Spaces:
Runtime error
Runtime error
Upload eval_utils.py
Browse files- eval_utils.py +104 -191
eval_utils.py
CHANGED
|
@@ -3,157 +3,19 @@ import re
|
|
| 3 |
from collections import defaultdict
|
| 4 |
|
| 5 |
import evaluate
|
| 6 |
-
|
| 7 |
-
# import nltk
|
| 8 |
import numpy as np
|
| 9 |
from nervaluate import Evaluator
|
| 10 |
-
from rouge_score import rouge_scorer
|
| 11 |
from sacrebleu.metrics import BLEU, CHRF
|
| 12 |
from sklearn.metrics import f1_score
|
| 13 |
from tqdm import tqdm
|
| 14 |
from transformers import AutoTokenizer
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
import re
|
| 18 |
import string
|
| 19 |
|
| 20 |
-
|
| 21 |
-
class TF_Tokenizer:
|
| 22 |
-
def __init__(self, model_str):
|
| 23 |
-
tok = AutoTokenizer.from_pretrained(model_str)
|
| 24 |
-
|
| 25 |
-
def __call__(self, txt):
|
| 26 |
-
return self.tok.tokenize(txt)
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
class WS_Tokenizer:
|
| 30 |
-
def __init__(self):
|
| 31 |
-
pass
|
| 32 |
-
|
| 33 |
-
def __call__(self, txt):
|
| 34 |
-
return re.findall(r"[{}]|\w+".format(string.punctuation), txt)
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
def convert_spans_to_bio(txt, roles, tokenizer_func):
|
| 38 |
-
roles = sorted(roles, key=lambda x: x["start"])
|
| 39 |
-
roles_left = [r["start"] for r in roles]
|
| 40 |
-
|
| 41 |
-
ttxt = tokenizer_func(txt)
|
| 42 |
-
|
| 43 |
-
c = 0
|
| 44 |
-
cr = -1
|
| 45 |
-
prev = "O"
|
| 46 |
-
troles = []
|
| 47 |
-
for tok in ttxt:
|
| 48 |
-
if c >= len(txt):
|
| 49 |
-
break
|
| 50 |
-
|
| 51 |
-
while txt[c] == " ":
|
| 52 |
-
c += 1
|
| 53 |
-
|
| 54 |
-
else:
|
| 55 |
-
if c in roles_left: # Start of a new role
|
| 56 |
-
ind = roles_left.index(c)
|
| 57 |
-
cr = roles[ind]["end"]
|
| 58 |
-
prev = "I-" + roles[ind]["label"]
|
| 59 |
-
troles.append("B-" + roles[ind]["label"])
|
| 60 |
-
else:
|
| 61 |
-
if c < cr: # Assign previous role
|
| 62 |
-
troles.append(prev)
|
| 63 |
-
else: # Assign 'O'
|
| 64 |
-
troles.append("O")
|
| 65 |
-
|
| 66 |
-
c += len(tok)
|
| 67 |
-
|
| 68 |
-
if len(ttxt) != len(troles):
|
| 69 |
-
troles += ["O"] * (len(ttxt) - len(troles))
|
| 70 |
-
|
| 71 |
-
assert len(ttxt) == len(troles)
|
| 72 |
-
return troles
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
def convert_bio_to_spans(txt, troles, tokenizer_func):
|
| 76 |
-
c = 0
|
| 77 |
-
c2 = 0
|
| 78 |
-
cr = -1
|
| 79 |
-
cs = -1
|
| 80 |
-
prev = "O"
|
| 81 |
-
|
| 82 |
-
roles = []
|
| 83 |
-
ttxt = tokenizer_func(txt)
|
| 84 |
-
|
| 85 |
-
if len(ttxt) != len(troles):
|
| 86 |
-
ttxt = ttxt[: len(troles)]
|
| 87 |
-
|
| 88 |
-
for j, tok in enumerate(ttxt):
|
| 89 |
-
if c >= len(txt):
|
| 90 |
-
break
|
| 91 |
-
|
| 92 |
-
while c < len(txt) and txt[c].isspace():
|
| 93 |
-
c += 1
|
| 94 |
-
|
| 95 |
-
if tok[:2] == "##" or tok == "[UNK]":
|
| 96 |
-
c += len(tok) - 2 if tok[:2] == "##" else 1
|
| 97 |
-
else:
|
| 98 |
-
if troles[j].startswith("B-"):
|
| 99 |
-
if cs >= cr:
|
| 100 |
-
cr = c
|
| 101 |
-
if cs >= 0:
|
| 102 |
