Commit
·
e22e877
1
Parent(s):
a6011ea
clean codebase
Browse files- dummy.py +0 -15
- eval_utils.py +155 -3
- evaluation_results.json +0 -38
- labels.txt +0 -12
- ner_helpers.py +0 -141
- uploads.py +41 -91
dummy.py
DELETED
|
@@ -1,15 +0,0 @@
|
|
| 1 |
-
import json
|
| 2 |
-
|
| 3 |
-
# load the results json file
|
| 4 |
-
with open("submissions/baseline/results.json") as f:
|
| 5 |
-
results = json.load(f)
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
# update the results
|
| 9 |
-
with open("submissions/baseline/submission.json") as f:
|
| 10 |
-
submission = json.load(f)
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
breakpoint()
|
| 14 |
-
# update the results
|
| 15 |
-
results.append(submission[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eval_utils.py
CHANGED
|
@@ -13,7 +13,147 @@ from sklearn.metrics import f1_score
|
|
| 13 |
from tqdm import tqdm
|
| 14 |
from transformers import AutoTokenizer
|
| 15 |
|
| 16 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
def load_json(file_path):
|
|
@@ -76,8 +216,20 @@ def evaluate_cjpe(gold_data, pred_data):
|
|
| 76 |
|
| 77 |
|
| 78 |
def evaluate_lner(gold_data, pred_data, text_data):
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
results_per_fold = {}
|
| 83 |
for fold in range(1, 4):
|
|
|
|
| 13 |
from tqdm import tqdm
|
| 14 |
from transformers import AutoTokenizer
|
| 15 |
|
| 16 |
+
from transformers import AutoTokenizer
|
| 17 |
+
import re
|
| 18 |
+
import string
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class TF_Tokenizer:
|
| 22 |
+
def __init__(self, model_str):
|
| 23 |
+
tok = AutoTokenizer.from_pretrained(model_str)
|
| 24 |
+
|
| 25 |
+
def __call__(self, txt):
|
| 26 |
+
return self.tok.tokenize(txt)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class WS_Tokenizer:
|
| 30 |
+
def __init__(self):
|
| 31 |
+
pass
|
| 32 |
+
|
| 33 |
+
def __call__(self, txt):
|
| 34 |
+
return re.findall(r"[{}]|\w+".format(string.punctuation), txt)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def convert_spans_to_bio(txt, roles, tokenizer_func):
|
| 38 |
+
roles = sorted(roles, key=lambda x: x["start"])
|
| 39 |
+
roles_left = [r["start"] for r in roles]
|
| 40 |
+
|
| 41 |
+
ttxt = tokenizer_func(txt)
|
| 42 |
+
|
| 43 |
+
c = 0
|
| 44 |
+
cr = -1
|
| 45 |
+
prev = "O"
|
| 46 |
+
troles = []
|
| 47 |
+
for tok in ttxt:
|
| 48 |
+
if c >= len(txt):
|
| 49 |
+
break
|
| 50 |
+
|
| 51 |
+
while txt[c] == " ":
|
| 52 |
+
c += 1
|
| 53 |
+
|
| 54 |
+
else:
|
| 55 |
+
if c in roles_left: # Start of a new role
|
| 56 |
+
ind = roles_left.index(c)
|
| 57 |
+
cr = roles[ind]["end"]
|
| 58 |
+
prev = "I-" + roles[ind]["label"]
|
| 59 |
+
troles.append("B-" + roles[ind]["label"])
|
| 60 |
+
else:
|
| 61 |
+
if c < cr: # Assign previous role
|
| 62 |
+
troles.append(prev)
|
| 63 |
+
else: # Assign 'O'
|
| 64 |
+
troles.append("O")
|
| 65 |
+
|
| 66 |
+
c += len(tok)
|
| 67 |
+
|
| 68 |
+
if len(ttxt) != len(troles):
|
| 69 |
+
troles += ["O"] * (len(ttxt) - len(troles))
