Update api/ltx_server_refactored.py
Browse files- api/ltx_server_refactored.py +246 -0
api/ltx_server_refactored.py
CHANGED
|
@@ -518,6 +518,252 @@ class VideoService:
|
|
| 518 |
self.finalize(keep_paths=[])
|
| 519 |
|
| 520 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 521 |
|
| 522 |
# ==============================================================================
|
| 523 |
# --- FUNÇÃO #4: ORQUESTRADOR (Upscaler + texturas hd) ---
|
|
|
|
| 518 |
self.finalize(keep_paths=[])
|
| 519 |
|
| 520 |
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
# Em api/ltx_server_refactored.py -> dentro da classe VideoService
|
| 524 |
+
|
| 525 |
+
# ==============================================================================
|
| 526 |
+
# --- FUNÇÕES DE GERAÇÃO ATUALIZADAS E MODULARES ---
|
| 527 |
+
# ==============================================================================
|
| 528 |
+
|
| 529 |
+
def _generate_single_chunk_low(
|
| 530 |
+
self, prompt, negative_prompt,
|
| 531 |
+
height, width, num_frames,
|
| 532 |
+
seed, ltx_configs_override=None):
|
| 533 |
+
"""
|
| 534 |
+
[NÓ DE GERAÇÃO] Gera um ÚNICO chunk de latentes brutos.
|
| 535 |
+
"""
|
| 536 |
+
print("\n" + "-"*20 + " INÍCIO: _generate_single_chunk_low " + "-"*20)
|
| 537 |
+
try:
|
| 538 |
+
height_padded = ((height - 1) // 8 + 1) * 8
|
| 539 |
+
width_padded = ((width - 1) // 8 + 1) * 8
|
| 540 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
| 541 |
+
|
| 542 |
+
downscale_factor = self.config.get("downscale_factor", 0.6666666)
|
| 543 |
+
vae_scale_factor = self.pipeline.vae_scale_factor
|
| 544 |
+
|
| 545 |
+
x_width = int(width_padded * downscale_factor)
|
| 546 |
+
downscaled_width = x_width - (x_width % vae_scale_factor)
|
| 547 |
+
x_height = int(height_padded * downscale_factor)
|
| 548 |
+
downscaled_height = x_height - (x_height % vae_scale_factor)
|
| 549 |
+
|
| 550 |
+
all_conditions = ltx_configs_override.get("conditioning_items", [])
|
| 551 |
+
|
| 552 |
+
pipeline_kwargs = self.config.get("first_pass", {}).copy()
|
| 553 |
+
|
| 554 |
+
if ltx_configs_override:
|
| 555 |
+
print("[DEBUG] Sobrepondo configurações do LTX com valores da UI...")
|
| 556 |
+
preset = ltx_configs_override.get("guidance_preset")
|
| 557 |
+
if preset == "Customizado":
|
| 558 |
+
try:
|
| 559 |
+
pipeline_kwargs["guidance_scale"] = json.loads(ltx_configs_override["guidance_scale_list"])
|
| 560 |
+
pipeline_kwargs["stg_scale"] = json.loads(ltx_configs_override["stg_scale_list"])
|
| 561 |
+
pipeline_kwargs["guidance_timesteps"] = json.loads(ltx_configs_override["timesteps_list"])
|
| 562 |
+
except Exception as e:
|
| 563 |
+
print(f" > ERRO ao parsear valores customizados: {e}. Usando Padrão.")
