Update api/ltx_server_refactored.py
Browse files- api/ltx_server_refactored.py +368 -630
api/ltx_server_refactored.py
CHANGED
|
@@ -1,72 +1,86 @@
|
|
| 1 |
-
#
|
| 2 |
-
#
|
|
|
|
| 3 |
|
| 4 |
-
import
|
| 5 |
-
|
| 6 |
-
import os, subprocess, shlex, tempfile
|
| 7 |
-
import torch
|
| 8 |
import json
|
| 9 |
-
import
|
| 10 |
-
import random
|
| 11 |
import os
|
| 12 |
-
import
|
| 13 |
-
|
| 14 |
-
import shlex
|
| 15 |
-
import yaml
|
| 16 |
-
from typing import List, Dict
|
| 17 |
-
from pathlib import Path
|
| 18 |
-
import imageio
|
| 19 |
-
from PIL import Image
|
| 20 |
-
import tempfile
|
| 21 |
-
from huggingface_hub import hf_hub_download
|
| 22 |
-
import sys
|
| 23 |
-
import subprocess
|
| 24 |
-
import gc
|
| 25 |
import shutil
|
| 26 |
-
import
|
|
|
|
|
|
|
| 27 |
import time
|
| 28 |
import traceback
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
from einops import rearrange
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
DEPS_DIR = Path("/data")
|
| 36 |
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
# (Todas as funções de setup, helpers e inicialização da classe permanecem inalteradas)
|
| 48 |
-
# ... (run_setup, add_deps_to_path, _query_gpu_processes_via_nvml, etc.)
|
| 49 |
-
def run_setup():
|
| 50 |
-
setup_script_path = "setup.py"
|
| 51 |
-
if not os.path.exists(setup_script_path):
|
| 52 |
-
print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.")
|
| 53 |
-
return
|
| 54 |
-
try:
|
| 55 |
-
print("[DEBUG] Executando setup.py para dependências...")
|
| 56 |
-
subprocess.run([sys.executable, setup_script_path], check=True)
|
| 57 |
-
print("[DEBUG] Setup concluído com sucesso.")
|
| 58 |
-
except subprocess.CalledProcessError as e:
|
| 59 |
-
print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.")
|
| 60 |
-
sys.exit(1)
|
| 61 |
-
if not LTX_VIDEO_REPO_DIR.exists():
|
| 62 |
-
print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...")
|
| 63 |
-
run_setup()
|
| 64 |
def add_deps_to_path():
|
|
|
|
| 65 |
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 66 |
-
if
|
| 67 |
sys.path.insert(0, repo_path)
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
pad_h = target_h - orig_h
|
| 71 |
pad_w = target_w - orig_w
|
| 72 |
pad_top = pad_h // 2
|
|
@@ -74,651 +88,375 @@ def calculate_padding(orig_h, orig_w, target_h, target_w):
|
|
| 74 |
pad_left = pad_w // 2
|
| 75 |
pad_right = pad_w - pad_left
|
| 76 |
return (pad_left, pad_right, pad_top, pad_bottom)
|
| 77 |
-
|
|
|
|
|
|
|
| 78 |
if not isinstance(tensor, torch.Tensor):
|
| 79 |
-
|
| 80 |
return
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
| 85 |
if tensor.numel() > 0:
|
| 86 |
try:
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
except Exception:
|
| 89 |
-
pass
|
| 90 |
-
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent
|
| 97 |
-
from api.ltx.inference import (
|
| 98 |
-
create_ltx_video_pipeline,
|
| 99 |
-
create_latent_upsampler,
|
| 100 |
-
load_image_to_tensor_with_resize_and_crop,
|
| 101 |
-
seed_everething,
|
| 102 |
-
)
|
| 103 |
|
| 104 |
class VideoService:
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
with open(config_path, "r") as file:
|
| 109 |
return yaml.safe_load(file)
|
| 110 |
|
| 111 |
-
def
|
| 112 |
-
|
| 113 |
-
keep = set(keep_paths or []); extras = set(extra_paths or [])
|
| 114 |
-
gc.collect()
|
| 115 |
-
try:
|
| 116 |
-
if clear_gpu and torch.cuda.is_available():
|
| 117 |
-
torch.cuda.empty_cache()
|
| 118 |
-
try:
|
| 119 |
-
torch.cuda.ipc_collect()
|
| 120 |
-
except Exception:
|
| 121 |
-
pass
|
| 122 |
-
except Exception as e:
|
| 123 |
-
print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}")
|
| 124 |
-
|
| 125 |
-
def _load_models(self):
|
| 126 |
t0 = time.perf_counter()
|
| 127 |
-
|
| 128 |
-
|
| 129 |
distilled_model_path = hf_hub_download(
|
| 130 |
-
repo_id=
|
| 131 |
filename=self.config["checkpoint_path"],
|
| 132 |
-
local_dir=os.getenv("HF_HOME"),
|
| 133 |
-
cache_dir=os.getenv("HF_HOME_CACHE"),
|
| 134 |
token=os.getenv("HF_TOKEN"),
|
| 135 |
)
|
| 136 |
self.config["checkpoint_path"] = distilled_model_path
|
| 137 |
-
print(f"[DEBUG] Checkpoint em: {distilled_model_path}")
|
| 138 |
-
|
| 139 |
-
print("[DEBUG] Baixando upscaler espacial...")
|
| 140 |
-
spatial_upscaler_path = hf_hub_download(
|
| 141 |
-
repo_id=LTX_REPO,
|
| 142 |
-
filename=self.config["spatial_upscaler_model_path"],
|
| 143 |
-
local_dir=os.getenv("HF_HOME"),
|
| 144 |
-
cache_dir=os.getenv("HF_HOME_CACHE"),
|
| 145 |
-
token=os.getenv("HF_TOKEN")
|
| 146 |
-
)
|
| 147 |
-
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
|
| 148 |
-
print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}")
|
| 149 |
|
| 150 |
-
print("[DEBUG] Construindo pipeline...")
|
| 151 |
pipeline = create_ltx_video_pipeline(
|
| 152 |
ckpt_path=self.config["checkpoint_path"],
|
| 153 |
precision=self.config["precision"],
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
enhance_prompt=False,
|
| 158 |
-
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
|
| 159 |
-
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
|
| 160 |
)
|
| 161 |
-
|
| 162 |
-
|
| 163 |
latent_upsampler = None
|
| 164 |
if self.config.get("spatial_upscaler_model_path"):
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
|
| 167 |
-
print("[DEBUG] Upsampler pronto.")
