Spaces:
Runtime error
Runtime error
Commit
·
3f2777e
1
Parent(s):
a92fba7
update submission
Browse files- app.py +102 -73
- src/about.py +3 -27
- src/display/utils.py +25 -18
app.py
CHANGED
|
@@ -168,33 +168,33 @@ with demo:
|
|
| 168 |
elem_id="column-select",
|
| 169 |
interactive=True,
|
| 170 |
)
|
| 171 |
-
with gr.Row():
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
with gr.Column(min_width=320):
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
|
| 199 |
leaderboard_table = gr.components.Dataframe(
|
| 200 |
value=leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
|
@@ -217,30 +217,30 @@ with demo:
|
|
| 217 |
[
|
| 218 |
hidden_leaderboard_table_for_search,
|
| 219 |
shown_columns,
|
| 220 |
-
filter_columns_type,
|
| 221 |
-
filter_columns_precision,
|
| 222 |
-
filter_columns_size,
|
| 223 |
-
deleted_models_visibility,
|
| 224 |
search_bar,
|
| 225 |
],
|
| 226 |
leaderboard_table,
|
| 227 |
)
|
| 228 |
for selector in [
|
| 229 |
shown_columns,
|
| 230 |
-
filter_columns_type,
|
| 231 |
-
filter_columns_precision,
|
| 232 |
-
filter_columns_size,
|
| 233 |
-
deleted_models_visibility,
|
| 234 |
]:
|
| 235 |
selector.change(
|
| 236 |
update_table,
|
| 237 |
[
|
| 238 |
hidden_leaderboard_table_for_search,
|
| 239 |
shown_columns,
|
| 240 |
-
filter_columns_type,
|
| 241 |
-
filter_columns_precision,
|
| 242 |
-
filter_columns_size,
|
| 243 |
-
deleted_models_visibility,
|
| 244 |
search_bar,
|
| 245 |
],
|
| 246 |
leaderboard_table,
|
|
@@ -290,53 +290,82 @@ with demo:
|
|
| 290 |
datatype=EVAL_TYPES,
|
| 291 |
row_count=5,
|
| 292 |
)
|
| 293 |
-
with gr.Row():
|
| 294 |
-
|
| 295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
with gr.Row():
|
| 297 |
with gr.Column():
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
multiselect=False,
|
| 304 |
-
value=None,
|
| 305 |
-
interactive=True,
|
| 306 |
-
)
|
| 307 |
-
|
| 308 |
with gr.Column():
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
multiselect=False,
|
| 313 |
-
value="float16",
|
| 314 |
-
interactive=True,
|
| 315 |
-
)
|
| 316 |
-
weight_type = gr.Dropdown(
|
| 317 |
-
choices=[i.value.name for i in WeightType],
|
| 318 |
-
label="Weights type",
|
| 319 |
-
multiselect=False,
|
| 320 |
-
value="Original",
|
| 321 |
-
interactive=True,
|
| 322 |
-
)
|
| 323 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
| 324 |
|
| 325 |
submit_button = gr.Button("Submit Eval")
|
| 326 |
submission_result = gr.Markdown()
|
| 327 |
submit_button.click(
|
| 328 |
add_new_eval,
|
| 329 |
[
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
|
|
|
| 336 |
],
|
| 337 |
submission_result,
|
| 338 |
)
|
| 339 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
with gr.Row():
|
| 341 |
with gr.Accordion("📙 Citation", open=False):
|
| 342 |
citation_button = gr.Textbox(
|
|
|
|
| 168 |
elem_id="column-select",
|
| 169 |
interactive=True,
|
| 170 |
)
|
| 171 |
+
# with gr.Row():
|
| 172 |
+
# deleted_models_visibility = gr.Checkbox(
|
| 173 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 174 |
+
# )
|
| 175 |
+
# with gr.Column(min_width=320):
|
| 176 |
+
# # with gr.Box(elem_id="box-filter"):
|
| 177 |
+
# filter_columns_type = gr.CheckboxGroup(
|
| 178 |
+
