Upload causal_video_autoencoder.py
Browse files
LTX-Video/ltx_video/models/autoencoders/causal_video_autoencoder.py
CHANGED
|
@@ -0,0 +1,1448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
from functools import partial
|
| 4 |
+
from types import SimpleNamespace
|
| 5 |
+
from typing import Any, Mapping, Optional, Tuple, Union, List
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
|
| 8 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 9 |
+
import numpy as np
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
import numpy as np
|
| 14 |
+
from einops import rearrange
|
| 15 |
+
from torch import nn
|
| 16 |
+
from diffusers.utils import logging
|
| 17 |
+
import torch.nn.functional as F
|
| 18 |
+
from diffusers.models.embeddings import PixArtAlphaCombinedTimestepSizeEmbeddings
|
| 19 |
+
from safetensors import safe_open
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
from ltx_video.models.autoencoders.conv_nd_factory import make_conv_nd, make_linear_nd
|
| 23 |
+
from ltx_video.models.autoencoders.pixel_norm import PixelNorm
|
| 24 |
+
from ltx_video.models.autoencoders.pixel_shuffle import PixelShuffleND
|
| 25 |
+
from ltx_video.models.autoencoders.vae import AutoencoderKLWrapper
|
| 26 |
+
from ltx_video.models.transformers.attention import Attention
|
| 27 |
+
from ltx_video.utils.diffusers_config_mapping import (
|
| 28 |
+
diffusers_and_ours_config_mapping,
|
| 29 |
+
make_hashable_key,
|
| 30 |
+
VAE_KEYS_RENAME_DICT,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
PER_CHANNEL_STATISTICS_PREFIX = "per_channel_statistics."
|
| 34 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class CausalVideoAutoencoder(AutoencoderKLWrapper):
|
| 38 |
+
@classmethod
|
| 39 |
+
def from_pretrained(
|
| 40 |
+
cls,
|
| 41 |
+
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
| 42 |
+
*args,
|
| 43 |
+
**kwargs,
|
| 44 |
+
):
|
| 45 |
+
pretrained_model_name_or_path = Path(pretrained_model_name_or_path)
|
| 46 |
+
if (
|
| 47 |
+
pretrained_model_name_or_path.is_dir()
|
| 48 |
+
and (pretrained_model_name_or_path / "autoencoder.pth").exists()
|
| 49 |
+
):
|
| 50 |
+
config_local_path = pretrained_model_name_or_path / "config.json"
|
| 51 |
+
config = cls.load_config(config_local_path, **kwargs)
|
| 52 |
+
|
| 53 |
+
model_local_path = pretrained_model_name_or_path / "autoencoder.pth"
|
| 54 |
+
state_dict = torch.load(model_local_path, map_location=torch.device("cpu"))
|
| 55 |
+
|
| 56 |
+
statistics_local_path = (
|
| 57 |
+
pretrained_model_name_or_path / "per_channel_statistics.json"
|
| 58 |
+
)
|
| 59 |
+
if statistics_local_path.exists():
|
| 60 |
+
with open(statistics_local_path, "r") as file:
|
| 61 |
+
data = json.load(file)
|
| 62 |
+
transposed_data = list(zip(*data["data"]))
|
| 63 |
+
data_dict = {
|
| 64 |
+
col: torch.tensor(vals)
|
| 65 |
+
for col, vals in zip(data["columns"], transposed_data)
|
| 66 |
+
}
|
| 67 |
+
std_of_means = data_dict["std-of-means"]
|
| 68 |
+
mean_of_means = data_dict.get(
|
| 69 |
+
"mean-of-means", torch.zeros_like(data_dict["std-of-means"])
|
| 70 |
+
)
|
| 71 |
+
state_dict[f"{PER_CHANNEL_STATISTICS_PREFIX}std-of-means"] = (
|
| 72 |
+
std_of_means
|
| 73 |
+
)
|
| 74 |
+
state_dict[f"{PER_CHANNEL_STATISTICS_PREFIX}mean-of-means"] = (
|
| 75 |
+
mean_of_means
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
elif pretrained_model_name_or_path.is_dir():
|
| 79 |
+
config_path = pretrained_model_name_or_path / "vae" / "config.json"
|
| 80 |
+
with open(config_path, "r") as f:
|
| 81 |
+
config = make_hashable_key(json.load(f))
|
| 82 |
+
|
| 83 |
+
assert config in diffusers_and_ours_config_mapping, (
|
| 84 |
+
"Provided diffusers checkpoint config for VAE is not suppported. "
|
| 85 |
+
"We only support diffusers configs found in Lightricks/LTX-Video."