-
roles.append({"start": cs, "end": c2, "label": prev})
|
| 103 |
-
cs = c
|
| 104 |
-
prev = troles[j][2:]
|
| 105 |
-
else:
|
| 106 |
-
if troles[j] == "O":
|
| 107 |
-
if cs >= cr:
|
| 108 |
-
cr = c
|
| 109 |
-
if cs >= 0:
|
| 110 |
-
roles.append({"start": cs, "end": c2, "label": prev})
|
| 111 |
-
c += len(tok)
|
| 112 |
-
c2 = c
|
| 113 |
-
|
| 114 |
-
if cs >= cr:
|
| 115 |
-
if cs >= 0:
|
| 116 |
-
roles.append({"start": cs, "end": c2, "label": prev})
|
| 117 |
-
|
| 118 |
-
return roles
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
def span2bio(txt, labels):
|
| 122 |
-
roles = sorted(labels, key=lambda x: x["label"])
|
| 123 |
-
roles_left = [r["start"] for r in roles]
|
| 124 |
-
|
| 125 |
-
ttxt = re.findall(r"[{}]|\w+".format(string.punctuation), txt)
|
| 126 |
-
|
| 127 |
-
c = 0
|
| 128 |
-
cr = -1
|
| 129 |
-
prev = "O"
|
| 130 |
-
troles = []
|
| 131 |
-
for tok in ttxt:
|
| 132 |
-
if c >= len(txt):
|
| 133 |
-
break
|
| 134 |
-
|
| 135 |
-
while txt[c] == " ":
|
| 136 |
-
c += 1
|
| 137 |
-
|
| 138 |
-
else:
|
| 139 |
-
if c in roles_left: # Start of a new role
|
| 140 |
-
ind = roles_left.index(c)
|
| 141 |
-
cr = roles[ind]["end"]
|
| 142 |
-
prev = "I-" + roles[ind]["label"]
|
| 143 |
-
troles.append("B-" + roles[ind]["label"])
|
| 144 |
-
else:
|
| 145 |
-
if c < cr: # Assign previous role
|
| 146 |
-
troles.append(prev)
|
| 147 |
-
else: # Assign 'O'
|
| 148 |
-
troles.append("O")
|
| 149 |
-
|
| 150 |
-
c += len(tok)
|
| 151 |
-
|
| 152 |
-
if len(ttxt) != len(troles):
|
| 153 |
-
troles += ["O"] * (len(ttxt) - len(troles))
|
| 154 |
-
|
| 155 |
-
assert len(ttxt) == len(troles)
|
| 156 |
-
return ttxt, troles
|
| 157 |
|
| 158 |
|
| 159 |
def load_json(file_path):
|
|
@@ -176,9 +38,18 @@ def evaluate_bail(gold_data, pred_data):
|
|
| 176 |
|
| 177 |
f1 = f1_score(gold_labels, pred_labels, average="macro")
|
| 178 |
print("Macro-F1 on HLDC-all-districts test set:", f1)
|
|
|
|
| 179 |
|
| 180 |
-
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
def evaluate_cjpe(gold_data, pred_data):
|
| 184 |
# Evaluate prediction
|
|
@@ -191,48 +62,76 @@ def evaluate_cjpe(gold_data, pred_data):
|
|
| 191 |
f1 = f1_score(gold_labels, pred_labels, average="macro")
|
| 192 |
prediction_result = {"cjpe-eval": f1}
|
| 193 |
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
explanation_result = {
|
| 209 |
"cjpe-exp-eval": {
|
| 210 |
-
"rouge":
|
| 211 |
-
"bleu":
|
| 212 |
}
|
| 213 |
}
|
| 214 |
-
|
|
|
|
| 215 |
return {**prediction_result, **explanation_result}
|
| 216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
def evaluate_lner(gold_data, pred_data, text_data):
|
| 219 |
-
|
| 220 |
-
"
|
| 221 |
-
"RESP",
|
| 222 |
-
"A.COUNSEL",
|
| 223 |
-
"R.COUNSEL",
|
| 224 |
-
"JUDGE",
|
| 225 |
-
"WIT",
|
| 226 |
-
"AUTH",
|
| 227 |
-
"COURT",
|
| 228 |
-
"STAT",
|
| 229 |
-
"PREC",
|
| 230 |
-
"DATE",
|
| 231 |
-
"CASENO",
|
| 232 |
-
]
|
| 233 |
|
| 234 |
results_per_fold = {}
|
| 235 |
-
for fold in range(1,
|
| 236 |
gold = gold_data[f"fold_{fold}"]