|
| 168 |
-
print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s")
|
| 169 |
-
return pipeline, latent_upsampler
|
| 170 |
-
|
| 171 |
-
def _apply_precision_policy(self):
|
| 172 |
-
prec = str(self.config.get("precision", "")).lower()
|
| 173 |
-
self.runtime_autocast_dtype = torch.float32
|
| 174 |
-
if prec in ["float8_e4m3fn", "bfloat16"]:
|
| 175 |
-
self.runtime_autocast_dtype = torch.bfloat16
|
| 176 |
-
elif prec == "mixed_precision":
|
| 177 |
-
self.runtime_autocast_dtype = torch.float16
|
| 178 |
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}")
|
| 182 |
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
| 194 |
torch.cuda.empty_cache()
|
| 195 |
-
torch.cuda.ipc_collect()
|
| 196 |
-
self.finalize(keep_paths=[])
|
| 197 |
-
|
| 198 |
-
def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
|
| 199 |
-
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
|
| 200 |
-
tensor = torch.nn.functional.pad(tensor, padding_values)
|
| 201 |
-
log_tensor_info(tensor, f"_prepare_conditioning_tensor")
|
| 202 |
-
return tensor.to(self.device, dtype=self.runtime_autocast_dtype)
|
| 203 |
-
|
| 204 |
|
| 205 |
-
|
| 206 |
-
output_path = os.path.join(temp_dir, f"{base_filename}_.mp4")
|
| 207 |
-
video_encode_tool_singleton.save_video_from_tensor(
|
| 208 |
-
pixel_tensor, output_path, fps=fps, progress_callback=progress_callback
|
| 209 |
-
)
|
| 210 |
-
final_path = os.path.join(results_dir, f"{base_filename}_.mp4")
|
| 211 |
-
shutil.move(output_path, final_path)
|
| 212 |
-
print(f"[DEBUG] Vídeo salvo em: {final_path}")
|
| 213 |
-
return final_path
|
| 214 |
-
|
| 215 |
-
def _load_tensor(self, caminho):
|
| 216 |
-
# Se já é um tensor, retorna diretamente
|
| 217 |
-
if isinstance(caminho, torch.Tensor):
|
| 218 |
-
return caminho
|
| 219 |
-
# Se é bytes, carrega do buffer
|
| 220 |
-
if isinstance(caminho, (bytes, bytearray)):
|
| 221 |
-
return torch.load(io.BytesIO(caminho))
|
| 222 |
-
# Caso contrário, assume que é um caminho de arquivo
|
| 223 |
-
return torch.load(caminho)
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
# ==============================================================================
|
| 227 |
-
# --- FUNÇÕES MODULARES COM A LÓGICA DE CHUNKING SIMPLIFICADA ---
|
| 228 |
-
# ==============================================================================
|
| 229 |
-
|
| 230 |
-
def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int):
|
| 231 |
-
if not items_list: return []
|
| 232 |
-
height_padded = ((height - 1) // 8 + 1) * 8
|
| 233 |
-
width_padded = ((width - 1) // 8 + 1) * 8
|
| 234 |
-
padding_values = calculate_padding(height, width, height_padded, width_padded)
|
| 235 |
-
conditioning_items = []
|
| 236 |
-
for media, frame, weight in items_list:
|
| 237 |
-
tensor = self._prepare_conditioning_tensor(media, height, width, padding_values) if isinstance(media, str) else media.to(self.device, dtype=self.runtime_autocast_dtype)
|
| 238 |
-
safe_frame = max(0, min(int(frame), num_frames - 1))
|
| 239 |
-
conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
|
| 240 |
-
return conditioning_items
|
| 241 |
|
| 242 |
-
def
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
tensor = torch.load(io.BytesIO(tensor_patch)).to(self.device)
|
| 253 |
-
# Caso contrário, assume que é um caminho de arquivo
|
| 254 |
-
else:
|
| 255 |
-
tensor = torch.load(tensor_patch).to(self.device)
|
| 256 |
-
safe_frame = max(0, int(frame))
|
| 257 |
-
conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
|
| 258 |
-
return conditioning_items
|
| 259 |
-
|
| 260 |
-
def generate_low(self, prompt, negative_prompt, height, width, duration, guidance_scale, seed, conditioning_items=None):
|
| 261 |
-
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 262 |
-
seed_everething(used_seed)
|
| 263 |
-
FPS = 24.0
|
| 264 |
|
| 265 |
-
|
| 266 |
-
height_padded = ((height - 1) // 8 + 1) * 8
|
| 267 |
-
width_padded = ((width - 1) // 8 + 1) * 8
|
| 268 |
-
temp_dir = tempfile.mkdtemp(prefix="ltxv_low_"); self._register_tmp_dir(temp_dir)
|
| 269 |
-
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
|
| 270 |
-
downscale_factor = self.config.get("downscale_factor", 0.6666666)
|
| 271 |
-
vae_scale_factor = self.pipeline.vae_scale_factor
|
| 272 |
-
x_width = int(width_padded * downscale_factor)
|
| 273 |
-
downscaled_width = x_width - (x_width % vae_scale_factor)
|
| 274 |
-
x_height = int(height_padded * downscale_factor)
|
| 275 |
-
downscaled_height = x_height - (x_height % vae_scale_factor)
|
| 276 |
-
first_pass_kwargs = {
|
| 277 |
-
"prompt": prompt, "negative_prompt": negative_prompt, "height": downscaled_height, "width": downscaled_width,
|
| 278 |
-
"num_frames": actual_num_frames, "frame_rate": int(FPS), "generator": torch.Generator(device=self.device).manual_seed(used_seed),
|
| 279 |
-
"output_type": "latent",
|
| 280 |
-
#"conditioning_items": conditioning_items,
|
| 281 |
-
#"guidance_scale": float(guidance_scale),
|
| 282 |
-
**(self.config.get("first_pass", {}))
|
| 283 |
-
}
|
| 284 |
|
| 285 |
-
print(f"[DEBUG] generate_low.first_pass_kwargs: {first_pass_kwargs}")
|
| 286 |
-
try:
|
| 287 |
-
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'):
|
| 288 |
-
latents = self.pipeline(**first_pass_kwargs).images
|
| 289 |
-
pixel_tensor = vae_manager_singleton.decode(latents.clone(), decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 290 |
-
video_path = self._save_and_log_video(pixel_tensor, "low_res_video", FPS, temp_dir, results_dir, used_seed)
|
| 291 |
-
latents_cpu = latents.detach().to("cpu")
|
| 292 |
-
tensor_path = os.path.join(results_dir, f"latents_low_res_{used_seed}.pt")
|
| 293 |
-
torch.save(latents_cpu, tensor_path)
|
| 294 |
-
return video_path, tensor_path, used_seed
|
| 295 |
-
|
| 296 |
-
except Exception as e:
|
| 297 |
-
print(f"[DEBUG] falhou: {e}")
|
| 298 |
-
finally:
|
| 299 |
-
torch.cuda.empty_cache()
|
| 300 |
-
torch.cuda.ipc_collect()
|
| 301 |
-
self.finalize(keep_paths=[])
|
| 302 |
|
| 303 |
-
#
|
| 304 |
-
# ---
|
| 305 |
-
#
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
seed, itens_conditions_itens,
|
| 310 |
-
ltx_configs_override=None):
|
| 311 |
"""
|
| 312 |
-
[
|
| 313 |
-
|
|
|
|
|
|
|
| 314 |
"""
|
| 315 |
-
|
|
|
|
|
|
|
| 316 |
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
generator = torch.Generator(device=self.device).manual_seed(seed)
|
| 326 |
-
|
| 327 |
-
downscale_factor = self.config.get("downscale_factor", 0.6666666)
|
| 328 |
-
vae_scale_factor = self.pipeline.vae_scale_factor
|
| 329 |
-
|
| 330 |
-
x_width = int(width_padded * downscale_factor)
|
| 331 |
-
downscaled_width = x_width - (x_width % vae_scale_factor)
|
| 332 |
-
x_height = int(height_padded * downscale_factor)
|
| 333 |
-
downscaled_height = x_height - (x_height % vae_scale_factor)
|
| 334 |
|
| 335 |
-
|
|
|
|
| 336 |
|
| 337 |
-
|
|
|
|
|
|
|
| 338 |
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
first_pass_kwargs = {
|
| 357 |
-
"prompt": prompt, "negative_prompt": negative_prompt, "height": downscaled_height, "width": downscaled_width,
|
| 358 |
-
"num_frames": num_frames, "frame_rate": 24, "generator": generator, "output_type": "latent",
|
| 359 |
-
"conditioning_items": itens_conditions_itens,
|
| 360 |
-
**first_pass_config,
|
| 361 |
-
}
|
| 362 |
|
|
|
|
|
|
|
| 363 |
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
#
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
|
| 380 |
except Exception as e:
|
| 381 |
-
|
| 382 |
traceback.print_exc()
|
| 383 |
-
|
| 384 |
-
return None
|
| 385 |
finally:
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
# --- FUNÇÃO #2: ORQUESTRADOR NARRATIVO (MÚLTIPLOS PROMPTS) ---
|
| 392 |
-
# ==============================================================================
|
| 393 |
-
def generate_narrative_low(
|
| 394 |
-
self, prompt: str, negative_prompt,
|
| 395 |
-
height, width, duration, guidance_scale,
|
| 396 |
-
seed, initial_conditions, overlap_frames: int = 4,
|
| 397 |
-
ltx_configs_override: dict = None):
|
| 398 |
-
"""
|
| 399 |
-
[ORQUESTRADOR NARRATIVO]
|
| 400 |
-
Gera um vídeo em múltiplos chunks sequenciais a partir de um prompt com várias linhas.
|
| 401 |
-
"""
|
| 402 |
-
print("\n" + "="*80)
|
| 403 |
-
print("====== INICIANDO GERAÇÃO NARRATIVA EM CHUNKS (LOW-RES) ======")
|
| 404 |
-
print("="*80)
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 408 |
-
seed_everething(used_seed)
|
| 409 |
-
FPS = 24.0
|
| 410 |
|
| 411 |
-
prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
|
| 412 |
-
num_chunks = len(prompt_list)
|
| 413 |
-
if num_chunks == 0: raise ValueError("O prompt está vazio ou não contém linhas válidas.")
|
| 414 |
-
|
| 415 |
-
total_actual_frames = max(8, int(round((round(duration * FPS) ) / 8.0) * 8 ))
|
| 416 |
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
poda_latents_num = overlap_frames
|
| 422 |
-
|
| 423 |
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
|
| 431 |
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
#current_image_conditions = []
|
| 436 |
-
#if initial_image_conditions:
|
| 437 |
-
# cond_item_original = initial_image_conditions[0]
|
| 438 |
-
# if i == 0:
|
| 439 |
-
# current_image_conditions.append(cond_item_original)
|
| 440 |
-
# else:
|
| 441 |
-
# cond_item_fraco = ConditioningItem(
|
| 442 |
-
# media_item=cond_item_original.media_item, media_frame_number=0, conditioning_strength=0.1
|
| 443 |
-
# )
|
| 444 |
-
# current_image_conditions.append(cond_item_fraco)
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
poda_latents_num = 8
|
| 448 |
-
|
| 449 |
-
if i > 0 and poda_latents_num > 0:
|
| 450 |
-
frames_per_chunk += poda_latents_num
|
| 451 |
-
else:
|
| 452 |
-
frames_per_chunk = frames_per_chunk
|
| 453 |
-
|
| 454 |
-
if i == num_chunks - 1:
|
| 455 |
-
frames_per_chunk = frames_per_chunk+poda_latents_num
|
| 456 |
-
|
| 457 |
-
#frames_per_chunk = ((frames_per_chunk - 1)//8)*8 + 1
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
if i> 0:
|
| 461 |
-
initial_conditions = []
|
| 462 |
-
|
| 463 |
-
if i > 0:
|
| 464 |
-
initial_conditions = []
|
| 465 |
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
itens_conditions_itens = initial_conditions + overlap_condition
|
| 473 |
-
|
| 474 |
-
latentes_bruto_r = self._generate_single_chunk_low(
|
| 475 |
-
prompt=chunk_prompt, negative_prompt=negative_prompt, height=height, width=width,
|
| 476 |
-
num_frames=frames_per_chunk, guidance_scale=guidance_scale, seed=used_seed + i,
|
| 477 |
-
itens_conditions_itens=itens_conditions_itens,
|
| 478 |
-
ltx_configs_override=ltx_configs_override
|
| 479 |
)
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
print(f"[DEBUG] generate_narrative_low.frames_per_chunk: {frames_per_chunk}")
|
| 483 |
-
log_tensor_info(latentes_bruto_r, f"latentes_bruto_r recebidk: {i}...'")
|
| 484 |
-
|
| 485 |
-
#latent_path_bufer = load_tensor(latent_path)
|
| 486 |
-
#final_latents = torch.cat(lista_tensores, dim=2).to(self.device)
|
| 487 |
-
|
| 488 |
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
latentes_bruto = latentes_bruto_r[:, :, poda_latents_num:, :, :].clone()
|
| 492 |
-
else:
|
| 493 |
-
latentes_bruto = latentes_bruto_r[:, :, :, :, :].clone()
|
| 494 |
-
|
| 495 |
-
log_tensor_info(latentes_bruto, f"latentes_bruto recebidk: {i}...'")
|
| 496 |
-
|
| 497 |
-
# cria estado overlap para proximo
|
| 498 |
-
if i < num_chunks - 1 and poda_latents_num > 0:
|
| 499 |
-
overlap_latents = latentes_bruto_r[:, :, -poda_latents_num:, :, :].clone()
|
| 500 |
-
log_tensor_info(overlap_latents, f"overlap_latents recebidk: {i}...'")