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
config = diffusers_and_ours_config_mapping[config]
|
| 89 |
+
|
| 90 |
+
state_dict_path = (
|
| 91 |
+
pretrained_model_name_or_path
|
| 92 |
+
/ "vae"
|
| 93 |
+
/ "diffusion_pytorch_model.safetensors"
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
state_dict = {}
|
| 97 |
+
with safe_open(state_dict_path, framework="pt", device="cpu") as f:
|
| 98 |
+
for k in f.keys():
|
| 99 |
+
state_dict[k] = f.get_tensor(k)
|
| 100 |
+
for key in list(state_dict.keys()):
|
| 101 |
+
new_key = key
|
| 102 |
+
for replace_key, rename_key in VAE_KEYS_RENAME_DICT.items():
|
| 103 |
+
new_key = new_key.replace(replace_key, rename_key)
|
| 104 |
+
|
| 105 |
+
state_dict[new_key] = state_dict.pop(key)
|
| 106 |
+
|
| 107 |
+
elif pretrained_model_name_or_path.is_file() and str(
|
| 108 |
+
pretrained_model_name_or_path
|
| 109 |
+
).endswith(".safetensors"):
|
| 110 |
+
state_dict = {}
|
| 111 |
+
with safe_open(
|
| 112 |
+
pretrained_model_name_or_path, framework="pt", device="cpu"
|
| 113 |
+
) as f:
|
| 114 |
+
metadata = f.metadata()
|
| 115 |
+
for k in f.keys():
|
| 116 |
+
state_dict[k] = f.get_tensor(k)
|
| 117 |
+
configs = json.loads(metadata["config"])
|
| 118 |
+
config = configs["vae"]
|
| 119 |
+
|
| 120 |
+
video_vae = cls.from_config(config)
|
| 121 |
+
if "torch_dtype" in kwargs:
|
| 122 |
+
video_vae.to(kwargs["torch_dtype"])
|
| 123 |
+
video_vae.load_state_dict(state_dict)
|
| 124 |
+
return video_vae
|
| 125 |
+
|
| 126 |
+
@staticmethod
|
| 127 |
+
def from_config(config):
|
| 128 |
+
assert (
|
| 129 |
+
config["_class_name"] == "CausalVideoAutoencoder"
|
| 130 |
+
), "config must have _class_name=CausalVideoAutoencoder"
|
| 131 |
+
if isinstance(config["dims"], list):
|
| 132 |
+
config["dims"] = tuple(config["dims"])
|
| 133 |
+
|
| 134 |
+
assert config["dims"] in [2, 3, (2, 1)], "dims must be 2, 3 or (2, 1)"
|
| 135 |
+
|
| 136 |
+
double_z = config.get("double_z", True)
|
| 137 |
+
latent_log_var = config.get(
|
| 138 |
+
"latent_log_var", "per_channel" if double_z else "none"
|
| 139 |
+
)
|
| 140 |
+
use_quant_conv = config.get("use_quant_conv", True)
|
| 141 |
+
normalize_latent_channels = config.get("normalize_latent_channels", False)
|
| 142 |
+
|
| 143 |
+
if use_quant_conv and latent_log_var in ["uniform", "constant"]:
|
| 144 |
+
raise ValueError(
|
| 145 |
+
f"latent_log_var={latent_log_var} requires use_quant_conv=False"
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
encoder = Encoder(
|
| 149 |
+
dims=config["dims"],
|
| 150 |
+
in_channels=config.get("in_channels", 3),
|
| 151 |
+
out_channels=config["latent_channels"],