|
| 564 |
+
elif preset == "Agressivo":
|
| 565 |
+
pipeline_kwargs["guidance_scale"] = [1, 2, 8, 12, 8, 2, 1]
|
| 566 |
+
pipeline_kwargs["stg_scale"] = [0, 0, 5, 6, 5, 3, 2]
|
| 567 |
+
elif preset == "Suave":
|
| 568 |
+
pipeline_kwargs["guidance_scale"] = [1, 1, 4, 5, 4, 1, 1]
|
| 569 |
+
pipeline_kwargs["stg_scale"] = [0, 0, 2, 2, 2, 1, 0]
|
| 570 |
+
|
| 571 |
+
pipeline_kwargs["num_inference_steps"] = ltx_configs_override.get("fp_num_inference_steps", pipeline_kwargs.get("num_inference_steps"))
|
| 572 |
+
pipeline_kwargs["skip_initial_inference_steps"] = ltx_configs_override.get("ship_initial_inference_steps", pipeline_kwargs.get("skip_initial_inference_steps"))
|
| 573 |
+
pipeline_kwargs["skip_final_inference_steps"] = ltx_configs_override.get("ship_final_inference_steps", pipeline_kwargs.get("skip_final_inference_steps"))
|
| 574 |
+
|
| 575 |
+
pipeline_kwargs.update({
|
| 576 |
+
"prompt": prompt, "negative_prompt": negative_prompt, "height": downscaled_height, "width": downscaled_width,
|
| 577 |
+
"num_frames": num_frames, "frame_rate": 24, "generator": generator, "output_type": "latent",
|
| 578 |
+
"conditioning_items": all_conditions if all_conditions else None,
|
| 579 |
+
})
|
| 580 |
+
|
| 581 |
+
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
|
| 582 |
+
latents_bruto = self.pipeline(**pipeline_kwargs).images
|
| 583 |
+
log_tensor_info(latents_bruto, f"Latente Bruto Gerado para: '{prompt[:40]}...'")
|
| 584 |
+
|
| 585 |
+
print("-" * 20 + " FIM: _generate_single_chunk_low " + "-"*20)
|
| 586 |
+
return latents_bruto
|
| 587 |
+
|
| 588 |
+
except Exception as e:
|
| 589 |
+
print("-" * 20 + f" ERRO: _generate_single_chunk_low {e} " + "-"*20)
|
| 590 |
+
traceback.print_exc()
|
| 591 |
+
return None
|
| 592 |
+
finally:
|
| 593 |
+
torch.cuda.empty_cache()
|
| 594 |
+
torch.cuda.ipc_collect()
|
| 595 |
+
self.finalize(keep_paths=[])
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def generate_narrative_low(
|
| 599 |
+
self, prompt: str, negative_prompt,
|
| 600 |
+
height, width, duration,
|
| 601 |
+
seed, initial_image_conditions=None, overlap_frames: int = 8,
|
| 602 |
+
ltx_configs_override: dict = None):
|
| 603 |
+
|
| 604 |
+
print("\n" + "="*80)
|
| 605 |
+
print("====== INICIANDO GERAÇÃO NARRATIVA EM CHUNKS (LOW-RES) ======")
|
| 606 |
+
print("="*80)
|
| 607 |
+
|
| 608 |
+
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 609 |
+
seed_everething(used_seed)
|
| 610 |
+
FPS = 24.0
|
| 611 |
+
|
| 612 |
+
prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
|
| 613 |
+
num_chunks = len(prompt_list)
|
| 614 |
+
if num_chunks == 0: raise ValueError("O prompt está vazio ou não contém linhas válidas.")
|
| 615 |
+
|
| 616 |
+
total_actual_frames = max(9, int(round((round(duration * FPS) - 1) / 8.0) * 8 + 1))
|
| 617 |
+
|
| 618 |
+
if num_chunks > 1:
|
| 619 |
+
total_blocks = (total_actual_frames - 1) // 8
|
| 620 |
+
blocks_per_chunk = total_blocks // num_chunks
|
| 621 |
+
blocks_last_chunk = total_blocks - (blocks_per_chunk * (num_chunks - 1))
|
| 622 |
+
frames_per_chunk = blocks_per_chunk * 8 + 1
|
| 623 |
+
frames_per_chunk_last = blocks_last_chunk * 8 + 1
|
| 624 |
+
else:
|
| 625 |
+
frames_per_chunk = total_actual_frames
|
| 626 |
+
frames_per_chunk_last = total_actual_frames
|
| 627 |
+
|
| 628 |
+
frames_per_chunk = max(9, frames_per_chunk)
|
| 629 |
+
frames_per_chunk_last = max(9, frames_per_chunk_last)
|
| 630 |
+