|
| 70 |
+
|
| 71 |
+
assert len(ttxt) == len(troles)
|
| 72 |
+
return troles
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def convert_bio_to_spans(txt, troles, tokenizer_func):
|
| 76 |
+
c = 0
|
| 77 |
+
c2 = 0
|
| 78 |
+
cr = -1
|
| 79 |
+
cs = -1
|
| 80 |
+
prev = "O"
|
| 81 |
+
|
| 82 |
+
roles = []
|
| 83 |
+
ttxt = tokenizer_func(txt)
|
| 84 |
+
|
| 85 |
+
if len(ttxt) != len(troles):
|
| 86 |
+
ttxt = ttxt[: len(troles)]
|
| 87 |
+
|
| 88 |
+
for j, tok in enumerate(ttxt):
|
| 89 |
+
if c >= len(txt):
|
| 90 |
+
break
|
| 91 |
+
|
| 92 |
+
while c < len(txt) and txt[c].isspace():
|
| 93 |
+
c += 1
|
| 94 |
+
|
| 95 |
+
if tok[:2] == "##" or tok == "[UNK]":
|
| 96 |
+
c += len(tok) - 2 if tok[:2] == "##" else 1
|
| 97 |
+
else:
|
| 98 |
+
if troles[j].startswith("B-"):
|
| 99 |
+
if cs >= cr:
|
| 100 |
+
cr = c
|
| 101 |
+
if cs >= 0:
|
| 102 |
+
roles.append({"start": cs, "end": c2, "label": prev})
|
| 103 |
+
cs = c
|
| 104 |
+
prev = troles[j][2:]
|
| 105 |
+
else:
|
| 106 |
+
if troles[j] == "O":
|
| 107 |
+
if cs >= cr:
|
| 108 |
+
cr = c
|
| 109 |
+
if cs >= 0:
|
| 110 |
+
roles.append({"start": cs, "end": c2, "label": prev})
|
| 111 |
+
c += len(tok)
|
| 112 |
+
c2 = c
|
| 113 |
+
|
| 114 |
+
if cs >= cr:
|
| 115 |
+
if cs >= 0:
|
| 116 |
+
roles.append({"start": cs, "end": c2, "label": prev})
|
| 117 |
+
|
| 118 |
+
return roles
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def span2bio(txt, labels):
|
| 122 |
+
roles = sorted(labels, key=lambda x: x["label"])
|
| 123 |
+
roles_left = [r["start"] for r in roles]
|
| 124 |
+
|
| 125 |
+
ttxt = re.findall(r"[{}]|\w+".format(string.punctuation), txt)
|
| 126 |
+
|
| 127 |
+
c = 0
|
| 128 |
+
cr = -1
|
| 129 |
+
prev = "O"
|
| 130 |
+
troles = []
|
| 131 |
+
for tok in ttxt:
|
| 132 |
+
if c >= len(txt):
|
| 133 |
+
break
|
| 134 |
+
|
| 135 |
+
while txt[c] == " ":
|
| 136 |
+
c += 1
|
| 137 |
+
|
| 138 |
+
else:
|
| 139 |
+
if c in roles_left: # Start of a new role
|
| 140 |
+
ind = roles_left.index(c)
|
| 141 |
+
cr = roles[ind]["end"]
|
| 142 |
+
prev = "I-" + roles[ind]["label"]
|
| 143 |
+
troles.append("B-" + roles[ind]["label"])
|
| 144 |
+
else:
|
| 145 |
+
if c < cr: # Assign previous role
|
| 146 |
+
troles.append(prev)
|
| 147 |
+
else: # Assign 'O'
|
| 148 |
+
troles.append("O")
|
| 149 |
+
|
| 150 |
+
c += len(tok)
|
| 151 |
+
|
| 152 |
+
if len(ttxt) != len(troles):
|
| 153 |
+
troles += ["O"] * (len(ttxt) - len(troles))
|
| 154 |
+
|
| 155 |
+
assert len(ttxt) == len(troles)
|
| 156 |
+
return ttxt, troles
|
| 157 |
|
| 158 |
|
| 159 |
def load_json(file_path):
|
|
|
|
| 216 |
|
| 217 |
|
| 218 |
def evaluate_lner(gold_data, pred_data, text_data):
|
| 219 |
+
labels = [
|
| 220 |
+
"APP",
|
| 221 |
+
"RESP",
|
| 222 |
+
"A.COUNSEL",
|
| 223 |
+
"R.COUNSEL",
|
| 224 |
+
"JUDGE",
|
| 225 |
+
"WIT",
|
| 226 |
+
"AUTH",
|
| 227 |
+
"COURT",
|
| 228 |
+
"STAT",
|
| 229 |
+
"PREC",
|
| 230 |
+
"DATE",
|
| 231 |
+
"CASENO",
|
| 232 |
+
]
|
| 233 |
|
| 234 |
results_per_fold = {}
|
