Spaces:
Running
on
T4
Running
on
T4
| # Copyright 2021 Tomoki Hayashi | |
| # MIT License (https://opensource.org/licenses/MIT) | |
| # Adapted by Florian Lux 2021 | |
| # This code is based on https://github.com/jik876/hifi-gan. | |
| import copy | |
| import torch | |
| import torch.nn.functional as F | |
| from Modules.Vocoder.Avocodo_Discriminators import MultiCoMBDiscriminator | |
| from Modules.Vocoder.Avocodo_Discriminators import MultiSubBandDiscriminator | |
| from Modules.Vocoder.SAN_modules import SANConv1d | |
| from Modules.Vocoder.SAN_modules import SANConv2d | |
| class HiFiGANPeriodDiscriminator(torch.nn.Module): | |
| def __init__(self, | |
| in_channels=1, | |
| out_channels=1, | |
| period=3, | |
| kernel_sizes=(5, 3), | |
| channels=32, | |
| downsample_scales=(3, 3, 3, 3, 1), | |
| max_downsample_channels=1024, | |
| bias=True, | |
| nonlinear_activation="LeakyReLU", | |
| nonlinear_activation_params={"negative_slope": 0.1}, | |
| use_weight_norm=True, | |
| use_spectral_norm=False, ): | |
| """ | |
| Initialize HiFiGANPeriodDiscriminator module. | |
| Args: | |
| in_channels (int): Number of input channels. | |
| out_channels (int): Number of output channels. | |
| period (int): Period. | |
| kernel_sizes (list): Kernel sizes of initial conv layers and the final conv layer. | |
| channels (int): Number of initial channels. | |
| downsample_scales (list): List of downsampling scales. | |
| max_downsample_channels (int): Number of maximum downsampling channels. | |
| bias (bool): Whether to add bias parameter in convolution layers. | |
| nonlinear_activation (str): Activation function module name. | |
| nonlinear_activation_params (dict): Hyperparameters for activation function. | |
| use_weight_norm (bool): Whether to use weight norm. | |
| If set to true, it will be applied to all of the conv layers. | |
| use_spectral_norm (bool): Whether to use spectral norm. | |
| If set to true, it will be applied to all of the conv layers. | |
| """ | |
| super().__init__() | |
| assert len(kernel_sizes) == 2 | |
| assert kernel_sizes[0] % 2 == 1, "Kernel size must be odd number." | |
| assert kernel_sizes[1] % 2 == 1, "Kernel size must be odd number." | |
| self.period = period | |
| self.convs = torch.nn.ModuleList() | |
| in_chs = in_channels | |
| out_chs = channels | |
| for downsample_scale in downsample_scales: | |
| self.convs += [torch.nn.Sequential(torch.nn.Conv2d(in_chs, | |
| out_chs, | |
| (kernel_sizes[0], 1), | |
| (downsample_scale, 1), | |
| padding=((kernel_sizes[0] - 1) // 2, 0), ), | |
| getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), )] | |
| in_chs = out_chs | |
| # NOTE(kan-bayashi): Use downsample_scale + 1? | |
| out_chs = min(out_chs * 4, max_downsample_channels) | |
| self.output_conv = SANConv2d(out_chs, out_channels, (kernel_sizes[1] - 1, 1), 1, padding=((kernel_sizes[1] - 1) // 2, 0)) | |
| if use_weight_norm and use_spectral_norm: | |
| raise ValueError("Either use use_weight_norm or use_spectral_norm.") | |
| # apply weight norm | |
| if use_weight_norm: | |
| self.apply_weight_norm() | |
| # apply spectral norm | |
| if use_spectral_norm: | |
| self.apply_spectral_norm() | |
| def forward(self, x, discriminator_train_flag): | |
| """ | |