|
| 237 |
pred = pred_data[f"fold_{fold}"]
|
| 238 |
text = text_data[f"fold_{fold}"]
|
|
@@ -251,6 +150,7 @@ def evaluate_lner(gold_data, pred_data, text_data):
|
|
| 251 |
pred_labels.append(pred_bio)
|
| 252 |
|
| 253 |
evaluator = Evaluator(gold_labels, pred_labels, tags=labels, loader="list")
|
|
|
|
| 254 |
results, results_per_tag, _, _ = evaluator.evaluate()
|
| 255 |
|
| 256 |
f1_scores = [results_per_tag[l]["strict"]["f1"] for l in results_per_tag]
|
|
@@ -258,22 +158,34 @@ def evaluate_lner(gold_data, pred_data, text_data):
|
|
| 258 |
print(f"Strict Macro-F1 on Fold {fold}:", avg_f1)
|
| 259 |
results_per_fold[f"fold_{fold}"] = avg_f1
|
| 260 |
|
| 261 |
-
|
|
|
|
| 262 |
|
| 263 |
|
| 264 |
def evaluate_rr(gold_data, pred_data):
|
| 265 |
all_gold_labels = []
|
| 266 |
all_pred_labels = []
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
for id, gold_labels in gold_data.items():
|
| 269 |
pred_labels = pred_data.get(id, ["None"] * len(gold_labels))
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
|
| 279 |
def evaluate_lsi(gold_data, pred_data):
|
|
@@ -324,7 +236,7 @@ def evaluate_pcr(gold_data, pred_data):
|
|
| 324 |
|
| 325 |
print(f"Micro-F1@{k} on IL-PCR test set:", f1)
|
| 326 |
|
| 327 |
-
return
|
| 328 |
|
| 329 |
|
| 330 |
def evaluate_summ(gold_data, pred_data):
|
|
@@ -339,11 +251,12 @@ def evaluate_summ(gold_data, pred_data):
|
|
| 339 |
gold_summaries.append(gold_summary)
|
| 340 |
pred_summaries.append(pred_summary)
|
| 341 |
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
print("Rouge-L:", rouge_scores)
|
| 345 |
|
| 346 |
-
|
|
|
|
|
|
|
| 347 |
|
| 348 |
|
| 349 |
def evaluate_lmt(gold_data, pred_data):
|
|
@@ -423,8 +336,8 @@ def create_output_json(evaluation_results):
|
|
| 423 |
def main():
|
| 424 |
# gold_data = load_json("IL_TUR_eval_gold.json")
|
| 425 |
# pred_data = load_json("IL_TUR_eval_submission2.json")
|
| 426 |
-
gold_data = load_json("submissions/baseline/
|
| 427 |
-
pred_data = load_json("submissions/baseline/
|
| 428 |
pred_data = gold_data
|
| 429 |
evaluation_results = {}
|
| 430 |
|
|
|
|
| 3 |
from collections import defaultdict
|
| 4 |
|
| 5 |
import evaluate
|
| 6 |
+
import nltk
|
|
|
|
| 7 |
import numpy as np
|
| 8 |
from nervaluate import Evaluator
|
| 9 |
+
# from rouge_score import rouge_scorer
|
| 10 |
from sacrebleu.metrics import BLEU, CHRF
|
| 11 |
from sklearn.metrics import f1_score
|
| 12 |
from tqdm import tqdm
|
| 13 |
from transformers import AutoTokenizer
|
| 14 |
+
import rouge
|
| 15 |
+
import bert_score
|
|
|
|
| 16 |
import string
|
| 17 |
|
| 18 |
+
from ner_helpers import span2bio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
|
| 21 |
def load_json(file_path):
|
|
|
|
| 38 |
|
| 39 |
f1 = f1_score(gold_labels, pred_labels, average="macro")
|
| 40 |
print("Macro-F1 on HLDC-all-districts test set:", f1)
|
| 41 |
+
return f1
|
| 42 |
|
| 43 |
+
def get_BLEU_score(ref_text_all, machine_text_all):
|
| 44 |
+
sc_all = []
|
| 45 |
+
for i in range(len(ref_text_all)):
|