| 235 |
for fold in range(1, 4):
|
evaluation_results.json
DELETED
|
@@ -1,38 +0,0 @@
|
|
| 1 |
-
[
|
| 2 |
-
{
|
| 3 |
-
"Method": "GPT-5 (2-shot)",
|
| 4 |
-
"Submitted By": "IL-TUR",
|
| 5 |
-
"Github Link": "dummy submission",
|
| 6 |
-
"L-NER": {
|
| 7 |
-
"strict mF1": "-"
|
| 8 |
-
},
|
| 9 |
-
"RR": {
|
| 10 |
-
"mF1": {
|
| 11 |
-
"mF1": "0.10"
|
| 12 |
-
}
|
| 13 |
-
},
|
| 14 |
-
"CJPE": {
|
| 15 |
-
"mF1": "-",
|
| 16 |
-
"ROUGE-L": "-",
|
| 17 |
-
"BLEU": "-"
|
| 18 |
-
},
|
| 19 |
-
"BAIL": {
|
| 20 |
-
"mF1": "0.02"
|
| 21 |
-
},
|
| 22 |
-
"LSI": {
|
| 23 |
-
"mF1": "0.26"
|
| 24 |
-
},
|
| 25 |
-
"PCR": {
|
| 26 |
-
"muF1@K": "0.63"
|
| 27 |
-
},
|
| 28 |
-
"SUMM": {
|
| 29 |
-
"ROUGE-L": "-",
|
| 30 |
-
"BERTSCORE": "-"
|
| 31 |
-
},
|
| 32 |
-
"L-MT": {
|
| 33 |
-
"BLEU": "-",
|
| 34 |
-
"GLEU": "-",
|
| 35 |
-
"chrF++": "-"
|
| 36 |
-
}
|
| 37 |
-
}
|
| 38 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
labels.txt
DELETED
|
@@ -1,12 +0,0 @@
|
|
| 1 |
-
APP
|
| 2 |
-
RESP
|
| 3 |
-
A.COUNSEL
|
| 4 |
-
R.COUNSEL
|
| 5 |
-
JUDGE
|
| 6 |
-
WIT
|
| 7 |
-
AUTH
|
| 8 |
-
COURT
|
| 9 |
-
STAT
|
| 10 |
-
PREC
|
| 11 |
-
DATE
|
| 12 |
-
CASENO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ner_helpers.py
DELETED
|
@@ -1,141 +0,0 @@
|
|
| 1 |
-
from transformers import AutoTokenizer
|
| 2 |
-
import re
|
| 3 |
-
import string
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
class TF_Tokenizer:
|
| 7 |
-
def __init__(self, model_str):
|
| 8 |
-
tok = AutoTokenizer.from_pretrained(model_str)
|
| 9 |
-
|
| 10 |
-
def __call__(self, txt):
|
| 11 |
-
return self.tok.tokenize(txt)
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
class WS_Tokenizer:
|
| 15 |
-
def __init__(self):
|
| 16 |
-
pass
|
| 17 |
-
|
| 18 |
-
def __call__(self, txt):
|
| 19 |
-
return re.findall(r"[{}]|\w+".format(string.punctuation), txt)
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def convert_spans_to_bio(txt, roles, tokenizer_func):
|
| 23 |
-
roles = sorted(roles, key=lambda x: x["start"])
|
| 24 |
-
roles_left = [r["start"] for r in roles]
|
| 25 |
-
|
| 26 |
-
ttxt = tokenizer_func(txt)
|
| 27 |
-
|
| 28 |
-
c = 0
|
| 29 |
-
cr = -1
|
| 30 |
-
prev = "O"
|
| 31 |
-
troles = []
|
| 32 |
-
for tok in ttxt:
|
| 33 |
-
if c >= len(txt):
|
| 34 |
-
break
|
| 35 |
-
|
| 36 |
-
while txt[c] == " ":
|
| 37 |
-
c += 1
|
| 38 |
-
|
| 39 |
-
else:
|
| 40 |
-
if c in roles_left: # Start of a new role
|
| 41 |
-
ind = roles_left.index(c)
|
| 42 |
-
cr = roles[ind]["end"]
|
| 43 |
-
prev = "I-" + roles[ind]["label"]
|
| 44 |
-
troles.append("B-" + roles[ind]["label"])
|
| 45 |
-
else:
|
| 46 |
-
if c < cr: # Assign previous role
|
| 47 |
-
troles.append(prev)
|
| 48 |
-
else: # Assign 'O'
|
| 49 |
-
troles.append("O")
|
| 50 |
-
|
| 51 |
-
c += len(tok)
|
| 52 |
-
|
| 53 |
-
if len(ttxt) != len(troles):
|
| 54 |
-
troles += ["O"] * (len(ttxt) - len(troles))
|
| 55 |
-
|
| 56 |
-
assert len(ttxt) == len(troles)
|
| 57 |
-
return troles
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