| Calculate forward propagation. | |
| Args: | |
| x (Tensor): Input tensor (B, in_channels, T). | |
| Returns: | |
| list: List of each layer's tensors. | |
| """ | |
| # transform 1d to 2d -> (B, C, T/P, P) | |
| b, c, t = x.shape | |
| if t % self.period != 0: | |
| n_pad = self.period - (t % self.period) | |
| x = F.pad(x, (0, n_pad), "reflect") | |
| t = t + n_pad | |
| x = x.view(b, c, t // self.period, self.period) | |
| # forward conv | |
| outs = [] | |
| for layer in self.convs: | |
| x = layer(x) | |
| outs = outs + [x] | |
| x = self.output_conv(x, discriminator_train_flag) | |
| return x, outs | |
| def apply_weight_norm(self): | |
| """ | |
| Apply weight normalization module from all of the layers. | |
| """ | |
| def _apply_weight_norm(m): | |
| if isinstance(m, torch.nn.Conv2d): | |
| torch.nn.utils.weight_norm(m) | |
| self.apply(_apply_weight_norm) | |
| def apply_spectral_norm(self): | |
| """ | |
| Apply spectral normalization module from all of the layers. | |
| """ | |
| def _apply_spectral_norm(m): | |
| if isinstance(m, torch.nn.Conv2d): | |
| torch.nn.utils.spectral_norm(m) | |
| self.apply(_apply_spectral_norm) | |
| class HiFiGANMultiPeriodDiscriminator(torch.nn.Module): | |
| def __init__(self, | |
| periods=(2, 3, 5, 7, 11), | |
| discriminator_params={"in_channels" : 1, | |
| "out_channels" : 1, | |
| "kernel_sizes" : [5, 3], | |
| "channels" : 32, | |
| "downsample_scales" : [3, 3, 3, 3, 1], | |
| "max_downsample_channels" : 1024, | |
| "bias" : True, | |
| "nonlinear_activation" : "LeakyReLU", | |
| "nonlinear_activation_params": {"negative_slope": 0.1}, | |
| "use_weight_norm" : True, | |
| "use_spectral_norm" : False, }, ): | |
| """ | |
| Initialize HiFiGANMultiPeriodDiscriminator module. | |
| Args: | |
| periods (list): List of periods. | |
| discriminator_params (dict): Parameters for hifi-gan period discriminator module. | |
| The period parameter will be overwritten. | |
| """ | |
| super().__init__() | |
| self.discriminators = torch.nn.ModuleList() | |
| for period in periods: | |
| params = copy.deepcopy(discriminator_params) | |
| params["period"] = period | |
| self.discriminators += [HiFiGANPeriodDiscriminator(**params)] | |
| def forward(self, x, discriminator_train_flag): | |
| """Calculate forward propagation. | |
| Args: | |
| x (Tensor): Input noise signal (B, 1, T). | |
| Returns: | |
| List: List of list of each discriminator outputs, which consists of each layer output tensors. | |
| """ | |
| outs = [] | |
| feats = [] | |
| for f in self.discriminators: | |
| d_out, d_feats = f(x, discriminator_train_flag) | |
| outs = outs + [d_out] | |
| feats = feats + d_feats | |
| return outs, feats | |
| class HiFiGANScaleDiscriminator(torch.nn.Module): | |
| def __init__(self, | |
| in_channels=1, | |
| out_channels=1, | |
| kernel_sizes=(15, 41, 5, 3), | |
| channels=128, | |
| max_downsample_channels=1024, | |
| max_groups=16, | |
| bias=True, | |
| downsample_scales=(2, 2, 4, 4, 1), | |
| nonlinear_activation="LeakyReLU", | |
| nonlinear_activation_params={"negative_slope": 0.1}, | |
| use_weight_norm=True, | |
| use_spectral_norm=False, ): | |
| """ | |
| Initialize HiFiGAN scale discriminator module. | |
| Args: | |
| in_channels (int): Number of input channels. | |