# label="Model types",
|
| 179 |
+
# choices=[t.to_str() for t in ModelType],
|
| 180 |
+
# value=[t.to_str() for t in ModelType],
|
| 181 |
+
# interactive=True,
|
| 182 |
+
# elem_id="filter-columns-type",
|
| 183 |
+
# )
|
| 184 |
+
# filter_columns_precision = gr.CheckboxGroup(
|
| 185 |
+
# label="Precision",
|
| 186 |
+
# choices=[i.value.name for i in Precision],
|
| 187 |
+
# value=[i.value.name for i in Precision],
|
| 188 |
+
# interactive=True,
|
| 189 |
+
# elem_id="filter-columns-precision",
|
| 190 |
+
# )
|
| 191 |
+
# filter_columns_size = gr.CheckboxGroup(
|
| 192 |
+
# label="Model sizes (in billions of parameters)",
|
| 193 |
+
# choices=list(NUMERIC_INTERVALS.keys()),
|
| 194 |
+
# value=list(NUMERIC_INTERVALS.keys()),
|
| 195 |
+
# interactive=True,
|
| 196 |
+
# elem_id="filter-columns-size",
|
| 197 |
+
# )
|
| 198 |
|
| 199 |
leaderboard_table = gr.components.Dataframe(
|
| 200 |
value=leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
|
|
|
| 217 |
[
|
| 218 |
hidden_leaderboard_table_for_search,
|
| 219 |
shown_columns,
|
| 220 |
+
# filter_columns_type,
|
| 221 |
+
# filter_columns_precision,
|
| 222 |
+
# filter_columns_size,
|
| 223 |
+
# deleted_models_visibility,
|
| 224 |
search_bar,
|
| 225 |
],
|
| 226 |
leaderboard_table,
|
| 227 |
)
|
| 228 |
for selector in [
|
| 229 |
shown_columns,
|
| 230 |
+
# filter_columns_type,
|
| 231 |
+
# filter_columns_precision,
|
| 232 |
+
# filter_columns_size,
|
| 233 |
+
# deleted_models_visibility,
|
| 234 |
]:
|
| 235 |
selector.change(
|
| 236 |
update_table,
|
| 237 |
[
|
| 238 |
hidden_leaderboard_table_for_search,
|
| 239 |
shown_columns,
|
| 240 |
+
# filter_columns_type,
|
| 241 |
+
# filter_columns_precision,
|
| 242 |
+
# filter_columns_size,
|
| 243 |
+
# deleted_models_visibility,
|
| 244 |
search_bar,
|
| 245 |
],
|
| 246 |
leaderboard_table,
|
|
|
|
| 290 |
datatype=EVAL_TYPES,
|
| 291 |
row_count=5,
|
| 292 |
)
|
| 293 |
+
# with gr.Row():
|
| 294 |
+
# gr.Markdown("# ✉️✨ Submit your Results here!", elem_classes="markdown-text")
|
| 295 |
+
|
| 296 |
+
# with gr.Row():
|
| 297 |
+
# with gr.Column():
|
| 298 |
+
# model_name_textbox = gr.Textbox(label="Model name")
|
| 299 |
+
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
| 300 |
+
# model_type = gr.Dropdown(
|
| 301 |
+
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
| 302 |
+
# label="Model type",
|
| 303 |
+
# multiselect=False,
|
| 304 |
+
# value=None,
|
| 305 |
+
# interactive=True,
|
| 306 |
+
# )
|
| 307 |
+
|
| 308 |
+
# with gr.Column():
|
| 309 |
+
# precision = gr.Dropdown(
|
| 310 |
+
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
| 311 |
+
# label="Precision",
|
| 312 |
+
# multiselect=False,
|
| 313 |
+
# value="float16",
|
| 314 |
+
# interactive=True,
|
| 315 |
+
# )
|
| 316 |
+
# weight_type = gr.Dropdown(
|
| 317 |
+
# choices=[i.value.name for i in WeightType],
|
| 318 |
+
# label="Weights type",
|
| 319 |
+
# multiselect=False,
|
| 320 |
+
# value="Original",
|
| 321 |
+
# interactive=True,
|
| 322 |
+
# )
|
| 323 |
+
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
| 324 |
+
|
| 325 |
+
with gr.Accordion("Submit a new model for evaluation"):
|
| 326 |
with gr.Row():
|
| 327 |