def convert_bio_to_spans(txt, troles, tokenizer_func):
|
| 61 |
-
c = 0
|
| 62 |
-
c2 = 0
|
| 63 |
-
cr = -1
|
| 64 |
-
cs = -1
|
| 65 |
-
prev = "O"
|
| 66 |
-
|
| 67 |
-
roles = []
|
| 68 |
-
ttxt = tokenizer_func(txt)
|
| 69 |
-
|
| 70 |
-
if len(ttxt) != len(troles):
|
| 71 |
-
ttxt = ttxt[: len(troles)]
|
| 72 |
-
|
| 73 |
-
for j, tok in enumerate(ttxt):
|
| 74 |
-
if c >= len(txt):
|
| 75 |
-
break
|
| 76 |
-
|
| 77 |
-
while c < len(txt) and txt[c].isspace():
|
| 78 |
-
c += 1
|
| 79 |
-
|
| 80 |
-
if tok[:2] == "##" or tok == "[UNK]":
|
| 81 |
-
c += len(tok) - 2 if tok[:2] == "##" else 1
|
| 82 |
-
else:
|
| 83 |
-
if troles[j].startswith("B-"):
|
| 84 |
-
if cs >= cr:
|
| 85 |
-
cr = c
|
| 86 |
-
if cs >= 0:
|
| 87 |
-
roles.append({"start": cs, "end": c2, "label": prev})
|
| 88 |
-
cs = c
|
| 89 |
-
prev = troles[j][2:]
|
| 90 |
-
else:
|
| 91 |
-
if troles[j] == "O":
|
| 92 |
-
if cs >= cr:
|
| 93 |
-
cr = c
|
| 94 |
-
if cs >= 0:
|
| 95 |
-
roles.append({"start": cs, "end": c2, "label": prev})
|
| 96 |
-
c += len(tok)
|
| 97 |
-
c2 = c
|
| 98 |
-
|
| 99 |
-
if cs >= cr:
|
| 100 |
-
if cs >= 0:
|
| 101 |
-
roles.append({"start": cs, "end": c2, "label": prev})
|
| 102 |
-
|
| 103 |
-
return roles
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
def span2bio(txt, labels):
|
| 107 |
-
roles = sorted(labels, key=lambda x: x["label"])
|
| 108 |
-
roles_left = [r["start"] for r in roles]
|
| 109 |
-
|
| 110 |
-
ttxt = re.findall(r"[{}]|\w+".format(string.punctuation), txt)
|
| 111 |
-
|
| 112 |
-
c = 0
|
| 113 |
-
cr = -1
|
| 114 |
-
prev = "O"
|
| 115 |
-
troles = []
|
| 116 |
-
for tok in ttxt:
|
| 117 |
-
if c >= len(txt):
|
| 118 |
-
break
|
| 119 |
-
|
| 120 |
-
while txt[c] == " ":
|
| 121 |
-
c += 1
|
| 122 |
-
|
| 123 |
-
else:
|
| 124 |
-
if c in roles_left: # Start of a new role
|
| 125 |
-
ind = roles_left.index(c)
|
| 126 |
-
cr = roles[ind]["end"]
|
| 127 |
-
prev = "I-" + roles[ind]["label"]
|
| 128 |
-
troles.append("B-" + roles[ind]["label"])
|
| 129 |
-
else:
|
| 130 |
-
if c < cr: # Assign previous role
|
| 131 |
-
troles.append(prev)
|
| 132 |
-
else: # Assign 'O'
|
| 133 |
-
troles.append("O")
|
| 134 |
-
|
| 135 |
-
c += len(tok)
|
| 136 |
-
|
| 137 |
-
if len(ttxt) != len(troles):
|
| 138 |
-
troles += ["O"] * (len(ttxt) - len(troles))
|
| 139 |
-
|
| 140 |
-
assert len(ttxt) == len(troles)
|
| 141 |
-
return ttxt, troles
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uploads.py
CHANGED
|
@@ -1,33 +1,38 @@
|
|
| 1 |
-
from email.utils import parseaddr
|
| 2 |
-
from huggingface_hub import HfApi
|
| 3 |
import os
|
| 4 |
-
import datetime
|
| 5 |
import json
|
| 6 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
|
| 9 |
from eval_utils import get_evaluation_scores
|
| 10 |
|
| 11 |
-
|
| 12 |
LEADERBOARD_PATH = "Exploration-Lab/IL-TUR-Leaderboard"
|
| 13 |
SUBMISSION_FORMAT = "predictions"
|
| 14 |
-
# RESULTS_PATH = "Exploration-Lab/IL-TUR-Leaderboard-results"
|
| 15 |
TOKEN = os.environ.get("TOKEN", None)