| out_channels (int): Number of output channels. | |
| kernel_sizes (list): List of four kernel sizes. The first will be used for the first conv layer, | |
| and the second is for downsampling part, and the remaining two are for output layers. | |
| channels (int): Initial number of channels for conv layer. | |
| max_downsample_channels (int): Maximum number of channels for downsampling layers. | |
| bias (bool): Whether to add bias parameter in convolution layers. | |
| downsample_scales (list): List of downsampling scales. | |
| nonlinear_activation (str): Activation function module name. | |
| nonlinear_activation_params (dict): Hyperparameters for activation function. | |
| use_weight_norm (bool): Whether to use weight norm. | |
| If set to true, it will be applied to all of the conv layers. | |
| use_spectral_norm (bool): Whether to use spectral norm. | |
| If set to true, it will be applied to all of the conv layers. | |
| """ | |
| super().__init__() | |
| self.layers = torch.nn.ModuleList() | |
| # check kernel size is valid | |
| assert len(kernel_sizes) == 4 | |
| for ks in kernel_sizes: | |
| assert ks % 2 == 1 | |
| # add first layer | |
| self.layers += [torch.nn.Sequential(torch.nn.Conv1d(in_channels, | |
| channels, | |
| # NOTE(kan-bayashi): Use always the same kernel size | |
| kernel_sizes[0], | |
| bias=bias, | |
| padding=(kernel_sizes[0] - 1) // 2, ), | |
| getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), )] | |
| # add downsample layers | |
| in_chs = channels | |
| out_chs = channels | |
| # NOTE(kan-bayashi): Remove hard coding? | |
| groups = 4 | |
| for downsample_scale in downsample_scales: | |
| self.layers += [torch.nn.Sequential(torch.nn.Conv1d(in_chs, | |
| out_chs, | |
| kernel_size=kernel_sizes[1], | |
| stride=downsample_scale, | |
| padding=(kernel_sizes[1] - 1) // 2, | |
| groups=groups, | |
| bias=bias, | |
| ), getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), )] | |
| in_chs = out_chs | |
| # NOTE(kan-bayashi): Remove hard coding? | |
| out_chs = min(in_chs * 2, max_downsample_channels) | |
| # NOTE(kan-bayashi): Remove hard coding? | |
| groups = min(groups * 4, max_groups) | |
| # add final layers | |
| out_chs = min(in_chs * 2, max_downsample_channels) | |
| self.layers += [torch.nn.Sequential(torch.nn.Conv1d(in_chs, | |
| out_chs, | |
| kernel_size=kernel_sizes[2], | |
| stride=1, | |
| padding=(kernel_sizes[2] - 1) // 2, | |
| bias=bias, ), | |
| getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), )] | |
| self.post_conv = SANConv1d(out_chs, out_channels, kernel_sizes[3], padding=(kernel_sizes[3] - 1) // 2) | |
| if use_weight_norm and use_spectral_norm: | |
| raise ValueError("Either use use_weight_norm or use_spectral_norm.") | |
| # apply weight norm | |
| if use_weight_norm: | |
| self.apply_weight_norm() | |
| # apply spectral norm | |
| if use_spectral_norm: | |
| self.apply_spectral_norm() | |
| def forward(self, x, discriminator_train_flag): | |
| """ | |
| Calculate forward propagation. | |
| Args: | |
| x (Tensor): Input noise signal (B, 1, T). | |
| Returns: | |
| List: List of output tensors of each layer. | |
| """ | |
| outs = [] | |
| for f in self.layers: | |
| x = f(x) | |
| outs = outs + [x] | |