with gr.Column():
|
| 328 |
+
method_name_textbox = gr.Textbox(label="Method name")
|
| 329 |
+
# llama, phi
|
| 330 |
+
model_family_radio = gr.Radio(["llama", "phi"], value="llama", label="Model family")
|
| 331 |
+
forget_rate_radio = gr.Radio(["1%", "5%", "10%"], value="10%", label="Forget rate")
|
| 332 |
+
url_textbox = gr.Textbox(label="Url to model information")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
with gr.Column():
|
| 334 |
+
organisation = gr.Textbox(label="Organisation")
|
| 335 |
+
mail = gr.Textbox(label="Contact email")
|
| 336 |
+
file_output = gr.File()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
|
| 338 |
submit_button = gr.Button("Submit Eval")
|
| 339 |
submission_result = gr.Markdown()
|
| 340 |
submit_button.click(
|
| 341 |
add_new_eval,
|
| 342 |
[
|
| 343 |
+
method_name_textbox,
|
| 344 |
+
model_family_radio,
|
| 345 |
+
forget_rate_radio,
|
| 346 |
+
url_textbox,
|
| 347 |
+
file_output,
|
| 348 |
+
organisation,
|
| 349 |
+
mail,
|
| 350 |
],
|
| 351 |
submission_result,
|
| 352 |
)
|
| 353 |
|
| 354 |
+
# submit_button = gr.Button("Submit Eval")
|
| 355 |
+
# submission_result = gr.Markdown()
|
| 356 |
+
# submit_button.click(
|
| 357 |
+
# add_new_eval,
|
| 358 |
+
# [
|
| 359 |
+
# model_name_textbox,
|
| 360 |
+
# base_model_name_textbox,
|
| 361 |
+
# revision_name_textbox,
|
| 362 |
+
# precision,
|
| 363 |
+
# weight_type,
|
| 364 |
+
# model_type,
|
| 365 |
+
# ],
|
| 366 |
+
# submission_result,
|
| 367 |
+
# )
|
| 368 |
+
|
| 369 |
with gr.Row():
|
| 370 |
with gr.Accordion("📙 Citation", open=False):
|
| 371 |
citation_button = gr.Textbox(
|
src/about.py
CHANGED
|
@@ -30,7 +30,7 @@ NUM_FEWSHOT = 0 # Change with your few shot
|
|
| 30 |
|
| 31 |
|
| 32 |
# Your leaderboard name
|
| 33 |
-
TITLE = """<h1 align="center" id="space-title">IL-TUR
|
| 34 |
|
| 35 |
# What does your leaderboard evaluate?
|
| 36 |
INTRODUCTION_TEXT = """
|
|
@@ -47,33 +47,9 @@ To reproduce our results, here is the commands you can run:
|
|
| 47 |
"""
|
| 48 |
|
| 49 |
EVALUATION_QUEUE_TEXT = """
|
| 50 |
-
|
| 51 |
|
| 52 |
-
|
| 53 |
-
```python
|
| 54 |
-
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
| 55 |
-
config = AutoConfig.from_pretrained("your model name", revision=revision)
|
| 56 |
-
model = AutoModel.from_pretrained("your model name", revision=revision)
|
| 57 |
-
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
|
| 58 |
-
```
|
| 59 |
-
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
|
| 60 |
-
|
| 61 |
-
Note: make sure your model is public!
|
| 62 |
-
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
|
| 63 |
-
|
| 64 |
-
### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
|
| 65 |
-
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
|
| 66 |
-
|
| 67 |
-
### 3) Make sure your model has an open license!
|
| 68 |
-
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
|
| 69 |
-
|
| 70 |
-
### 4) Fill up your model card
|
| 71 |
-
When we add extra information about models to the leaderboard, it will be automatically taken from the model card
|
| 72 |
-
|
| 73 |
-
## In case of model failure
|
| 74 |
-
If your model is displayed in the `FAILED` category, its execution stopped.