|
| 501 |
-
overlap_latents = overlap_latents.detach().to(self.device)
|
| 502 |
-
condition_item_latent_overlap = ConditioningItem(
|
| 503 |
-
media_item=overlap_latents, media_frame_number=0, conditioning_strength=1.0
|
| 504 |
-
)
|
| 505 |
-
|
| 506 |
|
| 507 |
-
#
|
| 508 |
-
|
| 509 |
-
torch.save(
|
| 510 |
-
|
| 511 |
|
| 512 |
-
print("\n--- Finalizando Narrativa: Concatenando chunks ---")
|
| 513 |
-
|
| 514 |
-
# Carrega cada tensor do disco
|
| 515 |
-
lista_tensores = [self._load_tensor(c) for c in lista_patch_latentes_chunk]
|
| 516 |
-
final_latents = torch.cat(lista_tensores, dim=2).to(self.device)
|
| 517 |
-
log_tensor_info(final_latents, "Tensor de Latentes Final Concatenado")
|
| 518 |
-
|
| 519 |
-
try:
|
| 520 |
-
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
|
| 521 |
-
pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 522 |
-
pixel_tensor_cpu = pixel_tensor.detach().to("cpu")
|
| 523 |
-
video_path = self._save_and_log_video(pixel_tensor_cpu, "narrative_video", FPS, temp_dir, results_dir, used_seed)
|
| 524 |
-
final_latents_cpu = final_latents.detach().to("cpu")
|
| 525 |
-
final_latents_patch = os.path.join(results_dir, f"latents_low_fim.pt")
|
| 526 |
-
torch.save(final_latents_cpu, final_latents_patch)
|
| 527 |
-
return video_path, final_latents_patch, used_seed
|
| 528 |
-
|
| 529 |
except Exception as e:
|
| 530 |
-
|
| 531 |
traceback.print_exc()
|
| 532 |
-
print("-" * 20 + " ----------------------------------------------")
|
| 533 |
return None, None, None
|
| 534 |
finally:
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
#
|
| 540 |
-
#
|
| 541 |
-
|
| 542 |
-
def
|
| 543 |
-
self, prompt: str, negative_prompt,
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
ltx_configs_override: dict = None):
|
| 547 |
"""
|
| 548 |
-
[
|
| 549 |
-
|
| 550 |
"""
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
FPS = 24.0
|
| 558 |
|
| 559 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 560 |
|
| 561 |
-
|
| 562 |
-
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
|
| 563 |
-
|
| 564 |
-
# Chama a função de geração de chunk único para fazer todo o trabalho
|
| 565 |
-
final_latents = self._generate_single_chunk_low(
|
| 566 |
-
prompt=prompt, negative_prompt=negative_prompt, height=height, width=width,
|
| 567 |
-
num_frames=total_actual_frames, guidance_scale=guidance_scale, seed=used_seed,
|
| 568 |
-
itens_conditions_itens=initial_conditions,
|
| 569 |
-
ltx_configs_override=ltx_configs_override
|
| 570 |
-
)
|
| 571 |
-
|
| 572 |
-
print("\n--- Finalizando Geração Simples: Salvando e decodificando ---")
|
| 573 |
-
log_tensor_info(final_latents, "Tensor de Latentes Final")
|
| 574 |
-
|
| 575 |
-
try:
|
| 576 |
-
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
|
| 577 |
-
pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 578 |
-
pixel_tensor_cpu = pixel_tensor.detach().to("cpu")
|
| 579 |
-
video_path = self._save_and_log_video(pixel_tensor_cpu, "narrative_video", FPS, temp_dir, results_dir, used_seed)
|
| 580 |
-
final_latents_cpu = final_latents.detach().to("cpu")
|
| 581 |
-
final_latents_patch = os.path.join(results_dir, f"latents_low_fim.pt")
|
| 582 |
-
torch.save(final_latents_cpu, final_latents_patch)
|
| 583 |
-
return video_path, final_latents_patch, used_seed
|
| 584 |
-
except Exception as e:
|
| 585 |
-
print("-" * 20 + " ERRO: generate_single_low --------------------")
|
| 586 |
-
traceback.print_exc()
|
| 587 |
-
print("-" * 20 + " ----------------------------------------------")
|
| 588 |
-
return None, None, None
|
| 589 |
-
finally:
|
| 590 |
-
torch.cuda.empty_cache()
|
| 591 |
-
torch.cuda.ipc_collect()
|
| 592 |
-
self.finalize(keep_paths=[])
|
| 593 |
|
| 594 |
-
|
|
|
|
| 595 |
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 604 |
-
seed_everething(used_seed)
|
| 605 |
-
temp_dir = tempfile.mkdtemp(prefix="ltxv_up_"); self._register_tmp_dir(temp_dir)
|
| 606 |
-
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
|
| 607 |
-
latents_low = torch.load(latents_path).to(self.device)
|
| 608 |
-
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'):
|
| 609 |
-
upsampled_latents = self._upsample_latents_internal(latents_low)
|
| 610 |
-
upsampled_latents = adain_filter_latent(latents=upsampled_latents, reference_latents=latents_low)
|
| 611 |
-
del latents_low; torch.cuda.empty_cache()
|
| 612 |
-
|
| 613 |
-
# --- LÓGICA DE DIVISÃO SIMPLES COM OVERLAP ---
|
| 614 |
-
total_frames = upsampled_latents.shape[2]
|
| 615 |
-
# Garante que mid_point seja pelo menos 1 para evitar um segundo chunk vazio se houver poucos frames
|
| 616 |
-
mid_point = max(1, total_frames // 2)
|
| 617 |
-
chunk1 = upsampled_latents[:, :, :mid_point, :, :]
|
| 618 |
-
# O segundo chunk começa um frame antes para criar o overlap
|
| 619 |
-
chunk2 = upsampled_latents[:, :, mid_point - 1:, :, :]
|
| 620 |
-
|
| 621 |
-
final_latents_list = []
|
| 622 |
-
for i, chunk in enumerate([chunk1, chunk2]):
|
| 623 |
-
if chunk.shape[2] <= 1: continue # Pula chunks inválidos ou vazios
|
| 624 |
-
second_pass_height = chunk.shape[3] * self.pipeline.vae_scale_factor
|
| 625 |
-
second_pass_width = chunk.shape[4] * self.pipeline.vae_scale_factor
|
| 626 |
-
second_pass_kwargs = {
|
| 627 |
-
"prompt": prompt, "negative_prompt": negative_prompt, "height": second_pass_height, "width": second_pass_width,
|
| 628 |
-
"num_frames": chunk.shape[2], "latents": chunk,
|
| 629 |
-
#"guidance_scale": float(guidance_scale),
|
| 630 |
-
"output_type": "latent", "generator": torch.Generator(device=self.device).manual_seed(used_seed),
|
| 631 |
-
**(self.config.get("second_pass", {}))
|
| 632 |
-
}
|
| 633 |
-
refined_chunk = self.pipeline(**second_pass_kwargs).images
|
| 634 |
-
# Remove o overlap do primeiro chunk refinado antes de juntar
|
| 635 |
-
if i == 0:
|
| 636 |
-
final_latents_list.append(refined_chunk[:, :, :-1, :, :])
|
| 637 |
-
else:
|
| 638 |
-
final_latents_list.append(refined_chunk)
|
| 639 |
-
|
| 640 |
-
final_latents = torch.cat(final_latents_list, dim=2)
|
| 641 |
-
log_tensor_info(final_latents, "Latentes Upscaled/Refinados Finais")
|
| 642 |
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
latents = torch.load(latents_path)
|
| 652 |
-
seed = random.randint(0, 99999)
|
| 653 |
-
temp_dir = tempfile.mkdtemp(prefix="ltxv_enc_"); self._register_tmp_dir(temp_dir)
|
| 654 |
-
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
|
| 655 |
|
| 656 |
-
#
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
chunk2_latents = latents[:, :, mid_point - 1:, :, :]
|
| 661 |
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
else:
|
| 672 |
-
pixel_chunks_to_concat.append(pixel_chunk)
|
| 673 |
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
return final_video_path
|
| 677 |
|
| 678 |
-
def
|
| 679 |
-
|
| 680 |
-
|
|
|
|
| 681 |
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
|
|
|
| 690 |
|
| 691 |
-
|
| 692 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 693 |
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
device=self.device, # Agora `self.device` está correto
|
| 699 |
-
autocast_dtype=self.runtime_autocast_dtype
|
| 700 |
-
)
|
| 701 |
-
self._tmp_dirs = set()
|
| 702 |
-
print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s")
|
| 703 |
-
|
| 704 |
-
# A função move_to_device que criamos antes é essencial aqui
|
| 705 |
-
def move_to_device(self, device):
|
| 706 |
-
"""Move os modelos do pipeline para o dispositivo especificado."""
