Get results earlier
Browse files
app.py
CHANGED
|
@@ -43,6 +43,21 @@ def update_output(output_number):
|
|
| 43 |
gr.update(visible = (5 <= output_number))
|
| 44 |
]
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
def predict(
|
| 47 |
prompt,
|
| 48 |
language,
|
|
@@ -50,12 +65,18 @@ def predict(
|
|
| 50 |
audio_file_pth,
|
| 51 |
mic_file_path,
|
| 52 |
use_mic,
|
|
|
|
| 53 |
generation_number,
|
| 54 |
temperature,
|
| 55 |
is_randomize_seed,
|
| 56 |
seed,
|
| 57 |
progress = gr.Progress()
|
| 58 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
start = time.time()
|
| 60 |
progress(0, desc = "Preparing data...")
|
| 61 |
|
|
@@ -64,14 +85,12 @@ def predict(
|
|
| 64 |
return (
|
| 65 |
None,
|
| 66 |
None,
|
| 67 |
-
None,
|
| 68 |
)
|
| 69 |
if 50000 < len(prompt):
|
| 70 |
gr.Warning("Text length limited to 50,000 characters for this demo, please try shorter text")
|
| 71 |
return (
|
| 72 |
None,
|
| 73 |
None,
|
| 74 |
-
None,
|
| 75 |
)
|
| 76 |
|
| 77 |
if use_mic:
|
|
@@ -80,7 +99,6 @@ def predict(
|
|
| 80 |
return (
|
| 81 |
None,
|
| 82 |
None,
|
| 83 |
-
None,
|
| 84 |
)
|
| 85 |
else:
|
| 86 |
speaker_wav = mic_file_path
|
|
@@ -93,7 +111,7 @@ def predict(
|
|
| 93 |
else:
|
| 94 |
speaker_wav = "./examples/female.wav"
|
| 95 |
|
| 96 |
-
output_filename = []
|
| 97 |
|
| 98 |
try:
|
| 99 |
if language == "fr":
|
|
@@ -102,12 +120,7 @@ def predict(
|
|
| 102 |
if m.find("/fr/") != -1:
|
| 103 |
language = None
|
| 104 |
|
| 105 |
-
|
| 106 |
-
if i < generation_number:
|
| 107 |
-
output_filename.append(f"{i}_{re.sub('[^a-zA-Z0-9]', '_', language)}_{re.sub('[^a-zA-Z0-9]', '_', prompt)}"[:250] + ".wav")
|
| 108 |
-
predict_on_gpu(i, prompt, speaker_wav, language, output_filename[i], temperature, is_randomize_seed, seed, progress)
|
| 109 |
-
else:
|
| 110 |
-
output_filename.append(None)
|
| 111 |
except RuntimeError as e :
|
| 112 |
if "device-assert" in str(e):
|
| 113 |
# cannot do anything on cuda device side error, need to restart
|
|
@@ -126,17 +139,14 @@ def predict(
|
|
| 126 |
information = ("Start again to get a different result. " if is_randomize_seed else "") + "The sound has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec."
|
| 127 |
|
| 128 |
return (
|
| 129 |
-
output_filename
|
| 130 |
-
output_filename[1],
|
| 131 |
-
output_filename[2],
|
| 132 |
-
output_filename[3],
|
| 133 |
-
output_filename[4],
|
| 134 |
information,
|
| 135 |
)
|
| 136 |
|
| 137 |
@spaces.GPU(duration=60)
|
| 138 |
def predict_on_gpu(
|
| 139 |
i,
|
|
|
|
| 140 |
prompt,
|
| 141 |
speaker_wav,
|
| 142 |
language,
|
|
@@ -146,7 +156,7 @@ def predict_on_gpu(
|
|
| 146 |
seed,
|
| 147 |
progress
|
| 148 |
):
|
| 149 |
-
progress((i +
|
| 150 |
if is_randomize_seed:
|
| 151 |
seed = random.randint(0, max_64_bit_int)
|
| 152 |
|
|
@@ -175,7 +185,7 @@ This is the same model that powers our creator application <a href="https://coqu
|
|
| 175 |
<br/>
|
| 176 |
Leave a star on the Github <a href="https://github.com/coqui-ai/TTS">TTS</a>, where our open-source inference and training code lives.
