | |
| prompt = "Túl hosszú volt a bevitele. Kérjük, próbáljon meg rövidebb szöveget írni, vagy ossza több részre." | |
| elif language == "nld": | |
| prompt = "Uw input was te lang. Probeer een kortere tekst of splits het in verschillende delen." | |
| elif language == "fra": | |
| prompt = "Votre saisie était trop longue. Veuillez essayer un texte plus court ou le diviser en plusieurs parties." | |
| elif language == 'pol': | |
| prompt = "Twój wpis był zbyt długi. Spróbuj skrócić tekst lub podzielić go na kilka części." | |
| elif language == 'por': | |
| prompt = "O seu contributo foi demasiado longo. Por favor, tente um texto mais curto ou divida-o em várias partes." | |
| elif language == 'ita': | |
| prompt = "Il tuo input era troppo lungo. Per favore, prova un testo più corto o dividilo in più parti." | |
| elif language == 'cmn': | |
| prompt = "你的输入太长了。请尝试使用较短的文本或将其拆分为多个部分。" | |
| elif language == 'vie': | |
| prompt = "Đầu vào của bạn quá dài. Vui lòng thử một văn bản ngắn hơn hoặc chia nó thành nhiều phần." | |
| else: | |
| prompt = "Your input was too long. Please try either a shorter text or split it into several parts." | |
| if self.current_language != "eng": | |
| self.model.set_phonemizer_language("eng") | |
| self.current_language = "eng" | |
| if self.current_accent != "eng": | |
| self.model.set_accent_language("eng") | |
| self.current_accent = "eng" | |
| print(prompt) | |
| wav, sr, fig = self.model(prompt, | |
| input_is_phones=False, | |
| duration_scaling_factor=duration_scaling_factor, | |
| pitch_variance_scale=pitch_variance_scale, | |
| energy_variance_scale=energy_variance_scale, | |
| pause_duration_scaling_factor=pause_duration_scaling_factor, | |
| return_plot_as_filepath=True, | |
| prosody_creativity=prosody_creativity, | |
| loudness_in_db=loudness_in_db) | |
| return sr, wav, fig | |
| title = "Controllable Text-to-Speech for over 7000 Languages" | |
| article = "Check out the IMS Toucan TTS Toolkit at https://github.com/DigitalPhonetics/IMS-Toucan" | |
| available_artificial_voices = 1000 | |
| path_to_iso_list = "Preprocessing/multilinguality/iso_to_fullname.json" | |
| iso_to_name = load_json_from_path(path_to_iso_list) | |
| text_selection = [f"{iso_to_name[iso_code]} Text ({iso_code})" for iso_code in iso_to_name] | |
| controllable_ui = ControllableInterface(available_artificial_voices=available_artificial_voices) | |
| def read(prompt, | |
| language, | |
| voice_seed, | |
| prosody_creativity, | |
| duration_scaling_factor, | |
| pitch_variance_scale, | |
| energy_variance_scale, | |
| emb1, | |
| emb2 | |
| ): | |
| if torch.cuda.is_available(): | |
| controllable_ui.to("cuda") | |
| controllable_ui.device = "cuda" | |
| try: | |
| sr, wav, fig = controllable_ui.read(prompt, | |
| language.split(" ")[-1].split("(")[1].split(")")[0], | |
| language.split(" ")[-1].split("(")[1].split(")")[0], | |
| voice_seed, | |
| prosody_creativity, | |
| duration_scaling_factor, | |
| 1., | |
| pitch_variance_scale, | |
| energy_variance_scale, | |
| emb1, | |
| emb2, | |
| 0., | |
| 0., | |
| 0., | |
| 0., | |
| -24.) | |
| finally: | |
| controllable_ui.to("cpu") | |
| controllable_ui.device = "cpu" | |
| return (sr, float2pcm(wav)), fig | |
| iface = gr.Interface(fn=read, | |
| inputs=[gr.Textbox(lines=2, | |
| placeholder="write what you want the synthesis to read here...", | |
| value="The woods are lovely, dark and deep, but I have promises to keep, and miles to go, before I sleep.", | |
| label="Text input"), | |
| gr.Dropdown(text_selection, | |
| type="value", | |
| value='English Text (eng)', | |
| label="Select the Language of the Text (type on your keyboard to find it quickly)"), | |
| gr.Slider(minimum=0, maximum=available_artificial_voices, step=1, | |
| value=279, | |
| label="Random Seed for the artificial Voice"), | |
| gr.Slider(minimum=0.0, maximum=0.8, step=0.1, value=0.7, label="Prosody Creativity"), | |
| gr.Slider(minimum=0.7, maximum=1.3, step=0.1, value=1.0, label="Duration Scale"), | |
| gr.Slider(minimum=0.5, maximum=1.5, step=0.1, value=1.0, label="Pitch Variance Scale"), | |
| gr.Slider(minimum=0.5, maximum=1.5, step=0.1, value=1.0, label="Energy Variance Scale"), | |
| gr.Slider(minimum=-10.0, maximum=10.0, step=0.1, value=0.0, label="Femininity / Masculinity"), | |
| gr.Slider(minimum=-10.0, maximum=10.0, step=0.1, value=0.0, label="Voice Depth") | |
| ], | |
| outputs=[gr.Audio(type="numpy", label="Speech"), | |
| gr.Image(label="Visualization")], | |
| title=title, | |
| theme="default", | |
| allow_flagging="never", | |
| article=article) | |
| iface.launch() | |