|
| 707 |
-
print(f"[LTX] Movendo modelos para {device}...")
|
| 708 |
-
self.device = torch.device(device) # Garante que é um objeto torch.device
|
| 709 |
-
self.pipeline.to(self.device)
|
| 710 |
-
if self.latent_upsampler:
|
| 711 |
-
self.latent_upsampler.to(self.device)
|
| 712 |
-
print(f"[LTX] Modelos agora estão em {self.device}.")
|
| 713 |
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
|
|
|
|
|
| 1 |
+
# FILE: ltx_server_refactored_complete.py
|
| 2 |
+
# DESCRIPTION: Backend service for video generation using LTX-Video pipeline.
|
| 3 |
+
# Features modular generation, narrative chunking, and resource management.
|
| 4 |
|
| 5 |
+
import gc
|
| 6 |
+
import io
|
|
|
|
|
|
|
| 7 |
import json
|
| 8 |
+
import logging
|
|
|
|
| 9 |
import os
|
| 10 |
+
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
import shutil
|
| 12 |
+
import subprocess
|
| 13 |
+
import sys
|
| 14 |
+
import tempfile
|
| 15 |
import time
|
| 16 |
import traceback
|
| 17 |
+
import warnings
|
| 18 |
+
from pathlib import Path
|
| 19 |
+
from typing import Dict, List, Optional, Tuple
|
| 20 |
+
|
| 21 |
+
import torch
|
| 22 |
+
import yaml
|
| 23 |
from einops import rearrange
|
| 24 |
+
from huggingface_hub import hf_hub_download
|
| 25 |
+
|
| 26 |
+
# ==============================================================================
|
| 27 |
+
# --- INITIAL SETUP & CONFIGURATION ---
|
| 28 |
+
# ==============================================================================
|
| 29 |
|
| 30 |
+
# Suppress excessive logs from external libraries
|
| 31 |
+
warnings.filterwarnings("ignore")
|
| 32 |
+
logging.getLogger("huggingface_hub").setLevel(logging.ERROR)
|
| 33 |
+
logging.basicConfig(level=logging.INFO, format='[%(levelname)s] %(message)s')
|
| 34 |
+
|
| 35 |
+
# --- CONSTANTS ---
|
| 36 |
DEPS_DIR = Path("/data")
|
| 37 |
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
|
| 38 |
+
BASE_CONFIG_PATH = LTX_VIDEO_REPO_DIR / "configs"
|
| 39 |
+
DEFAULT_CONFIG_FILE = BASE_CONFIG_PATH / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 40 |
+
LTX_REPO_ID = "Lightricks/LTX-Video"
|
| 41 |
+
RESULTS_DIR = Path("/app/output")
|
| 42 |
+
DEFAULT_FPS = 24.0
|
| 43 |
+
FRAMES_ALIGNMENT = 8
|
| 44 |
+
|
| 45 |
+
# --- DEPENDENCY PATH SETUP ---
|
| 46 |
+
# Ensures the LTX-Video library can be imported
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
def add_deps_to_path():
|
| 48 |
+
"""Adds the LTX repository directory to the Python system path."""
|
| 49 |
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 50 |
+
if repo_path not in sys.path:
|
| 51 |
sys.path.insert(0, repo_path)
|
| 52 |
+
logging.info(f"Repo added to sys.path: {repo_path}")
|
| 53 |
+
|
| 54 |
+
add_deps_to_path()
|
| 55 |
+
|
| 56 |
+
# --- PROJECT IMPORTS ---
|
| 57 |
+
# These must come after the path setup
|
| 58 |
+
from api.gpu_manager import gpu_manager
|
| 59 |
+
from ltx_video.models.autoencoders.vae_encode import (normalize_latents, un_normalize_latents)
|
| 60 |
+
from ltx_video.pipelines.pipeline_ltx_video import (ConditioningItem, LTXMultiScalePipeline, adain_filter_latent)
|
| 61 |
+
from ltx_video.pipelines.pipeline_ltx_video import create_ltx_video_pipeline, create_latent_upsampler
|
| 62 |
+
from ltx_video.utils.inference_utils import load_image_to_tensor_with_resize_and_crop
|
| 63 |
+
from managers.vae_manager import vae_manager_singleton
|
| 64 |
+
from tools.video_encode_tool import video_encode_tool_singleton
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
# ==============================================================================
|
| 68 |
+
# --- UTILITY & HELPER FUNCTIONS ---
|
| 69 |
+
# ==============================================================================
|
| 70 |
+
|
| 71 |
+
def seed_everything(seed: int):
|
| 72 |
+
"""Sets the seed for reproducibility across all relevant libraries."""
|
| 73 |
+
random.seed(seed)
|
| 74 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 75 |
+
np.random.seed(seed)
|
| 76 |
+
torch.manual_seed(seed)
|
| 77 |
+
torch.cuda.manual_seed_all(seed)
|
| 78 |
+
# Potentially faster, but less reproducible
|
| 79 |
+
# torch.backends.cudnn.deterministic = False
|
| 80 |
+
# torch.backends.cudnn.benchmark = True
|
| 81 |
+
|
| 82 |
+
def calculate_padding(orig_h: int, orig_w: int, target_h: int, target_w: int) -> Tuple[int, int, int, int]:
|
| 83 |
+
"""Calculates symmetric padding values to reach a target dimension."""
|
| 84 |
pad_h = target_h - orig_h
|
| 85 |
pad_w = target_w - orig_w
|
| 86 |
pad_top = pad_h // 2
|
|
|
|
| 88 |
pad_left = pad_w // 2
|
| 89 |
pad_right = pad_w - pad_left
|
| 90 |
return (pad_left, pad_right, pad_top, pad_bottom)
|
| 91 |
+
|
| 92 |
+
def log_tensor_info(tensor: torch.Tensor, name: str = "Tensor"):
|
| 93 |
+
"""Logs detailed information about a PyTorch tensor for debugging."""
|
| 94 |
if not isinstance(tensor, torch.Tensor):
|
| 95 |
+
logging.debug(f"'{name}' is not a tensor.")