| 46 |
+
ref_text = ref_text_all[i]
|
| 47 |
+
machine_text = machine_text_all[i]
|
| 48 |
+
tok_ref_text = nltk.word_tokenize(ref_text)
|
| 49 |
+
tok_machine_text = nltk.word_tokenize(machine_text)
|
| 50 |
+
sc = nltk.translate.bleu_score.sentence_bleu([tok_ref_text], tok_machine_text, weights = (0.5,0.5))
|
| 51 |
+
sc_all.append(sc)
|
| 52 |
+
return sum(sc_all)/len(sc_all)
|
| 53 |
|
| 54 |
def evaluate_cjpe(gold_data, pred_data):
|
| 55 |
# Evaluate prediction
|
|
|
|
| 62 |
f1 = f1_score(gold_labels, pred_labels, average="macro")
|
| 63 |
prediction_result = {"cjpe-eval": f1}
|
| 64 |
|
| 65 |
+
R = []
|
| 66 |
+
B = []
|
| 67 |
+
rl_evaluator = rouge.Rouge(metrics=['rouge-l'], max_n=2, limit_length=False, apply_avg=True)
|
| 68 |
+
for x in range(1, 6):
|
| 69 |
+
gold_explanations = []
|
| 70 |
+
pred_explanations = []
|
| 71 |
+
for k,v in gold_data['explanation'].items():
|
| 72 |
+
gold_explanations.append(v[f'expert_{x}'])
|
| 73 |
+
pred_explanations.append(pred_data['explanation'][k])
|
| 74 |
+
rougex = rl_evaluator.get_scores(pred_explanations, gold_explanations)['rouge-l']['f']
|
| 75 |
+
bleux = get_BLEU_score(gold_explanations, pred_explanations)
|
| 76 |
+
R.append(rougex)
|
| 77 |
+
B.append(bleux)
|
| 78 |
+
|
| 79 |
+
rouge_score = sum(R)/len(R)
|
| 80 |
+
bleu_score = sum(B)/len(B)
|
| 81 |
|
| 82 |
explanation_result = {
|
| 83 |
"cjpe-exp-eval": {
|
| 84 |
+
"rouge": rouge_score,
|
| 85 |
+
"bleu": bleu_score,
|
| 86 |
}
|
| 87 |
}
|
| 88 |
+
print("Macro-F1 on ILDC test:", prediction_result)
|
| 89 |
+
print("Explanability for ILDC Expert:", explanation_result)
|
| 90 |
return {**prediction_result, **explanation_result}
|
| 91 |
|
| 92 |
+
def span2bio(txt, roles):
|
| 93 |
+
roles = sorted(roles, key = lambda x:x['start'])
|
| 94 |
+
roles_left = [r['start'] for r in roles]
|
| 95 |
+
|
| 96 |
+
ttxt = re.findall(r'[{}]|\w+'.format(string.punctuation), txt)
|
| 97 |
+
|
| 98 |
+
c = 0
|
| 99 |
+
cr = -1
|
| 100 |
+
prev = 'O'
|
| 101 |
+
troles = []
|
| 102 |
+
for tok in ttxt:
|
| 103 |
+
if c >= len(txt):
|
| 104 |
+
break
|
| 105 |
+
|
| 106 |
+
while txt[c] == ' ':
|
| 107 |
+
c += 1
|
| 108 |
+
|
| 109 |
+
else:
|
| 110 |
+
if c in roles_left: # Start of a new role
|
| 111 |
+
ind = roles_left.index(c)
|
| 112 |
+
cr = roles[ind]['end']
|
| 113 |
+
prev = 'I-' + roles[ind]['label']
|
| 114 |
+
troles.append('B-' + roles[ind]['label'])
|
| 115 |
+
else:
|
| 116 |
+
if c < cr: # Assign previous role
|
| 117 |
+
troles.append(prev)
|
| 118 |
+
else: # Assign 'O'
|
| 119 |
+
troles.append('O')
|
| 120 |
+
|
| 121 |
+
c += len(tok)
|
| 122 |
+
|
| 123 |
+
if len(ttxt) != len(troles):
|
| 124 |
+
troles += ['O'] * (len(ttxt) - len(troles))
|
| 125 |
+
|
| 126 |
+
assert len(ttxt) == len(troles)
|
| 127 |
+
return ttxt, troles
|
| 128 |
|
| 129 |
def evaluate_lner(gold_data, pred_data, text_data):
|
| 130 |
+
with open("ner_labels.txt") as f:
|
| 131 |
+
labels = f.read().strip().split("\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