|
| 152 |
+
blocks=config.get("encoder_blocks", config.get("blocks")),
|
| 153 |
+
patch_size=config.get("patch_size", 1),
|
| 154 |
+
latent_log_var=latent_log_var,
|
| 155 |
+
norm_layer=config.get("norm_layer", "group_norm"),
|
| 156 |
+
base_channels=config.get("encoder_base_channels", 128),
|
| 157 |
+
spatial_padding_mode=config.get("spatial_padding_mode", "zeros"),
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
decoder = Decoder(
|
| 161 |
+
dims=config["dims"],
|
| 162 |
+
in_channels=config["latent_channels"],
|
| 163 |
+
out_channels=config.get("out_channels", 3),
|
| 164 |
+
blocks=config.get("decoder_blocks", config.get("blocks")),
|
| 165 |
+
patch_size=config.get("patch_size", 1),
|
| 166 |
+
norm_layer=config.get("norm_layer", "group_norm"),
|
| 167 |
+
causal=config.get("causal_decoder", False),
|
| 168 |
+
timestep_conditioning=config.get("timestep_conditioning", False),
|
| 169 |
+
base_channels=config.get("decoder_base_channels", 128),
|
| 170 |
+
spatial_padding_mode=config.get("spatial_padding_mode", "zeros"),
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
dims = config["dims"]
|
| 174 |
+
return CausalVideoAutoencoder(
|
| 175 |
+
encoder=encoder,
|
| 176 |
+
decoder=decoder,
|
| 177 |
+
latent_channels=config["latent_channels"],
|
| 178 |
+
dims=dims,
|
| 179 |
+
use_quant_conv=use_quant_conv,
|
| 180 |
+
normalize_latent_channels=normalize_latent_channels,
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
@property
|
| 184 |
+
def config(self):
|
| 185 |
+
return SimpleNamespace(
|
| 186 |
+
_class_name="CausalVideoAutoencoder",
|
| 187 |
+
dims=self.dims,
|
| 188 |
+
in_channels=self.encoder.conv_in.in_channels // self.encoder.patch_size**2,
|
| 189 |
+
out_channels=self.decoder.conv_out.out_channels
|
| 190 |
+
// self.decoder.patch_size**2,
|
| 191 |
+
latent_channels=self.decoder.conv_in.in_channels,
|
| 192 |
+
encoder_blocks=self.encoder.blocks_desc,
|
| 193 |
+
decoder_blocks=self.decoder.blocks_desc,
|
| 194 |
+
scaling_factor=1.0,
|
| 195 |
+
norm_layer=self.encoder.norm_layer,
|
| 196 |
+
patch_size=self.encoder.patch_size,
|
| 197 |
+
latent_log_var=self.encoder.latent_log_var,
|
| 198 |
+
use_quant_conv=self.use_quant_conv,
|
| 199 |
+
causal_decoder=self.decoder.causal,
|
| 200 |
+
timestep_conditioning=self.decoder.timestep_conditioning,
|
| 201 |
+
normalize_latent_channels=self.normalize_latent_channels,
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
@property
|
| 205 |
+
def is_video_supported(self):
|
| 206 |
+
"""
|
| 207 |
+
Check if the model supports video inputs of shape (B, C, F, H, W). Otherwise, the model only supports 2D images.