| x = self.post_conv(x, discriminator_train_flag) | |
| return x, outs | |
| def apply_weight_norm(self): | |
| """ | |
| Apply weight normalization module from all of the layers. | |
| """ | |
| def _apply_weight_norm(m): | |
| if isinstance(m, torch.nn.Conv2d): | |
| torch.nn.utils.weight_norm(m) | |
| self.apply(_apply_weight_norm) | |
| def apply_spectral_norm(self): | |
| """ | |
| Apply spectral normalization module from all of the layers. | |
| """ | |
| def _apply_spectral_norm(m): | |
| if isinstance(m, torch.nn.Conv2d): | |
| torch.nn.utils.spectral_norm(m) | |
| self.apply(_apply_spectral_norm) | |
| class HiFiGANMultiScaleDiscriminator(torch.nn.Module): | |
| def __init__(self, | |
| scales=3, | |
| downsample_pooling="AvgPool1d", | |
| # follow the official implementation setting | |
| downsample_pooling_params={"kernel_size": 4, | |
| "stride" : 2, | |
| "padding" : 2, }, | |
| discriminator_params={"in_channels" : 1, | |
| "out_channels" : 1, | |
| "kernel_sizes" : [15, 41, 5, 3], | |
| "channels" : 128, | |
| "max_downsample_channels" : 1024, | |
| "max_groups" : 16, | |
| "bias" : True, | |
| "downsample_scales" : [2, 2, 4, 4, 1], | |
| "nonlinear_activation" : "LeakyReLU", | |
| "nonlinear_activation_params": {"negative_slope": 0.1}, }, | |
| follow_official_norm=False, ): | |
| """ | |
| Initialize HiFiGAN multi-scale discriminator module. | |
| Args: | |
| scales (int): Number of multi-scales. | |
| downsample_pooling (str): Pooling module name for downsampling of the inputs. | |
| downsample_pooling_params (dict): Parameters for the above pooling module. | |
| discriminator_params (dict): Parameters for hifi-gan scale discriminator module. | |
| follow_official_norm (bool): Whether to follow the norm setting of the official | |
| implementaion. The first discriminator uses spectral norm and the other | |
| discriminators use weight norm. | |
| """ | |
| super().__init__() | |
| self.discriminators = torch.nn.ModuleList() | |
| # add discriminators | |
| for i in range(scales): | |
| params = copy.deepcopy(discriminator_params) | |
| if follow_official_norm: | |
| if i == 0: | |
| params["use_weight_norm"] = False | |
| params["use_spectral_norm"] = True | |
| else: | |
| params["use_weight_norm"] = True | |
| params["use_spectral_norm"] = False | |
| self.discriminators += [HiFiGANScaleDiscriminator(**params)] | |
| self.pooling = getattr(torch.nn, downsample_pooling)(**downsample_pooling_params) | |
| def forward(self, x, discriminator_train_flag): | |
| """ | |
| Calculate forward propagation. | |
| Args: | |
| x (Tensor): Input noise signal (B, 1, T). | |
| Returns: | |
| List: List of list of each discriminator outputs, which consists of each layer output tensors. | |
| """ | |
| outs = [] | |
| feats = [] | |
| for f in self.discriminators: | |
| out, d_feats = f(x, discriminator_train_flag) | |
| feats = feats + d_feats | |
| outs = outs + [out] | |
| x = self.pooling(x) | |
| return outs, feats | |
| class HiFiGANMultiScaleMultiPeriodDiscriminator(torch.nn.Module): | |
| def __init__(self, | |
| # Multi-scale discriminator related | |
| scales=3, | |
| scale_downsample_pooling="AvgPool1d", | |
| scale_downsample_pooling_params={"kernel_size": 4, | |
| "stride" : 2, | |
| "padding" : 2, }, | |