|
| 177 |
<br/>
|
| 178 |
-
<p>
|
| 179 |
<br/>
|
| 180 |
<a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/Multi-language_Text-to-Speech?duplicate=true">
|
| 181 |
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
|
@@ -320,7 +330,7 @@ Leave a star on the Github <a href="https://github.com/coqui-ai/TTS">TTS</a>, wh
|
|
| 320 |
synthesised_audio_3,
|
| 321 |
synthesised_audio_4,
|
| 322 |
synthesised_audio_5
|
| 323 |
-
], queue = False, show_progress = False).success(
|
| 324 |
prompt,
|
| 325 |
language,
|
| 326 |
gender,
|
|
@@ -333,9 +343,61 @@ Leave a star on the Github <a href="https://github.com/coqui-ai/TTS">TTS</a>, wh
|
|
| 333 |
seed
|
| 334 |
], outputs = [
|
| 335 |
synthesised_audio_1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
synthesised_audio_2,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
synthesised_audio_3,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
synthesised_audio_4,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 339 |
synthesised_audio_5,
|
| 340 |
information
|
| 341 |
], scroll_to_output = True)
|
|
|
|
| 43 |
gr.update(visible = (5 <= output_number))
|
| 44 |
]
|
| 45 |
|
| 46 |
+
def predict0(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
|
| 47 |
+
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 0, generation_number, temperature, is_randomize_seed, seed, progress)
|
| 48 |
+
|
| 49 |
+
def predict1(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
|
| 50 |
+
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 1, generation_number, temperature, is_randomize_seed, seed, progress)
|
| 51 |
+
|
| 52 |
+
def predict2(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
|
| 53 |
+
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 2, generation_number, temperature, is_randomize_seed, seed, progress)
|
| 54 |
+
|
| 55 |
+
def predict3(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
|
| 56 |
+
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 3, generation_number, temperature, is_randomize_seed, seed, progress)
|
| 57 |
+
|
| 58 |
+
def predict4(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
|
| 59 |
+
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 4, generation_number, temperature, is_randomize_seed, seed, progress)
|
| 60 |
+
|
| 61 |
def predict(
|
| 62 |
prompt,
|
| 63 |
language,
|
|
|
|
| 65 |
audio_file_pth,
|
| 66 |
mic_file_path,
|
| 67 |
use_mic,
|
| 68 |
+
i,
|
| 69 |
generation_number,
|
| 70 |
temperature,
|
| 71 |
is_randomize_seed,
|
| 72 |
seed,
|
| 73 |
progress = gr.Progress()
|
| 74 |
):
|
| 75 |
+
if generation_number <= i:
|
| 76 |
+
return (
|
| 77 |
+
None,
|
| 78 |
+
None,
|
| 79 |
+
)
|
| 80 |
start = time.time()
|
| 81 |
progress(0, desc = "Preparing data...")
|
| 82 |
|
|
|
|
| 85 |
return (
|
| 86 |
None,
|
| 87 |
None,
|
|
|
|
| 88 |
)
|
| 89 |
if 50000 < len(prompt):
|
| 90 |
gr.Warning("Text length limited to 50,000 characters for this demo, please try shorter text")
|
| 91 |
return (
|
| 92 |
None,
|
| 93 |
None,
|
|
|
|
| 94 |
)
|
| 95 |
|
| 96 |
if use_mic:
|
|
|
|
| 99 |
return (
|
| 100 |
None,
|
| 101 |
None,
|
|
|
|
| 102 |
)
|
| 103 |
else:
|
| 104 |
speaker_wav = mic_file_path
|
|
|
|
| 111 |
else:
|
| 112 |
speaker_wav = "./examples/female.wav"
|
| 113 |
|
| 114 |
+
output_filename = f"{i}_{re.sub('[^a-zA-Z0-9]', '_', language)}_{re.sub('[^a-zA-Z0-9]', '_', prompt)}"[:250] + ".wav"
|
| 115 |
|
| 116 |
try:
|
| 117 |
if language == "fr":
|
|
|
|
| 120 |
if m.find("/fr/") != -1:
|
| 121 |
language = None
|
| 122 |
|
| 123 |
+
predict_on_gpu(i, generation_number, prompt, speaker_wav, language, output_filename, temperature, is_randomize_seed, seed, progress)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
except RuntimeError as e :
|
| 125 |
if "device-assert" in str(e):
|
| 126 |
# cannot do anything on cuda device side error, need to restart
|
|
|
|
| 139 |
information = ("Start again to get a different result. " if is_randomize_seed else "") + "The sound has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec."