|
| 208 |
+
"""
|
| 209 |
+
return self.dims != 2
|
| 210 |
+
|
| 211 |
+
@property
|
| 212 |
+
def spatial_downscale_factor(self):
|
| 213 |
+
return (
|
| 214 |
+
2
|
| 215 |
+
** len(
|
| 216 |
+
[
|
| 217 |
+
block
|
| 218 |
+
for block in self.encoder.blocks_desc
|
| 219 |
+
if block[0]
|
| 220 |
+
in [
|
| 221 |
+
"compress_space",
|
| 222 |
+
"compress_all",
|
| 223 |
+
"compress_all_res",
|
| 224 |
+
"compress_space_res",
|
| 225 |
+
]
|
| 226 |
+
]
|
| 227 |
+
)
|
| 228 |
+
* self.encoder.patch_size
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
@property
|
| 232 |
+
def temporal_downscale_factor(self):
|
| 233 |
+
return 2 ** len(
|
| 234 |
+
[
|
| 235 |
+
block
|
| 236 |
+
for block in self.encoder.blocks_desc
|
| 237 |
+
if block[0]
|
| 238 |
+
in [
|
| 239 |
+
"compress_time",
|
| 240 |
+
"compress_all",
|
| 241 |
+
"compress_all_res",
|
| 242 |
+
"compress_time_res",
|
| 243 |
+
]
|
| 244 |
+
]
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
def to_json_string(self) -> str:
|
| 248 |
+
import json
|
| 249 |
+
|
| 250 |
+
return json.dumps(self.config.__dict__)
|
| 251 |
+
|
| 252 |
+
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
|
| 253 |
+
if any([key.startswith("vae.") for key in state_dict.keys()]):
|
| 254 |
+
state_dict = {
|
| 255 |
+
key.replace("vae.", ""): value
|
| 256 |
+
for key, value in state_dict.items()
|
| 257 |
+
if key.startswith("vae.")
|
| 258 |
+
}
|
| 259 |
+
ckpt_state_dict = {
|
| 260 |
+
key: value
|
| 261 |
+
for key, value in state_dict.items()
|
| 262 |
+
if not key.startswith(PER_CHANNEL_STATISTICS_PREFIX)
|
| 263 |
+
}
|
| 264 |
+
|
| 265 |
+
model_keys = set(name for name, _ in self.named_modules())
|
| 266 |
+
|
| 267 |
+
key_mapping = {
|
| 268 |
+
".resnets.": ".res_blocks.",
|
| 269 |
+
"downsamplers.0": "downsample",
|
| 270 |
+
"upsamplers.0": "upsample",
|
| 271 |
+
}
|
| 272 |
+
converted_state_dict = {}
|
| 273 |
+
for key, value in ckpt_state_dict.items():
|
| 274 |
+
for k, v in key_mapping.items():
|
| 275 |
+
key = key.replace(k, v)
|
| 276 |
+
|
| 277 |
+
key_prefix = ".".join(key.split(".")[:-1])
|
| 278 |
+
if "norm" in key and key_prefix not in model_keys:
|
| 279 |
+
logger.info(
|
| 280 |
+
f"Removing key {key} from state_dict as it is not present in the model"
|
| 281 |
+
)
|
| 282 |
+
continue
|
| 283 |
+
|
| 284 |
+
converted_state_dict[key] = value
|
| 285 |
+
|
| 286 |
+
super().load_state_dict(converted_state_dict, strict=strict)
|
| 287 |
+
|
| 288 |
+
data_dict = {
|
| 289 |
+
key.removeprefix(PER_CHANNEL_STATISTICS_PREFIX): value
|
| 290 |
+
for key, value in state_dict.items()
|
| 291 |
+
if key.startswith(PER_CHANNEL_STATISTICS_PREFIX)
|
| 292 |
+
}
|
| 293 |
+
if len(data_dict) > 0:
|
| 294 |
+
self.register_buffer("std_of_means", data_dict["std-of-means"])
|
| 295 |
+
self.register_buffer(
|
| 296 |
+
"mean_of_means",
|
| 297 |
+
data_dict.get(
|
| 298 |
+
"mean-of-means", torch.zeros_like(data_dict["std-of-means"])
|
| 299 |
+
),
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
def last_layer(self):
|
| 303 |
+
if hasattr(self.decoder, "conv_out"):
|
| 304 |
+
if isinstance(self.decoder.conv_out, nn.Sequential):
|
| 305 |
+
last_layer = self.decoder.conv_out[-1]
|
| 306 |
+
else:
|
| 307 |
+
last_layer = self.decoder.conv_out
|
| 308 |
+
else:
|
| 309 |
+
last_layer = self.decoder.layers[-1]
|
| 310 |
+
return last_layer
|
| 311 |
+
|
| 312 |
+
def set_use_tpu_flash_attention(self):
|
| 313 |
+
for block in self.decoder.up_blocks:
|
| 314 |
+
if isinstance(block, UNetMidBlock3D) and block.attention_blocks:
|
| 315 |
+
for attention_block in block.attention_blocks:
|
| 316 |
+
attention_block.set_use_tpu_flash_attention()
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
class Encoder(nn.Module):
|
| 320 |
+
r"""
|
| 321 |
+
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
|
| 322 |
+
|
| 323 |
+
Args:
|
| 324 |
+
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
|
| 325 |
+
The number of dimensions to use in convolutions.