|
| 75 |
-
Make sure you have followed the above steps first.
|
| 76 |
-
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
|
| 77 |
"""
|
| 78 |
|
| 79 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
|
|
|
| 30 |
|
| 31 |
|
| 32 |
# Your leaderboard name
|
| 33 |
+
TITLE = """<h1 align="center" id="space-title">IL-TUR Leaderboard</h1>"""
|
| 34 |
|
| 35 |
# What does your leaderboard evaluate?
|
| 36 |
INTRODUCTION_TEXT = """
|
|
|
|
| 47 |
"""
|
| 48 |
|
| 49 |
EVALUATION_QUEUE_TEXT = """
|
| 50 |
+
We encourage submissions for the IL-TUR leaderboard. The leaderboard is open to all researchers and practitioners.
|
| 51 |
|
| 52 |
+
Every task has its own leaderboard, and researchers can submit their results for any task. We also encourage submissions for multiple tasks.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
"""
|
| 54 |
|
| 55 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
src/display/utils.py
CHANGED
|
@@ -5,6 +5,7 @@ import pandas as pd
|
|
| 5 |
|
| 6 |
from src.about import Tasks
|
| 7 |
|
|
|
|
| 8 |
def fields(raw_class):
|
| 9 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
| 10 |
|
|
@@ -20,29 +21,31 @@ class ColumnContent:
|
|
| 20 |
hidden: bool = False
|
| 21 |
never_hidden: bool = False
|
| 22 |
|
|
|
|
| 23 |
## Leaderboard columns
|
| 24 |
auto_eval_column_dict = []
|
| 25 |
# Init
|
| 26 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
| 27 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 28 |
-
#Scores
|
| 29 |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
| 30 |
for task in Tasks:
|
| 31 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
| 32 |
-
# Model information
|
| 33 |
-
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
| 34 |
-
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
| 35 |
-
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
| 36 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
| 37 |
-
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
| 38 |
-
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
| 39 |
-
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
| 40 |
-
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
| 41 |
-
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
| 42 |
|
| 43 |
# We use make dataclass to dynamically fill the scores from Tasks
|
| 44 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
| 45 |
|
|
|
|
| 46 |
## For the queue columns in the submission tab
|
| 47 |
@dataclass(frozen=True)
|
| 48 |
class EvalQueueColumn: # Queue column
|
|
@@ -53,12 +56,13 @@ class EvalQueueColumn: # Queue column
|
|
| 53 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
| 54 |
status = ColumnContent("status", "str", True)
|
| 55 |
|
|
|
|
| 56 |
## All the model information that we might need
|
| 57 |
@dataclass
|
| 58 |
class ModelDetails:
|
| 59 |
name: str
|
| 60 |
display_name: str = ""
|
| 61 |
-
symbol: str = ""
|
| 62 |
|
| 63 |
|
| 64 |
class ModelType(Enum):
|
|
@@ -83,18 +87,20 @@ class ModelType(Enum):
|
|
| 83 |
return ModelType.IFT
|
| 84 |
return ModelType.Unknown
|
| 85 |
|
|
|
|
| 86 |
class WeightType(Enum):
|
| 87 |
Adapter = ModelDetails("Adapter")
|
| 88 |
Original = ModelDetails("Original")
|
| 89 |
Delta = ModelDetails("Delta")
|
| 90 |
|
|
|
|
| 91 |
class Precision(Enum):
|
| 92 |
float16 = ModelDetails("float16")
|
| 93 |
bfloat16 = ModelDetails("bfloat16")
|
| 94 |
float32 = ModelDetails("float32")
|
| 95 |
-
#qt_8bit = ModelDetails("8bit")
|
| 96 |
-
#qt_4bit = ModelDetails("4bit")
|
| 97 |
-
#qt_GPTQ = ModelDetails("GPTQ")
|
| 98 |
Unknown = ModelDetails("?")