|
| 631 |
+
poda_latents_num = overlap_frames // self.pipeline.video_scale_factor if self.pipeline.video_scale_factor > 0 else 0
|
| 632 |
+
|
| 633 |
+
latentes_chunk_video = []
|
| 634 |
+
condition_item_latent_overlap = None
|
| 635 |
+
temp_dir = tempfile.mkdtemp(prefix="ltxv_narrative_"); self._register_tmp_dir(temp_dir)
|
| 636 |
+
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
|
| 637 |
+
|
| 638 |
+
for i, chunk_prompt in enumerate(prompt_list):
|
| 639 |
+
print(f"\n--- Gerando Chunk Narrativo {i+1}/{num_chunks}: '{chunk_prompt}' ---")
|
| 640 |
+
|
| 641 |
+
current_image_conditions = []
|
| 642 |
+
if initial_image_conditions:
|
| 643 |
+
cond_item_original = initial_image_conditions[0]
|
| 644 |
+
if i == 0:
|
| 645 |
+
current_image_conditions.append(cond_item_original)
|
| 646 |
+
else:
|
| 647 |
+
cond_item_fraco = ConditioningItem(
|
| 648 |
+
media_item=cond_item_original.media_item, media_frame_number=0, conditioning_strength=0.1
|
| 649 |
+
)
|
| 650 |
+
current_image_conditions.append(cond_item_fraco)
|
| 651 |
+
|
| 652 |
+
if ltx_configs_override is None: ltx_configs_override = {}
|
| 653 |
+
current_conditions = []
|
| 654 |
+
if current_image_conditions: current_conditions.extend(current_image_conditions)
|
| 655 |
+
if condition_item_latent_overlap: current_conditions.append(condition_item_latent_overlap)
|
| 656 |
+
ltx_configs_override["conditioning_items"] = current_conditions
|
| 657 |
+
|
| 658 |
+
num_frames_para_gerar = frames_per_chunk_last if i == num_chunks - 1 else frames_per_chunk
|
| 659 |
+
if i > 0 and poda_latents_num > 0:
|
| 660 |
+
num_frames_para_gerar += overlap_frames
|
| 661 |
+
|
| 662 |
+
latentes_bruto = self._generate_single_chunk_low(
|
| 663 |
+
prompt=chunk_prompt, negative_prompt=negative_prompt, height=height, width=width,
|
| 664 |
+
num_frames=num_frames_para_gerar, seed=used_seed + i,
|
| 665 |
+
ltx_configs_override=ltx_configs_override
|
| 666 |
+
)
|
| 667 |
+
|
| 668 |
+
if latentes_bruto is None:
|
| 669 |
+
print(f"ERRO FATAL: A geração do chunk {i+1} falhou. Abortando.")
|
| 670 |
+
self.finalize(keep_paths=[])
|
| 671 |
+
return None, None, None
|
| 672 |
+
|
| 673 |
+
if i > 0 and poda_latents_num > 0:
|
| 674 |
+
latentes_bruto = latentes_bruto[:, :, poda_latents_num:, :, :]
|
| 675 |
+
|
| 676 |
+
latentes_podado = latentes_bruto.clone().detach()
|
| 677 |
+
if i < num_chunks - 1 and poda_latents_num > 0:
|
| 678 |
+
latentes_podado = latentes_bruto[:, :, :-poda_latents_num, :, :].clone()
|
| 679 |
+
overlap_latents = latentes_bruto[:, :, -poda_latents_num:, :, :].clone()
|
| 680 |
+
condition_item_latent_overlap = ConditioningItem(
|
| 681 |
+
media_item=overlap_latents, media_frame_number=0, conditioning_strength=1.0
|
| 682 |
+
)
|
| 683 |
+
latentes_chunk_video.append(latentes_podado)
|
| 684 |
+
|
| 685 |
+
final_latents_cpu = torch.cat(latentes_chunk_video, dim=2).cpu()
|
| 686 |
+
log_tensor_info(final_latents_cpu, "Tensor de Latentes Final Concatenado (CPU)")
|
| 687 |
+
|
| 688 |
+
tensor_path = os.path.join(results_dir, f"latents_narrative_{used_seed}.pt")
|
| 689 |
+
torch.save(final_latents_cpu, tensor_path)
|
| 690 |
+
|
| 691 |
+
try:
|
| 692 |
+
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
|
| 693 |
+
final_latents_gpu = final_latents_cpu.to(self.device)
|
| 694 |
+
pixel_tensor = vae_manager_singleton.decode(final_latents_gpu, decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 695 |