|
| 16 |
YEAR_VERSION = "2024"
|
| 17 |
|
| 18 |
api = HfApi(token=TOKEN)
|
| 19 |
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
def format_error(msg):
|
| 22 |
-
return
|
| 23 |
|
| 24 |
|
| 25 |
def format_warning(msg):
|
| 26 |
-
return
|
| 27 |
|
| 28 |
|
| 29 |
def format_log(msg):
|
| 30 |
-
return
|
| 31 |
|
| 32 |
|
| 33 |
def model_hyperlink(link, model_name):
|
|
@@ -35,26 +40,22 @@ def model_hyperlink(link, model_name):
|
|
| 35 |
|
| 36 |
|
| 37 |
def input_verification(method_name, url, path_to_file, organisation, mail):
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
| 43 |
_, parsed_mail = parseaddr(mail)
|
| 44 |
-
if
|
| 45 |
-
return format_warning("Please provide a valid email
|
| 46 |
|
|
|
|
| 47 |
if path_to_file is None:
|
| 48 |
return format_warning("Please attach a file.")
|
| 49 |
|
| 50 |
-
# check the required fields
|
| 51 |
-
required_fields = ["Method", "Submitted By", "url", "organisation", "mail"]
|
| 52 |
-
|
| 53 |
-
# Check if the required_fields are not blank
|
| 54 |
-
for field in required_fields:
|
| 55 |
-
if field not in locals():
|
| 56 |
-
raise gr.Error(f"{field} cannot be blank")
|
| 57 |
-
|
| 58 |
return parsed_mail
|
| 59 |
|
| 60 |
|
|
@@ -66,98 +67,47 @@ def add_new_eval(
|
|
| 66 |
organisation: str,
|
| 67 |
mail: str,
|
| 68 |
):
|
|
|
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
organisation,
|
| 75 |
-
mail,
|
| 76 |
-
)
|
| 77 |
-
|
| 78 |
-
# # load the file
|
| 79 |
-
# df = pd.read_csv(path_to_file)
|
| 80 |
-
# submission_df = pd.read_csv(path_to_file)
|
| 81 |
-
|
| 82 |
-
# # modify the df to include metadata
|
| 83 |
-
# df["Method"] = method_name
|
| 84 |
-
# df["url"] = url
|
| 85 |
-
# df["organisation"] = organisation
|
| 86 |
-
# df["mail"] = parsed_mail
|
| 87 |
-
# df["timestamp"] = datetime.datetime.now()
|
| 88 |
-
|
| 89 |
-
# submission_df = pd.read_csv(path_to_file)
|
| 90 |
-
# submission_df["Method"] = method_name
|
| 91 |
-
# submission_df["Submitted By"] = organisation
|
| 92 |
-
# # upload to spaces using the hf api at
|
| 93 |
-
|
| 94 |
-
# path_in_repo = f"submissions/{method_name}"
|
| 95 |
-
# file_name = f"{method_name}-{organisation}-{datetime.datetime.now().strftime('%Y-%m-%d')}.csv"
|
| 96 |
-
|
| 97 |
-
# upload the df to spaces
|
| 98 |
-
import io
|
| 99 |
|
|
|
|
| 100 |
if SUBMISSION_FORMAT == "predictions":
|
| 101 |
-
#
|
| 102 |
with open(path_to_file, "r") as f:
|
| 103 |
submission_data = json.load(f)
|
| 104 |
-
|
| 105 |
-
# read the gold json file
|
| 106 |
with open("submissions/baseline/IL_TUR_eval_gold_small.json", "r") as f:
|
| 107 |
gold_data = json.load(f)
|
| 108 |
|
|
|
|
| 109 |
submission = get_evaluation_scores(gold_data, submission_data)
|
| 110 |
-
|
| 111 |
else:
|
| 112 |
-
#
|
| 113 |
with open(path_to_file, "r") as f:
|
| 114 |
submission = json.load(f)
|
| 115 |
|
|
|
|
| 116 |
with open("submissions/baseline/results.json", "r") as f:
|
| 117 |
results = json.load(f)
|
| 118 |
-
|
| 119 |
-
# update the results
|
| 120 |