|
| 326 |
+
in_channels (`int`, *optional*, defaults to 3):
|
| 327 |
+
The number of input channels.
|
| 328 |
+
out_channels (`int`, *optional*, defaults to 3):
|
| 329 |
+
The number of output channels.
|
| 330 |
+
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
|
| 331 |
+
The blocks to use. Each block is a tuple of the block name and the number of layers.
|
| 332 |
+
base_channels (`int`, *optional*, defaults to 128):
|
| 333 |
+
The number of output channels for the first convolutional layer.
|
| 334 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
| 335 |
+
The number of groups for normalization.
|
| 336 |
+
patch_size (`int`, *optional*, defaults to 1):
|
| 337 |
+
The patch size to use. Should be a power of 2.
|
| 338 |
+
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
| 339 |
+
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
| 340 |
+
latent_log_var (`str`, *optional*, defaults to `per_channel`):
|
| 341 |
+
The number of channels for the log variance. Can be either `per_channel`, `uniform`, `constant` or `none`.
|
| 342 |
+
"""
|
| 343 |
+
|
| 344 |
+
def __init__(
|
| 345 |
+
self,
|
| 346 |
+
dims: Union[int, Tuple[int, int]] = 3,
|
| 347 |
+
in_channels: int = 3,
|
| 348 |
+
out_channels: int = 3,
|
| 349 |
+
blocks: List[Tuple[str, int | dict]] = [("res_x", 1)],
|
| 350 |
+
base_channels: int = 128,
|
| 351 |
+
norm_num_groups: int = 32,
|
| 352 |
+
patch_size: Union[int, Tuple[int]] = 1,
|
| 353 |
+
norm_layer: str = "group_norm", # group_norm, pixel_norm
|
| 354 |
+
latent_log_var: str = "per_channel",
|
| 355 |
+
spatial_padding_mode: str = "zeros",
|
| 356 |
+
):
|
| 357 |
+
super().__init__()
|
| 358 |
+
self.patch_size = patch_size
|
| 359 |
+
self.norm_layer = norm_layer
|
| 360 |
+
self.latent_channels = out_channels
|
| 361 |
+
self.latent_log_var = latent_log_var
|
| 362 |
+
self.blocks_desc = blocks
|
| 363 |
+
|
| 364 |
+
in_channels = in_channels * patch_size**2
|
| 365 |
+
output_channel = base_channels
|
| 366 |
+
|
| 367 |
+
self.conv_in = make_conv_nd(
|
| 368 |
+
dims=dims,
|
| 369 |
+
in_channels=in_channels,
|
| 370 |
+
out_channels=output_channel,
|
| 371 |
+
kernel_size=3,
|
| 372 |
+
stride=1,
|
| 373 |
+
padding=1,
|
| 374 |
+
causal=True,
|
| 375 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
self.down_blocks = nn.ModuleList([])
|
| 379 |
+
|
| 380 |
+
for block_name, block_params in blocks:
|
| 381 |
+
input_channel = output_channel
|
| 382 |
+
if isinstance(block_params, int):
|
| 383 |
+
block_params = {"num_layers": block_params}
|
| 384 |
+
|
| 385 |
+
if block_name == "res_x":
|
| 386 |
+
block = UNetMidBlock3D(
|
| 387 |
+
dims=dims,
|
| 388 |
+
in_channels=input_channel,
|
| 389 |
+
num_layers=block_params["num_layers"],
|
| 390 |
+
resnet_eps=1e-6,
|
| 391 |
+
resnet_groups=norm_num_groups,
|
| 392 |
+
norm_layer=norm_layer,
|
| 393 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 394 |
+
)
|
| 395 |
+