|
| 96 |
return
|
| 97 |
+
|
| 98 |
+
info_str = (
|
| 99 |
+
f"--- Tensor: {name} ---\n"
|
| 100 |
+
f" - Shape: {tuple(tensor.shape)}\n"
|
| 101 |
+
f" - Dtype: {tensor.dtype}\n"
|
| 102 |
+
f" - Device: {tensor.device}\n"
|
| 103 |
+
)
|
| 104 |
if tensor.numel() > 0:
|
| 105 |
try:
|
| 106 |
+
info_str += (
|
| 107 |
+
f" - Min: {tensor.min().item():.4f} | "
|
| 108 |
+
f"Max: {tensor.max().item():.4f} | "
|
| 109 |
+
f"Mean: {tensor.mean().item():.4f}\n"
|
| 110 |
+
)
|
| 111 |
except Exception:
|
| 112 |
+
pass # Fails on some dtypes
|
| 113 |
+
logging.debug(info_str + "----------------------")
|
| 114 |
|
| 115 |
+
|
| 116 |
+
# ==============================================================================
|
| 117 |
+
# --- VIDEO SERVICE CLASS ---
|
| 118 |
+
# ==============================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
class VideoService:
|
| 121 |
+
"""
|
| 122 |
+
Backend service for orchestrating video generation using the LTX-Video pipeline.
|
| 123 |
+
Encapsulates model loading, state management, and the logic for multi-stage
|
| 124 |
+
video generation (low-resolution, upscale).
|
| 125 |
+
"""
|
| 126 |
+
|
| 127 |
+
def __init__(self):
|
| 128 |
+
"""Initializes the service, loads models, and configures the environment."""
|
| 129 |
+
t0 = time.perf_counter()
|
| 130 |
+
logging.info("Initializing VideoService...")
|
| 131 |
+
RESULTS_DIR.mkdir(parents=True, exist_ok=True)
|
| 132 |
+
|
| 133 |
+
self.config = self._load_config(DEFAULT_CONFIG_FILE)
|
| 134 |
+
self._tmp_dirs = set()
|
| 135 |
+
|
| 136 |
+
self.pipeline, self.latent_upsampler = self._load_models_on_cpu()
|
| 137 |
+
|
| 138 |
+
target_device = gpu_manager.get_ltx_device()
|
| 139 |
+
self.device = torch.device("cpu") # Default device
|
| 140 |
+
self.move_to_device(target_device)
|
| 141 |
+
|
| 142 |
+
self._apply_precision_policy()
|
| 143 |
+
vae_manager_singleton.attach_pipeline(
|
| 144 |
+
self.pipeline,
|
| 145 |
+
device=self.device,
|
| 146 |
+
autocast_dtype=self.runtime_autocast_dtype
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
logging.info(f"VideoService ready. Startup time: {time.perf_counter()-t0:.2f}s")
|
| 150 |
+
|
| 151 |
+
# ==========================================================================
|
| 152 |
+
# --- LIFECYCLE & MODEL MANAGEMENT ---
|
| 153 |
+
# ==========================================================================
|
| 154 |
+
|
| 155 |
+
def _load_config(self, config_path: Path) -> Dict:
|
| 156 |
+
"""Loads the YAML configuration file."""
|
| 157 |
+
logging.info(f"Loading config from: {config_path}")
|
| 158 |
with open(config_path, "r") as file:
|
| 159 |
return yaml.safe_load(file)
|
| 160 |
|
| 161 |
+
def _load_models_on_cpu(self) -> Tuple[LTXMultiScalePipeline, Optional[torch.nn.Module]]:
|
| 162 |
+
"""Downloads and loads the pipeline and upsampler checkpoints onto the CPU."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
t0 = time.perf_counter()
|
| 164 |
+
|
| 165 |
+
logging.info("Downloading main checkpoint...")
|
| 166 |
distilled_model_path = hf_hub_download(
|
| 167 |
+
repo_id=LTX_REPO_ID,
|
| 168 |
filename=self.config["checkpoint_path"],
|
|
|
|
|
|
|
| 169 |
token=os.getenv("HF_TOKEN"),
|
| 170 |
)
|
| 171 |
self.config["checkpoint_path"] = distilled_model_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
|
|
|
| 173 |
pipeline = create_ltx_video_pipeline(
|
| 174 |
ckpt_path=self.config["checkpoint_path"],
|
| 175 |
precision=self.config["precision"],
|
| 176 |
+
device="cpu", # Load on CPU first
|
| 177 |
+
# Pass other config values directly
|
| 178 |
+
**{k: v for k, v in self.config.items() if k in create_ltx_video_pipeline.__code__.co_varnames}
|
|
|
|
|
|
|
|
|
|
| 179 |
)
|
| 180 |
+
|
|
|
|
| 181 |
latent_upsampler = None
|
| 182 |
if self.config.get("spatial_upscaler_model_path"):
|
| 183 |
+
logging.info("Downloading spatial upscaler checkpoint...")
|
| 184 |
+
spatial_upscaler_path = hf_hub_download(
|
| 185 |
+
repo_id=LTX_REPO_ID,
|
| 186 |
+
filename=self.config["spatial_upscaler_model_path"],
|
| 187 |
+
token=os.getenv("HF_TOKEN")
|
| 188 |
+
)
|
| 189 |
+
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
|
| 190 |
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
+
logging.info(f"Models loaded on CPU in {time.perf_counter()-t0:.2f}s")
|
| 193 |
+
return pipeline, latent_upsampler
|
|
|
|
| 194 |
|
| 195 |
+
def move_to_device(self, device_str: str):
|
| 196 |
+
"""Moves all relevant models to the specified device (e.g., 'cuda:0' or 'cpu')."""
|
| 197 |
+
target_device = torch.device(device_str)
|
| 198 |
+
if self.device == target_device:
|
| 199 |
+
logging.info(f"Models are already on the target device: {device_str}")
|
| 200 |
+
return
|
| 201 |
+
|
| 202 |
+
logging.info(f"Moving models to {device_str}...")
|
| 203 |
+
self.device = target_device
|
| 204 |
+
self.pipeline.to(self.device)
|
| 205 |
+
if self.latent_upsampler:
|
| 206 |
+
self.latent_upsampler.to(self.device)
|
| 207 |
+
|
| 208 |
+
if device_str == "cpu" and torch.cuda.is_available():
|
| 209 |
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
+
logging.info(f"Models successfully moved to {self.device}.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
+
def finalize(self, keep_paths: Optional[List[str]] = None):
|
| 214 |
+
"""Cleans up GPU memory and temporary directories."""
|
| 215 |
+
logging.debug("Finalizing resources...")