|
| 140 |
|
| 141 |
return (
|
| 142 |
+
output_filename,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
information,
|
| 144 |
)
|
| 145 |
|
| 146 |
@spaces.GPU(duration=60)
|
| 147 |
def predict_on_gpu(
|
| 148 |
i,
|
| 149 |
+
generation_number,
|
| 150 |
prompt,
|
| 151 |
speaker_wav,
|
| 152 |
language,
|
|
|
|
| 156 |
seed,
|
| 157 |
progress
|
| 158 |
):
|
| 159 |
+
progress((i + .5) / generation_number, desc = "Generating the audio #" + str(i + 1) + "...")
|
| 160 |
if is_randomize_seed:
|
| 161 |
seed = random.randint(0, max_64_bit_int)
|
| 162 |
|
|
|
|
| 185 |
<br/>
|
| 186 |
Leave a star on the Github <a href="https://github.com/coqui-ai/TTS">TTS</a>, where our open-source inference and training code lives.
|
| 187 |
<br/>
|
| 188 |
+
<p>To avoid the queue, you can duplicate this space on CPU, GPU or ZERO space GPU:
|
| 189 |
<br/>
|
| 190 |
<a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/Multi-language_Text-to-Speech?duplicate=true">
|
| 191 |
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
|
|
|
| 330 |
synthesised_audio_3,
|
| 331 |
synthesised_audio_4,
|
| 332 |
synthesised_audio_5
|
| 333 |
+
], queue = False, show_progress = False).success(predict0, inputs = [
|
| 334 |
prompt,
|
| 335 |
language,
|
| 336 |
gender,
|
|
|
|
| 343 |
seed
|
| 344 |
], outputs = [
|
| 345 |
synthesised_audio_1,
|
| 346 |
+
information
|
| 347 |
+
], scroll_to_output = True).success(predict1, inputs = [
|
| 348 |
+
prompt,
|
| 349 |
+
language,
|
| 350 |
+
gender,
|
| 351 |
+
audio_file_pth,
|
| 352 |
+
mic_file_path,
|
| 353 |
+
use_mic,
|
| 354 |
+
generation_number,
|
| 355 |
+
temperature,
|
| 356 |
+
randomize_seed,
|
| 357 |
+
seed
|
| 358 |
+
], outputs = [
|
| 359 |
synthesised_audio_2,
|
| 360 |
+
information
|
| 361 |
+
], scroll_to_output = True).success(predict2, inputs = [
|
| 362 |
+
prompt,
|
| 363 |
+
language,
|
| 364 |
+
gender,
|
| 365 |
+
audio_file_pth,
|
| 366 |
+
mic_file_path,
|
| 367 |
+
use_mic,
|
| 368 |
+
generation_number,
|
| 369 |
+
temperature,
|
| 370 |
+
randomize_seed,
|
| 371 |
+
seed
|
| 372 |
+
], outputs = [
|
| 373 |
synthesised_audio_3,
|
| 374 |
+
information
|
| 375 |
+
], scroll_to_output = True).success(predict3, inputs = [
|
| 376 |
+
prompt,
|
| 377 |
+
language,
|
| 378 |
+
gender,
|
| 379 |
+
audio_file_pth,
|
| 380 |
+
mic_file_path,
|
| 381 |
+
use_mic,
|
| 382 |
+
generation_number,
|
| 383 |
+
temperature,
|
| 384 |
+
randomize_seed,
|
| 385 |
+
seed
|
| 386 |
+
], outputs = [
|
| 387 |
synthesised_audio_4,
|
| 388 |
+
information
|
| 389 |
+
], scroll_to_output = True).success(predict4, inputs = [
|
| 390 |
+
prompt,
|
| 391 |
+
language,
|
| 392 |
+
gender,
|
| 393 |
+
audio_file_pth,
|
| 394 |
+
mic_file_path,
|
| 395 |
+
use_mic,
|
| 396 |
+
generation_number,
|
| 397 |
+
temperature,
|
| 398 |
+
randomize_seed,
|
| 399 |
+
seed
|
| 400 |
+
], outputs = [
|
| 401 |
synthesised_audio_5,
|
| 402 |
information
|
| 403 |
], scroll_to_output = True)
|