elif block_name == "res_x_y":
|
| 396 |
+
output_channel = block_params.get("multiplier", 2) * output_channel
|
| 397 |
+
block = ResnetBlock3D(
|
| 398 |
+
dims=dims,
|
| 399 |
+
in_channels=input_channel,
|
| 400 |
+
out_channels=output_channel,
|
| 401 |
+
eps=1e-6,
|
| 402 |
+
groups=norm_num_groups,
|
| 403 |
+
norm_layer=norm_layer,
|
| 404 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 405 |
+
)
|
| 406 |
+
elif block_name == "compress_time":
|
| 407 |
+
block = make_conv_nd(
|
| 408 |
+
dims=dims,
|
| 409 |
+
in_channels=input_channel,
|
| 410 |
+
out_channels=output_channel,
|
| 411 |
+
kernel_size=3,
|
| 412 |
+
stride=(2, 1, 1),
|
| 413 |
+
causal=True,
|
| 414 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 415 |
+
)
|
| 416 |
+
elif block_name == "compress_space":
|
| 417 |
+
block = make_conv_nd(
|
| 418 |
+
dims=dims,
|
| 419 |
+
in_channels=input_channel,
|
| 420 |
+
out_channels=output_channel,
|
| 421 |
+
kernel_size=3,
|
| 422 |
+
stride=(1, 2, 2),
|
| 423 |
+
causal=True,
|
| 424 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 425 |
+
)
|
| 426 |
+
elif block_name == "compress_all":
|
| 427 |
+
block = make_conv_nd(
|
| 428 |
+
dims=dims,
|
| 429 |
+
in_channels=input_channel,
|
| 430 |
+
out_channels=output_channel,
|
| 431 |
+
kernel_size=3,
|
| 432 |
+
stride=(2, 2, 2),
|
| 433 |
+
causal=True,
|
| 434 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 435 |
+
)
|
| 436 |
+
elif block_name == "compress_all_x_y":
|
| 437 |
+
output_channel = block_params.get("multiplier", 2) * output_channel
|
| 438 |
+
block = make_conv_nd(
|
| 439 |
+
dims=dims,
|
| 440 |
+
in_channels=input_channel,
|
| 441 |
+
out_channels=output_channel,
|
| 442 |
+
kernel_size=3,
|
| 443 |
+
stride=(2, 2, 2),
|
| 444 |
+
causal=True,
|
| 445 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 446 |
+
)
|
| 447 |
+
elif block_name == "compress_all_res":
|
| 448 |
+
output_channel = block_params.get("multiplier", 2) * output_channel
|
| 449 |
+
block = SpaceToDepthDownsample(
|
| 450 |
+
dims=dims,
|
| 451 |
+
in_channels=input_channel,
|
| 452 |
+
out_channels=output_channel,
|
| 453 |
+
stride=(2, 2, 2),
|
| 454 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 455 |
+
)
|
| 456 |
+
elif block_name == "compress_space_res":
|
| 457 |
+
output_channel = block_params.get("multiplier", 2) * output_channel
|
| 458 |
+
block = SpaceToDepthDownsample(
|
| 459 |
+
dims=dims,
|
| 460 |
+
in_channels=input_channel,
|
| 461 |
+
out_channels=output_channel,
|
| 462 |
+
stride=(1, 2, 2),
|
| 463 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 464 |
+
)
|
| 465 |
+
elif block_name == "compress_time_res":
|
| 466 |
+
output_channel = block_params.get("multiplier", 2) * output_channel
|
| 467 |
+
block = SpaceToDepthDownsample(
|
| 468 |
+
dims=dims,
|
| 469 |
+
in_channels=input_channel,
|
| 470 |
+
out_channels=output_channel,
|
| 471 |
+
stride=(2, 1, 1),
|