|
| 216 |
+
gc.collect()
|
| 217 |
+
if torch.cuda.is_available():
|
| 218 |
+
torch.cuda.empty_cache()
|
| 219 |
+
try:
|
| 220 |
+
torch.cuda.ipc_collect()
|
| 221 |
+
except Exception:
|
| 222 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
+
# Optional: Clean up temporary directories if needed (logic can be added here)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
+
# ==========================================================================
|
| 228 |
+
# --- PUBLIC ORCHESTRATORS ---
|
| 229 |
+
# These are the main entry points called by the frontend.
|
| 230 |
+
# ==========================================================================
|
| 231 |
+
|
| 232 |
+
def generate_narrative_low(self, prompt: str, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
|
|
|
|
|
|
|
| 233 |
"""
|
| 234 |
+
[ORCHESTRATOR] Generates a video from a multi-line prompt, creating a sequence of scenes.
|
| 235 |
+
|
| 236 |
+
Returns:
|
| 237 |
+
A tuple of (video_path, latents_path, used_seed).
|
| 238 |
"""
|
| 239 |
+
logging.info("Starting narrative low-res generation...")
|
| 240 |
+
used_seed = self._resolve_seed(kwargs.get("seed"))
|
| 241 |
+
seed_everything(used_seed)
|
| 242 |
|
| 243 |
+
prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
|
| 244 |
+
if not prompt_list:
|
| 245 |
+
raise ValueError("Prompt is empty or contains no valid lines.")
|
| 246 |
+
|
| 247 |
+
num_chunks = len(prompt_list)
|
| 248 |
+
total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0))
|
| 249 |
+
frames_per_chunk = (total_frames // num_chunks // FRAMES_ALIGNMENT) * FRAMES_ALIGNMENT
|
| 250 |
+
overlap_frames = self.config.get("overlap_frames", 8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
+
all_latents_paths = []
|
| 253 |
+
overlap_condition_item = None
|
| 254 |
|
| 255 |
+
try:
|
| 256 |
+
for i, chunk_prompt in enumerate(prompt_list):
|
| 257 |
+
logging.info(f"Generating narrative chunk {i+1}/{num_chunks}: '{chunk_prompt[:50]}...'")
|
| 258 |
|
| 259 |
+
current_frames = frames_per_chunk
|
| 260 |
+
if i > 0:
|
| 261 |
+
current_frames += overlap_frames
|
| 262 |
+
|
| 263 |
+
# Use initial image conditions only for the first chunk
|
| 264 |
+
current_conditions = kwargs.get("initial_conditions", []) if i == 0 else []
|
| 265 |
+
if overlap_condition_item:
|
| 266 |
+
current_conditions.append(overlap_condition_item)
|
| 267 |
+
|
| 268 |
+
chunk_latents = self._generate_single_chunk_low(
|
| 269 |
+
prompt=chunk_prompt,
|
| 270 |
+
num_frames=current_frames,
|
| 271 |
+
seed=used_seed + i,
|
| 272 |
+
conditioning_items=current_conditions,
|
| 273 |
+
**kwargs
|
| 274 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
|
| 276 |
+
if chunk_latents is None:
|
| 277 |
+
raise RuntimeError(f"Failed to generate latents for chunk {i+1}.")
|
| 278 |
|
| 279 |
+
# Create overlap for the next chunk
|
| 280 |
+
if i < num_chunks - 1:
|
| 281 |
+
overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone()
|
| 282 |
+
log_tensor_info(overlap_latents, f"Overlap Latents from chunk {i+1}")
|
| 283 |
+
overlap_condition_item = ConditioningItem(
|
| 284 |
+
media_item=overlap_latents, media_frame_number=0, conditioning_strength=1.0
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
# Trim the overlap from the current chunk before saving
|
| 288 |
+
if i > 0:
|
| 289 |
+
chunk_latents = chunk_latents[:, :, overlap_frames:, :, :]
|
| 290 |
+
|
| 291 |
+
# Save chunk latents to disk to manage memory
|
| 292 |
+
chunk_path = RESULTS_DIR / f"chunk_{i}_{used_seed}.pt"
|
| 293 |
+
torch.save(chunk_latents.cpu(), chunk_path)
|
| 294 |
+
all_latents_paths.append(chunk_path)
|
| 295 |
+
|
| 296 |
+
# Concatenate, decode, and save the final video
|
| 297 |
+
return self._finalize_generation(all_latents_paths, "narrative_video", used_seed)
|
| 298 |
|
| 299 |
except Exception as e:
|
| 300 |
+
logging.error(f"Error during narrative generation: {e}")
|
| 301 |
traceback.print_exc()
|
| 302 |
+
return None, None, None
|
|
|
|
| 303 |
finally:
|
| 304 |
+
# Clean up intermediate chunk files
|
| 305 |
+
for path in all_latents_paths:
|
| 306 |
+
if os.path.exists(path):
|
| 307 |
+
os.remove(path)
|
| 308 |
+
self.finalize()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
|
| 311 |
+
def generate_single_low(self, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
|
| 312 |
+
"""
|
| 313 |
+
[ORCHESTRATOR] Generates a video from a single prompt in one go.
|
|
|
|
|
|
|
|
|
|
| 314 |
|
| 315 |
+
Returns:
|
| 316 |
+
A tuple of (video_path, latents_path, used_seed).
|
| 317 |
+
"""
|
| 318 |
+
logging.info("Starting single-prompt low-res generation...")
|
| 319 |
+
used_seed = self._resolve_seed(kwargs.get("seed"))
|
| 320 |
+
seed_everything(used_seed)
|
|
|
|
| 321 |
|
| 322 |
+
try:
|
| 323 |
+
total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0), min_frames=9)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
+
final_latents = self._generate_single_chunk_low(
|
| 326 |
+
num_frames=total_frames,
|
| 327 |
+
seed=used_seed,
|
| 328 |
+
conditioning_items=kwargs.get("initial_conditions", []),
|
| 329 |
+
**kwargs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
|
| 332 |
+
if final_latents is None:
|
| 333 |
+
raise RuntimeError("Failed to generate latents.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
|
| 335 |
+
# Save latents to a single file, then decode and save video
|
| 336 |
+
latents_path = RESULTS_DIR / f"single_{used_seed}.pt"
|
| 337 |
+
torch.save(final_latents.cpu(), latents_path)
|
| 338 |
+
return self._finalize_generation([latents_path], "single_video", used_seed)
|
| 339 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
except Exception as e:
|
| 341 |
+
logging.error(f"Error during single generation: {e}")
|
| 342 |
traceback.print_exc()
|
|
|
|
| 343 |
return None, None, None
|
| 344 |
finally:
|
| 345 |
+
self.finalize()
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
# ==========================================================================
|
| 349 |
+
# --- INTERNAL WORKER UNITS ---
|
| 350 |
+
# ==========================================================================
|
| 351 |
+
|
| 352 |
+
def _generate_single_chunk_low(
|
| 353 |
+
self, prompt: str, negative_prompt: str, height: int, width: int, num_frames: int, seed: int,
|
| 354 |
+
conditioning_items: List[ConditioningItem], ltx_configs_override: Optional[Dict], **kwargs
|
| 355 |
+
) -> Optional[torch.Tensor]:
|
|
|
|
| 356 |
"""
|
| 357 |
+
[WORKER] Generates a single chunk of latents. This is the core generation unit.