| scale_discriminator_params={"in_channels" : 1, | |
| "out_channels" : 1, | |
| "kernel_sizes" : [15, 41, 5, 3], | |
| "channels" : 128, | |
| "max_downsample_channels" : 1024, | |
| "max_groups" : 16, | |
| "bias" : True, | |
| "downsample_scales" : [4, 4, 4, 4, 1], | |
| "nonlinear_activation" : "LeakyReLU", | |
| "nonlinear_activation_params": {"negative_slope": 0.1}, }, | |
| follow_official_norm=True, | |
| # Multi-period discriminator related | |
| periods=[2, 3, 5, 7, 11], | |
| period_discriminator_params={"in_channels" : 1, | |
| "out_channels" : 1, | |
| "kernel_sizes" : [5, 3], | |
| "channels" : 32, | |
| "downsample_scales" : [3, 3, 3, 3, 1], | |
| "max_downsample_channels" : 1024, | |
| "bias" : True, | |
| "nonlinear_activation" : "LeakyReLU", | |
| "nonlinear_activation_params": {"negative_slope": 0.1}, | |
| "use_weight_norm" : True, | |
| "use_spectral_norm" : False, }, ): | |
| """ | |
| Initialize HiFiGAN multi-scale + multi-period discriminator module. | |
| Args: | |
| scales (int): Number of multi-scales. | |
| scale_downsample_pooling (str): Pooling module name for downsampling of the inputs. | |
| scale_downsample_pooling_params (dict): Parameters for the above pooling module. | |
| scale_discriminator_params (dict): Parameters for hifi-gan scale discriminator module. | |
| follow_official_norm (bool): Whether to follow the norm setting of the official | |
| implementaion. The first discriminator uses spectral norm and the other | |
| discriminators use weight norm. | |
| periods (list): List of periods. | |
| period_discriminator_params (dict): Parameters for hifi-gan period discriminator module. | |
| The period parameter will be overwritten. | |
| """ | |
| super().__init__() | |
| self.msd = HiFiGANMultiScaleDiscriminator(scales=scales, | |
| downsample_pooling=scale_downsample_pooling, | |
| downsample_pooling_params=scale_downsample_pooling_params, | |
| discriminator_params=scale_discriminator_params, | |
| follow_official_norm=follow_official_norm, ) | |
| self.mpd = HiFiGANMultiPeriodDiscriminator(periods=periods, | |
| discriminator_params=period_discriminator_params, ) | |
| def forward(self, x): | |
| """ | |
| Calculate forward propagation. | |
| Args: | |
| x (Tensor): Input noise signal (B, 1, T). | |
| Returns: | |
| List: List of list of each discriminator outputs, | |
| which consists of each layer output tensors. | |
| Multi scale and multi period ones are concatenated. | |
| """ | |
| msd_outs = self.msd(x) | |
| mpd_outs = self.mpd(x) | |
| return msd_outs + mpd_outs | |
| class AvocodoHiFiGANJointDiscriminator(torch.nn.Module): | |
| def __init__(self, | |
| # Multi-scale discriminator related | |
| scales=3, | |
| scale_downsample_pooling="AvgPool1d", | |
| scale_downsample_pooling_params={"kernel_size": 4, | |
| "stride" : 2, | |
| "padding" : 2, }, | |
| scale_discriminator_params={"in_channels" : 1, | |
| "out_channels" : 1, | |
| "kernel_sizes" : [15, 41, 5, 3], | |
| "channels" : 128, | |
| "max_downsample_channels" : 1024, | |
| "max_groups" : 16, | |
| "bias" : True, | |
| "downsample_scales" : [4, 4, 4, 4, 1], | |
| "nonlinear_activation" : "LeakyReLU", | |
| "nonlinear_activation_params": {"negative_slope": 0.1}, }, | |
| follow_official_norm=True, | |