| 472 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 473 |
+
)
|
| 474 |
+
else:
|
| 475 |
+
raise ValueError(f"unknown block: {block_name}")
|
| 476 |
+
|
| 477 |
+
self.down_blocks.append(block)
|
| 478 |
+
|
| 479 |
+
# out
|
| 480 |
+
if norm_layer == "group_norm":
|
| 481 |
+
self.conv_norm_out = nn.GroupNorm(
|
| 482 |
+
num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
|
| 483 |
+
)
|
| 484 |
+
elif norm_layer == "pixel_norm":
|
| 485 |
+
self.conv_norm_out = PixelNorm()
|
| 486 |
+
elif norm_layer == "layer_norm":
|
| 487 |
+
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
|
| 488 |
+
|
| 489 |
+
self.conv_act = nn.SiLU()
|
| 490 |
+
|
| 491 |
+
conv_out_channels = out_channels
|
| 492 |
+
if latent_log_var == "per_channel":
|
| 493 |
+
conv_out_channels *= 2
|
| 494 |
+
elif latent_log_var == "uniform":
|
| 495 |
+
conv_out_channels += 1
|
| 496 |
+
elif latent_log_var == "constant":
|
| 497 |
+
conv_out_channels += 1
|
| 498 |
+
elif latent_log_var != "none":
|
| 499 |
+
raise ValueError(f"Invalid latent_log_var: {latent_log_var}")
|
| 500 |
+
self.conv_out = make_conv_nd(
|
| 501 |
+
dims,
|
| 502 |
+
output_channel,
|
| 503 |
+
conv_out_channels,
|
| 504 |
+
3,
|
| 505 |
+
padding=1,
|
| 506 |
+
causal=True,
|
| 507 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 508 |
+
)
|
| 509 |
+
|
| 510 |
+
self.gradient_checkpointing = False
|
| 511 |
+
|
| 512 |
+
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
| 513 |
+
r"""The forward method of the `Encoder` class."""
|
| 514 |
+
|
| 515 |
+
sample = patchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
|
| 516 |
+
sample = self.conv_in(sample)
|
| 517 |
+
|
| 518 |
+
checkpoint_fn = (
|
| 519 |
+
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
| 520 |
+
if self.gradient_checkpointing and self.training
|
| 521 |
+
else lambda x: x
|
| 522 |
+
)
|
| 523 |
+
|
| 524 |
+
for down_block in self.down_blocks:
|
| 525 |
+
sample = checkpoint_fn(down_block)(sample)
|
| 526 |
+
|
| 527 |
+
sample = self.conv_norm_out(sample)
|
| 528 |
+
sample = self.conv_act(sample)
|
| 529 |
+
sample = self.conv_out(sample)
|
| 530 |
+
|
| 531 |
+
if self.latent_log_var == "uniform":
|
| 532 |
+
last_channel = sample[:, -1:, ...]
|
| 533 |
+
num_dims = sample.dim()
|
| 534 |
+
|
| 535 |
+
if num_dims == 4:
|
| 536 |
+
# For shape (B, C, H, W)
|
| 537 |
+
repeated_last_channel = last_channel.repeat(
|
| 538 |
+
1, sample.shape[1] - 2, 1, 1
|
| 539 |
+
)
|
| 540 |
+
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
| 541 |
+
elif num_dims == 5:
|
| 542 |
+
# For shape (B, C, F, H, W)
|
| 543 |
+
repeated_last_channel = last_channel.repeat(
|
| 544 |
+
1, sample.shape[1] - 2, 1, 1, 1
|
| 545 |
+
)
|
| 546 |
+
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
| 547 |
+
else:
|
| 548 |
+
raise ValueError(f"Invalid input shape: {sample.shape}")
|
| 549 |
+
elif self.latent_log_var == "constant":
|
| 550 |
+
sample = sample[:, :-1, ...]