|
| 358 |
+
Returns the raw latents tensor on the target device, or None on failure.
|
| 359 |
"""
|
| 360 |
+
height_padded, width_padded = (self._align(d) for d in (height, width))
|
| 361 |
+
downscale_factor = self.config.get("downscale_factor", 0.6666666)
|
| 362 |
+
vae_scale_factor = self.pipeline.vae_scale_factor
|
| 363 |
|
| 364 |
+
downscaled_height = self._align(int(height_padded * downscale_factor), vae_scale_factor)
|
| 365 |
+
downscaled_width = self._align(int(width_padded * downscale_factor), vae_scale_factor)
|
|
|
|
| 366 |
|
| 367 |
+
first_pass_config = self.config.get("first_pass", {}).copy()
|
| 368 |
+
if ltx_configs_override:
|
| 369 |
+
first_pass_config.update(self._prepare_guidance_overrides(ltx_configs_override))
|
| 370 |
+
|
| 371 |
+
pipeline_kwargs = {
|
| 372 |
+
"prompt": prompt,
|
| 373 |
+
"negative_prompt": negative_prompt,
|
| 374 |
+
"height": downscaled_height,
|
| 375 |
+
"width": downscaled_width,
|
| 376 |
+
"num_frames": num_frames,
|
| 377 |
+
"frame_rate": DEFAULT_FPS,
|
| 378 |
+
"generator": torch.Generator(device=self.device).manual_seed(seed),
|
| 379 |
+
"output_type": "latent",
|
| 380 |
+
"conditioning_items": conditioning_items,
|
| 381 |
+
**first_pass_config
|
| 382 |
+
}
|
| 383 |
|
| 384 |
+
logging.debug(f"Pipeline call args: { {k: v for k, v in pipeline_kwargs.items() if k != 'conditioning_items'} }")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
|
| 386 |
+
with torch.autocast(device_type=self.device.type, dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
|
| 387 |
+
latents_raw = self.pipeline(**pipeline_kwargs).images
|
| 388 |
|
| 389 |
+
log_tensor_info(latents_raw, f"Raw Latents for '{prompt[:40]}...'")
|
| 390 |
+
return latents_raw
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
# ==========================================================================
|
| 394 |
+
# --- HELPERS & UTILITY METHODS ---
|
| 395 |
+
# ==========================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 396 |
|
| 397 |
+
def _finalize_generation(self, latents_paths: List[Path], base_filename: str, seed: int) -> Tuple[str, str, int]:
|
| 398 |
+
"""
|
| 399 |
+
Loads latents from paths, concatenates them, decodes to video, and saves both.
|
| 400 |
+
"""
|
| 401 |
+
logging.info("Finalizing generation: decoding latents to video.")
|
| 402 |
+
# Load all tensors and concatenate them on the CPU first
|
| 403 |
+
all_tensors_cpu = [torch.load(p) for p in latents_paths]
|
| 404 |
+
final_latents_cpu = torch.cat(all_tensors_cpu, dim=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 405 |
|
| 406 |
+
# Save final combined latents
|
| 407 |
+
final_latents_path = RESULTS_DIR / f"latents_{base_filename}_{seed}.pt"
|
| 408 |
+
torch.save(final_latents_cpu, final_latents_path)
|
| 409 |
+
logging.info(f"Final latents saved to: {final_latents_path}")
|
|
|
|
| 410 |
|
| 411 |
+
# Move to GPU for decoding
|
| 412 |
+
final_latents_gpu = final_latents_cpu.to(self.device)
|
| 413 |
+
log_tensor_info(final_latents_gpu, "Final Concatenated Latents")
|
| 414 |
+
|
| 415 |
+
with torch.autocast(device_type=self.device.type, dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
|
| 416 |
+
pixel_tensor = vae_manager_singleton.decode(
|
| 417 |
+
final_latents_gpu,
|
| 418 |
+
decode_timestep=float(self.config.get("decode_timestep", 0.05))
|
| 419 |
+
)
|
|
|
|
|
|
|
| 420 |
|
| 421 |
+
video_path = self._save_and_log_video(pixel_tensor, f"{base_filename}_{seed}")
|
| 422 |
+
return str(video_path), str(final_latents_path), seed
|
|
|
|
| 423 |
|
| 424 |
+
def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int) -> List[ConditioningItem]:
|
| 425 |
+
"""Prepares a list of ConditioningItem objects from file paths or tensors."""
|
| 426 |
+
if not items_list:
|
| 427 |
+
return []
|
| 428 |
|
| 429 |
+
height_padded, width_padded = self._align(height), self._align(width)
|
| 430 |
+
padding_values = calculate_padding(height, width, height_padded, width_padded)
|
| 431 |
+
|
| 432 |
+
conditioning_items = []
|
| 433 |
+
for media, frame, weight in items_list:
|
| 434 |
+
tensor = self._prepare_conditioning_tensor(media, height, width, padding_values)
|
| 435 |
+
safe_frame = max(0, min(int(frame), num_frames - 1))
|
| 436 |
+
conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
|
| 437 |
+
return conditioning_items
|
| 438 |
|
| 439 |
+
def _prepare_conditioning_tensor(self, media_path: str, height: int, width: int, padding: Tuple) -> torch.Tensor:
|
| 440 |
+
"""Loads and processes an image to be a conditioning tensor."""
|
| 441 |
+
tensor = load_image_to_tensor_with_resize_and_crop(media_path, height, width)
|
| 442 |
+
tensor = torch.nn.functional.pad(tensor, padding)
|
| 443 |
+
log_tensor_info(tensor, f"Prepared Conditioning Tensor from {media_path}")
|
| 444 |
+
return tensor.to(self.device, dtype=self.runtime_autocast_dtype)
|
| 445 |
|
| 446 |
+
def _prepare_guidance_overrides(self, ltx_configs: Dict) -> Dict:
|
| 447 |
+
"""Parses UI presets for guidance into pipeline-compatible arguments."""
|
| 448 |
+
overrides = {}
|
| 449 |
+
preset = ltx_configs.get("guidance_preset", "Padrão (Recomendado)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 450 |
|
| 451 |
+
# Default LTX values are used if preset is 'Padrão'
|
| 452 |
+
if preset == "Agressivo":
|
| 453 |
+
overrides["guidance_scale"] = [1, 2, 8, 12, 8, 2, 1]
|
| 454 |
+
overrides["stg_scale"] = [0, 0, 5, 6, 5, 3, 2]
|
| 455 |
+
elif preset == "Suave":
|
| 456 |
+
overrides["guidance_scale"] = [1, 1, 4, 5, 4, 1, 1]
|
| 457 |
+
overrides["stg_scale"] = [0, 0, 2, 2, 2, 1, 0]
|
| 458 |
+
elif preset == "Customizado":
|
| 459 |
+
try:
|
| 460 |
+
overrides["guidance_scale"] = json.loads(ltx_configs["guidance_scale_list"])
|
| 461 |
+
overrides["stg_scale"] = json.loads(ltx_configs["stg_scale_list"])
|
| 462 |
+
except (json.JSONDecodeError, KeyError
|