+
video_path = self._save_and_log_video(pixel_tensor, "narrative_video", FPS, temp_dir, results_dir, used_seed)
|
| 696 |
+
|
| 697 |
+
self.finalize(keep_paths=[video_path, tensor_path])
|
| 698 |
+
return video_path, tensor_path, used_seed
|
| 699 |
+
|
| 700 |
+
except Exception as e:
|
| 701 |
+
print("-" * 20 + f" ERRO: generate_narrative_low {e} " + "-"*20)
|
| 702 |
+
traceback.print_exc()
|
| 703 |
+
return None
|
| 704 |
+
finally:
|
| 705 |
+
torch.cuda.empty_cache()
|
| 706 |
+
torch.cuda.ipc_collect()
|
| 707 |
+
self.finalize(keep_paths=[])
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
def generate_single_low(
|
| 711 |
+
self, prompt: str, negative_prompt,
|
| 712 |
+
height, width, duration,
|
| 713 |
+
seed, initial_image_conditions=None,
|
| 714 |
+
ltx_configs_override: dict = None):
|
| 715 |
+
|
| 716 |
+
print("\n" + "="*80)
|
| 717 |
+
print("====== INICIANDO GERAÇÃO SIMPLES EM CHUNK ÚNICO (LOW-RES) ======")
|
| 718 |
+
print("="*80)
|
| 719 |
+
|
| 720 |
+
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 721 |
+
seed_everething(used_seed)
|
| 722 |
+
FPS = 24.0
|
| 723 |
+
|
| 724 |
+
total_actual_frames = max(9, int(round((round(duration * FPS) - 1) / 8.0) * 8 + 1))
|
| 725 |
+
|
| 726 |
+
temp_dir = tempfile.mkdtemp(prefix="ltxv_single_"); self._register_tmp_dir(temp_dir)
|
| 727 |
+
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
|
| 728 |
+
|
| 729 |
+
if ltx_configs_override is None: ltx_configs_override = {}
|
| 730 |
+
ltx_configs_override["conditioning_items"] = initial_image_conditions if initial_image_conditions else []
|
| 731 |
+
|
| 732 |
+
final_latents = self._generate_single_chunk_low(
|
| 733 |
+
prompt=prompt, negative_prompt=negative_prompt, height=height, width=width,
|
| 734 |
+
num_frames=total_actual_frames, seed=used_seed,
|
| 735 |
+
ltx_configs_override=ltx_configs_override
|
| 736 |
+
)
|
| 737 |
+
|
| 738 |
+
if final_latents is None:
|
| 739 |
+
print(f"ERRO FATAL: A geração do chunk único falhou. Abortando.")
|
| 740 |
+
self.finalize(keep_paths=[])
|
| 741 |
+
return None, None, None
|
| 742 |
+
|
| 743 |
+
final_latents_cpu = final_latents.cpu()
|
| 744 |
+
log_tensor_info(final_latents_cpu, "Tensor de Latentes Final (CPU)")
|
| 745 |
+
|
| 746 |
+
tensor_path = os.path.join(results_dir, f"latents_single_{used_seed}.pt")
|
| 747 |
+
torch.save(final_latents_cpu, tensor_path)
|
| 748 |
+
|
| 749 |
+
try:
|
| 750 |
+
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
|
| 751 |
+
final_latents_gpu = final_latents_cpu.to(self.device)
|
| 752 |
+
pixel_tensor = vae_manager_singleton.decode(final_latents_gpu, decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 753 |
+
video_path = self._save_and_log_video(pixel_tensor, "single_video", FPS, temp_dir, results_dir, used_seed)
|
| 754 |
+
|
| 755 |
+
self.finalize(keep_paths=[video_path, tensor_path])
|
| 756 |
+
return video_path, tensor_path, used_seed
|
| 757 |
+
|
| 758 |
+
except Exception as e:
|
| 759 |
+
print("-" * 20 + f" ERRO: generate_single_low {e} " + "-"*20)
|
| 760 |
+
traceback.print_exc()
|
| 761 |
+
return None
|
| 762 |
+
finally:
|
| 763 |
+
torch.cuda.empty_cache()
|
| 764 |
+
torch.cuda.ipc_collect()
|
| 765 |
+
self.finalize(keep_paths=[])
|
| 766 |
+
|
| 767 |
|
| 768 |
# ==============================================================================
|
| 769 |
# --- FUNÇÃO #4: ORQUESTRADOR (Upscaler + texturas hd) ---
|