|
| 99 |
|
| 100 |
def from_str(precision):
|
|
@@ -104,14 +110,15 @@ class Precision(Enum):
|
|
| 104 |
return Precision.bfloat16
|
| 105 |
if precision in ["float32"]:
|
| 106 |
return Precision.float32
|
| 107 |
-
#if precision in ["8bit"]:
|
| 108 |
# return Precision.qt_8bit
|
| 109 |
-
#if precision in ["4bit"]:
|
| 110 |
# return Precision.qt_4bit
|
| 111 |
-
#if precision in ["GPTQ", "None"]:
|
| 112 |
# return Precision.qt_GPTQ
|
| 113 |
return Precision.Unknown
|
| 114 |
|
|
|
|
| 115 |
# Column selection
|
| 116 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
| 117 |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
|
|
|
| 5 |
|
| 6 |
from src.about import Tasks
|
| 7 |
|
| 8 |
+
|
| 9 |
def fields(raw_class):
|
| 10 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
| 11 |
|
|
|
|
| 21 |
hidden: bool = False
|
| 22 |
never_hidden: bool = False
|
| 23 |
|
| 24 |
+
|
| 25 |
## Leaderboard columns
|
| 26 |
auto_eval_column_dict = []
|
| 27 |
# Init
|
| 28 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
| 29 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 30 |
+
# Scores
|
| 31 |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
| 32 |
for task in Tasks:
|
| 33 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
| 34 |
+
# # Model information
|
| 35 |
+
# auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
| 36 |
+
# auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
| 37 |
+
# auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
| 38 |
+
# auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
| 39 |
+
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
| 40 |
+
# auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
| 41 |
+
# auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
| 42 |
+
# auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
| 43 |
+
# auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
| 44 |
|
| 45 |
# We use make dataclass to dynamically fill the scores from Tasks
|
| 46 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
| 47 |
|
| 48 |
+
|
| 49 |
## For the queue columns in the submission tab
|
| 50 |
@dataclass(frozen=True)
|
| 51 |
class EvalQueueColumn: # Queue column
|
|
|
|
| 56 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
| 57 |
status = ColumnContent("status", "str", True)
|
| 58 |
|
| 59 |
+
|
| 60 |
## All the model information that we might need
|
| 61 |
@dataclass
|
| 62 |
class ModelDetails:
|
| 63 |
name: str
|
| 64 |
display_name: str = ""
|
| 65 |
+
symbol: str = "" # emoji
|
| 66 |
|
| 67 |
|
| 68 |
class ModelType(Enum):
|
|
|
|
| 87 |
return ModelType.IFT
|
| 88 |
return ModelType.Unknown
|
| 89 |
|
| 90 |
+
|
| 91 |
class WeightType(Enum):
|
| 92 |
Adapter = ModelDetails("Adapter")
|
| 93 |
Original = ModelDetails("Original")
|
| 94 |
Delta = ModelDetails("Delta")
|
| 95 |
|
| 96 |
+
|
| 97 |
class Precision(Enum):
|
| 98 |
float16 = ModelDetails("float16")
|
| 99 |
bfloat16 = ModelDetails("bfloat16")
|
| 100 |
float32 = ModelDetails("float32")
|
| 101 |
+
# qt_8bit = ModelDetails("8bit")
|
| 102 |
+
# qt_4bit = ModelDetails("4bit")
|
| 103 |
+
# qt_GPTQ = ModelDetails("GPTQ")
|
| 104 |
Unknown = ModelDetails("?")
|
| 105 |
|
| 106 |
def from_str(precision):
|
|
|
|
| 110 |
return Precision.bfloat16
|
| 111 |
if precision in ["float32"]:
|
| 112 |
return Precision.float32
|
| 113 |
+
# if precision in ["8bit"]:
|
| 114 |
# return Precision.qt_8bit
|
| 115 |
+
# if precision in ["4bit"]:
|
| 116 |
# return Precision.qt_4bit
|
| 117 |
+
# if precision in ["GPTQ", "None"]:
|
| 118 |
# return Precision.qt_GPTQ
|
| 119 |
return Precision.Unknown
|
| 120 |
|
| 121 |
+
|
| 122 |
# Column selection
|
| 123 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
| 124 |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|