| # Multi-period discriminator related | |
| periods=(2, 3, 5, 7, 11), | |
| period_discriminator_params={"in_channels" : 1, | |
| "out_channels" : 1, | |
| "kernel_sizes" : [5, 3], | |
| "channels" : 32, | |
| "downsample_scales" : [3, 3, 3, 3, 1], | |
| "max_downsample_channels" : 1024, | |
| "bias" : True, | |
| "nonlinear_activation" : "LeakyReLU", | |
| "nonlinear_activation_params": {"negative_slope": 0.1}, | |
| "use_weight_norm" : True, | |
| "use_spectral_norm" : False, }, | |
| # CoMB discriminator related | |
| kernels=((7, 11, 11, 11, 11, 5), | |
| (11, 21, 21, 21, 21, 5), | |
| (15, 41, 41, 41, 41, 5)), | |
| channels=(16, 64, 256, 1024, 1024, 1024), | |
| groups=(1, 4, 16, 64, 256, 1), | |
| strides=(1, 1, 4, 4, 4, 1), | |
| # Sub-Band discriminator related | |
| tkernels=(7, 5, 3), | |
| fkernel=5, | |
| tchannels=(64, 128, 256, 256, 256), | |
| fchannels=(32, 64, 128, 128, 128), | |
| tstrides=((1, 1, 3, 3, 1), | |
| (1, 1, 3, 3, 1), | |
| (1, 1, 3, 3, 1)), | |
| fstride=(1, 1, 3, 3, 1), | |
| tdilations=(((5, 7, 11), (5, 7, 11), (5, 7, 11), (5, 7, 11), (5, 7, 11), (5, 7, 11)), | |
| ((3, 5, 7), (3, 5, 7), (3, 5, 7), (3, 5, 7), (3, 5, 7)), | |
| ((1, 2, 3), (1, 2, 3), (1, 2, 3), (1, 2, 3), (1, 2, 3))), | |
| fdilations=((1, 2, 3), | |
| (1, 2, 3), | |
| (1, 2, 3), | |
| (2, 3, 5), | |
| (2, 3, 5)), | |
| tsubband=(6, 11, 16), | |
| n=16, | |
| m=64, | |
| freq_init_ch=192): | |
| super().__init__() | |
| self.msd = HiFiGANMultiScaleDiscriminator(scales=scales, | |
| downsample_pooling=scale_downsample_pooling, | |
| downsample_pooling_params=scale_downsample_pooling_params, | |
| discriminator_params=scale_discriminator_params, | |
| follow_official_norm=follow_official_norm, ) | |
| self.mpd = HiFiGANMultiPeriodDiscriminator(periods=periods, | |
| discriminator_params=period_discriminator_params, ) | |
| self.mcmbd = MultiCoMBDiscriminator(kernels, channels, groups, strides) | |
| self.msbd = MultiSubBandDiscriminator(tkernels, fkernel, tchannels, fchannels, tstrides, fstride, tdilations, fdilations, tsubband, n, m, freq_init_ch) | |
| def forward(self, wave, intermediate_wave_upsampled_twice=None, intermediate_wave_upsampled_once=None, discriminator_train_flag=False): | |
| """ | |
| Calculate forward propagation. | |
| Args: | |
| wave: The predicted or gold waveform | |
| intermediate_wave_upsampled_twice: the wave before the final upsampling in the generator | |
| intermediate_wave_upsampled_once: the wave before the second final upsampling in the generator | |
| Returns: | |
| List: List of lists of each discriminator outputs, | |
| which consists of each layer's output tensors. | |
| """ | |
| msd_outs, msd_feats = self.msd(wave, discriminator_train_flag) | |
| mpd_outs, mpd_feats = self.mpd(wave, discriminator_train_flag) | |
| mcmbd_outs, mcmbd_feats = self.mcmbd(wave_final=wave, | |
| intermediate_wave_upsampled_twice=intermediate_wave_upsampled_twice, | |
| intermediate_wave_upsampled_once=intermediate_wave_upsampled_once, | |
| discriminator_train_flag=discriminator_train_flag) | |
| msbd_outs, msbd_feats = self.msbd(wave, discriminator_train_flag) | |
| return msd_outs + mpd_outs + mcmbd_outs + msbd_outs, msd_feats + mpd_feats + mcmbd_feats + msbd_feats | |