results.append(submission[0])
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
# buffer.seek(0) # Rewind the buffer to the beginning
|
| 125 |
-
|
| 126 |
-
# save the results to buffer
|
| 127 |
-
leaderboard_buffer.write(json.dumps(results).encode())
|
| 128 |
leaderboard_buffer.seek(0)
|
| 129 |
|
| 130 |
-
#
|
| 131 |
-
# repo_id=RESULTS_PATH,
|
| 132 |
-
# path_in_repo=f"{path_in_repo}/{file_name}",
|
| 133 |
-
# path_or_fileobj=buffer,
|
| 134 |
-
# token=TOKEN,
|
| 135 |
-
# repo_type="dataset",
|
| 136 |
-
# )
|
| 137 |
-
# # read the leaderboard
|
| 138 |
-
# leaderboard_df = pd.read_csv(f"submissions/baseline/baseline.csv")
|
| 139 |
-
|
| 140 |
-
# # append the new submission_df csv to the leaderboard
|
| 141 |
-
# # leaderboard_df = leaderboard_df._append(submission_df)
|
| 142 |
-
# # leaderboard_df = pd.concat([leaderboard_df, submission_df], ignore_index=True)
|
| 143 |
-
|
| 144 |
-
# # save the new leaderboard
|
| 145 |
-
# # leaderboard_df.to_csv(f"submissions/baseline/baseline.csv", index=False)
|
| 146 |
-
# leaderboard_buffer = io.BytesIO()
|
| 147 |
-
# leaderboard_df.to_csv(leaderboard_buffer, index=False)
|
| 148 |
-
# leaderboard_buffer.seek(0)
|
| 149 |
-
# with open("submissions/baseline/results.json", "w") as f:
|
| 150 |
-
# json.dump(results, f)
|
| 151 |
-
|
| 152 |
api.upload_file(
|
| 153 |
repo_id=LEADERBOARD_PATH,
|
| 154 |
-
|
| 155 |
-
path_in_repo=f"submissions/baseline/results.json",
|
| 156 |
path_or_fileobj=leaderboard_buffer,
|
| 157 |
token=TOKEN,
|
| 158 |
repo_type="space",
|
| 159 |
)
|
| 160 |
|
| 161 |
return format_log(
|
| 162 |
-
f"Method {method_name} submitted by {organisation} successfully. \
|
|
|
|
| 163 |
)
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import json
|
| 3 |
+
import datetime
|
| 4 |
+
from email.utils import parseaddr
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
|
| 7 |
+
from huggingface_hub import HfApi
|
| 8 |
import gradio as gr
|
| 9 |
|
| 10 |
from eval_utils import get_evaluation_scores
|
| 11 |
|
| 12 |
+
# Constants
|
| 13 |
LEADERBOARD_PATH = "Exploration-Lab/IL-TUR-Leaderboard"
|
| 14 |
SUBMISSION_FORMAT = "predictions"
|
|
|
|
| 15 |
TOKEN = os.environ.get("TOKEN", None)
|
| 16 |
YEAR_VERSION = "2024"
|
| 17 |
|
| 18 |
api = HfApi(token=TOKEN)
|
| 19 |
|
| 20 |
|
| 21 |
+
# Helper functions for formatting messages
|
| 22 |
+
def format_message(msg, color):
|
| 23 |
+
return f"<p style='color: {color}; font-size: 20px; text-align: center;'>{msg}</p>"
|
| 24 |
+
|
| 25 |
+
|
| 26 |
def format_error(msg):
|
| 27 |
+
return format_message(msg, "red")
|
| 28 |
|
| 29 |
|
| 30 |
def format_warning(msg):
|
| 31 |
+
return format_message(msg, "orange")
|
| 32 |
|
| 33 |
|
| 34 |
def format_log(msg):
|
| 35 |
+
return format_message(msg, "green")
|
| 36 |
|
| 37 |
|
| 38 |
def model_hyperlink(link, model_name):
|
|
|
|
| 40 |
|
| 41 |
|
| 42 |
def input_verification(method_name, url, path_to_file, organisation, mail):
|
| 43 |
+
"""Verify the input fields for submission."""