results_per_fold = {}
|
| 134 |
+
for fold in range(1, len(gold_data) + 1):
|
| 135 |
gold = gold_data[f"fold_{fold}"]
|
| 136 |
pred = pred_data[f"fold_{fold}"]
|
| 137 |
text = text_data[f"fold_{fold}"]
|
|
|
|
| 150 |
pred_labels.append(pred_bio)
|
| 151 |
|
| 152 |
evaluator = Evaluator(gold_labels, pred_labels, tags=labels, loader="list")
|
| 153 |
+
|
| 154 |
results, results_per_tag, _, _ = evaluator.evaluate()
|
| 155 |
|
| 156 |
f1_scores = [results_per_tag[l]["strict"]["f1"] for l in results_per_tag]
|
|
|
|
| 158 |
print(f"Strict Macro-F1 on Fold {fold}:", avg_f1)
|
| 159 |
results_per_fold[f"fold_{fold}"] = avg_f1
|
| 160 |
|
| 161 |
+
print("Strict macro-F1 on L-NER Dataset:", results_per_fold)
|
| 162 |
+
return results_per_fold
|
| 163 |
|
| 164 |
|
| 165 |
def evaluate_rr(gold_data, pred_data):
|
| 166 |
all_gold_labels = []
|
| 167 |
all_pred_labels = []
|
| 168 |
+
with open("rr_label_vocab.json") as f:
|
| 169 |
+
label_vocab = json.load(f)
|
| 170 |
+
|
| 171 |
|
| 172 |
for id, gold_labels in gold_data.items():
|
| 173 |
pred_labels = pred_data.get(id, ["None"] * len(gold_labels))
|
| 174 |
+
for i in range(len(gold_labels)):
|
| 175 |
+
g = gold_labels[i]
|
| 176 |
+
p = pred_labels[i]
|
| 177 |
+
if g not in label_vocab: continue
|
| 178 |
+
for pp in p.split():
|
| 179 |
+
if pp in label_vocab:
|
| 180 |
+
p = pp
|
| 181 |
+
break
|
| 182 |
+
if p not in label_vocab: continue
|
| 183 |
+
all_gold_labels.append([label_vocab[g]])
|
| 184 |
+
all_pred_labels.append([label_vocab[p]])
|
| 185 |
+
|
| 186 |
+
f1 = f1_score(all_gold_labels, all_pred_labels, average="macro")
|
| 187 |
+
print(f"Macro-F1 on combined test set:", f1)
|
| 188 |
+
return f1
|
| 189 |
|
| 190 |
|
| 191 |
def evaluate_lsi(gold_data, pred_data):
|
|
|
|
| 236 |
|
| 237 |
print(f"Micro-F1@{k} on IL-PCR test set:", f1)
|
| 238 |
|
| 239 |
+
return f1_scores
|
| 240 |
|
| 241 |
|
| 242 |
def evaluate_summ(gold_data, pred_data):
|
|
|
|
| 251 |
gold_summaries.append(gold_summary)
|
| 252 |
pred_summaries.append(pred_summary)
|
| 253 |
|
| 254 |
+
rl_evaluator = rouge.Rouge(metrics=['rouge-n','rouge-l'], max_n=2, limit_length=False, apply_avg=True)
|
| 255 |
+
rl_scores = rl_evaluator.get_scores(pred_summaries, gold_summaries)
|
|
|
|
| 256 |
|
| 257 |
+
_, _, bs = bert_score.score(pred_summaries, gold_summaries, lang="en", verbose=True, device='cuda')
|
| 258 |
+
print("Rouge:", {k:v['f'] for k,v in rl_scores.items()}, "BERTSCORE:", bs.mean().item())
|
| 259 |
+
return {'ROUGE': rl_scores['rouge-l']['f'], 'BERTSCORE': bs.mean().item()}
|
| 260 |
|
| 261 |
|
| 262 |
def evaluate_lmt(gold_data, pred_data):
|
|
|
|
| 336 |
def main():
|
| 337 |
# gold_data = load_json("IL_TUR_eval_gold.json")
|
| 338 |
# pred_data = load_json("IL_TUR_eval_submission2.json")
|
| 339 |
+
gold_data = load_json("submissions/baseline/IL_TUR_eval_gold.json")
|
| 340 |
+
pred_data = load_json("submissions/baseline/IL_TUR_eval_submission_dummy.json")
|
| 341 |
pred_data = gold_data
|
| 342 |
evaluation_results = {}
|
| 343 |
|