|
| 44 |
+
# Check if any field is empty
|
| 45 |
+
if any(
|
| 46 |
+
input == "" for input in [method_name, url, path_to_file, organisation, mail]
|
| 47 |
+
):
|
| 48 |
+
return format_warning("Please fill all the fields.")
|
| 49 |
+
|
| 50 |
+
# Verify email format
|
| 51 |
_, parsed_mail = parseaddr(mail)
|
| 52 |
+
if "@" not in parsed_mail:
|
| 53 |
+
return format_warning("Please provide a valid email address.")
|
| 54 |
|
| 55 |
+
# Check if file is attached
|
| 56 |
if path_to_file is None:
|
| 57 |
return format_warning("Please attach a file.")
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
return parsed_mail
|
| 60 |
|
| 61 |
|
|
|
|
| 67 |
organisation: str,
|
| 68 |
mail: str,
|
| 69 |
):
|
| 70 |
+
"""Add a new evaluation to the leaderboard."""
|
| 71 |
|
| 72 |
+
# Verify input
|
| 73 |
+
parsed_mail = input_verification(method_name, url, path_to_file, organisation, mail)
|
| 74 |
+
if parsed_mail.startswith("<p"): # If it's a warning message
|
| 75 |
+
return parsed_mail
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
# Process submission
|
| 78 |
if SUBMISSION_FORMAT == "predictions":
|
| 79 |
+
# Read submission and gold data
|
| 80 |
with open(path_to_file, "r") as f:
|
| 81 |
submission_data = json.load(f)
|
|
|
|
|
|
|
| 82 |
with open("submissions/baseline/IL_TUR_eval_gold_small.json", "r") as f:
|
| 83 |
gold_data = json.load(f)
|
| 84 |
|
| 85 |
+
# Get evaluation scores
|
| 86 |
submission = get_evaluation_scores(gold_data, submission_data)
|
|
|
|
| 87 |
else:
|
| 88 |
+
# Read submission directly if it's not in predictions format
|
| 89 |
with open(path_to_file, "r") as f:
|
| 90 |
submission = json.load(f)
|
| 91 |
|
| 92 |
+
# Update results
|
| 93 |
with open("submissions/baseline/results.json", "r") as f:
|
| 94 |
results = json.load(f)
|
|
|
|
|
|
|
| 95 |
results.append(submission[0])
|
| 96 |
|
| 97 |
+
# Prepare buffer for upload
|
| 98 |
+
leaderboard_buffer = BytesIO(json.dumps(results).encode())
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
leaderboard_buffer.seek(0)
|
| 100 |
|
| 101 |
+
# Upload to Hugging Face
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
api.upload_file(
|
| 103 |
repo_id=LEADERBOARD_PATH,
|
| 104 |
+
path_in_repo="submissions/baseline/results.json",
|
|
|
|
| 105 |
path_or_fileobj=leaderboard_buffer,
|
| 106 |
token=TOKEN,
|
| 107 |
repo_type="space",
|
| 108 |
)
|
| 109 |
|
| 110 |
return format_log(
|
| 111 |
+
f"Method {method_name} submitted by {organisation} successfully. \n"
|
| 112 |
+
"Please refresh the leaderboard, and wait a bit to see the score displayed"
|
| 113 |
)
|