|
| 551 |
+
approx_ln_0 = (
|
| 552 |
+
-30
|
| 553 |
+
) # this is the minimal clamp value in DiagonalGaussianDistribution objects
|
| 554 |
+
sample = torch.cat(
|
| 555 |
+
[sample, torch.ones_like(sample, device=sample.device) * approx_ln_0],
|
| 556 |
+
dim=1,
|
| 557 |
+
)
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
# --- INÍCIO DO PATCH CIRÚRGICO ADUC ---
|
| 562 |
+
# Verificamos uma variável de ambiente para ligar/desligar o overlay
|
| 563 |
+
|
| 564 |
+
if os.getenv("ADUC_DEBUG_OVERLAY", "1") == "1":
|
| 565 |
+
try:
|
| 566 |
+
print(f"[ADUC DEBUG LTX *causal_video_autoencoder.py*]=======")
|
| 567 |
+
print(f"[sample] {sample.shape}")
|
| 568 |
+
|
| 569 |
+
# Converte B,C,F,H,W para F,H,W,C na CPU
|
| 570 |
+
video_np = (sample.clone().squeeze(0).permute(1, 2, 3, 0) * 127.5 + 127.5).byte().cpu().numpy()
|
| 571 |
+
|
| 572 |
+
try:
|
| 573 |
+
font = ImageFont.truetype("arial.ttf", 24)
|
| 574 |
+
except IOError:
|
| 575 |
+
font = ImageFont.load_default(size=24)
|
| 576 |
+
|
| 577 |
+
processed_frames = []
|
| 578 |
+
for i in range(video_np.shape[0]):
|
| 579 |
+
frame_pil = Image.fromarray(video_np[i])
|
| 580 |
+
draw = ImageDraw.Draw(frame_pil)
|
| 581 |
+
|
| 582 |
+
# Texto simples, já que não temos o contexto do fragmento aqui
|
| 583 |
+
text = f"F: {i}"
|
| 584 |
+
position = (10, frame_pil.height - 40)
|
| 585 |
+
|
| 586 |
+
# Contorno para legibilidade
|
| 587 |
+
draw.text((position[0]-1, position[1]-1), text, font=font, fill="black")
|
| 588 |
+
draw.text((position[0]+1, position[1]-1), text, font=font, fill="black")
|
| 589 |
+
draw.text((position[0]-1, position[1]+1), text, font=font, fill="black")
|
| 590 |
+
draw.text((position[0]+1, position[1]+1), text, font=font, fill="black")
|
| 591 |
+
draw.text(position, text, font=font, fill="white")
|
| 592 |
+
|
| 593 |
+
processed_frames.append(np.array(frame_pil))
|
| 594 |
+
|
| 595 |
+
# Converte de volta para tensor B,C,F,H,W no device original
|
| 596 |
+
processed_np = np.stack(processed_frames)
|
| 597 |
+
final_tensor = torch.from_numpy(processed_np).to(sample.device, dtype=torch.float32)
|
| 598 |
+
final_tensor = (final_tensor / 127.5) - 1.0
|
| 599 |
+
sample = final_tensor.permute(3, 0, 1, 2).unsqueeze(0) # F,H,W,C -> B,C,F,H,W
|
| 600 |
+
except Exception as e:
|
| 601 |
+
# Se algo der errado no patch, apenas loga o erro e continua com o tensor original
|
| 602 |
+
print(f"[ADUC_DEBUG_OVERLAY] Erro ao adicionar texto: {e}")
|
| 603 |
+
# --- FIM DO PATCH CIRÚRGICO ---
|
| 604 |
+
|
| 605 |
+
return sample
|
| 606 |
+
|
| 607 |
+
|
| 608 |
+
class Decoder(nn.Module):
|
| 609 |
+
r"""
|
| 610 |
+
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
|
| 611 |
+
|
| 612 |
+
Args:
|
| 613 |
+
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
|
| 614 |
+
The number of dimensions to use in convolutions.
|
| 615 |
+
in_channels (`int`, *optional*, defaults to 3):
|
| 616 |
+
The number of input channels.
|
| 617 |
+
out_channels (`int`, *optional*, defaults to 3):
|
| 618 |
+
The number of output channels.
|
| 619 |
+
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
|
| 620 |
+
The blocks to use. Each block is a tuple of the block name and the number of layers.
|
| 621 |
+
base_channels (`int`, *optional*, defaults to 128):
|
| 622 |
+
The number of output channels for the first convolutional layer.
|
| 623 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
| 624 |
+
The number of groups for normalization.
|
| 625 |
+
patch_size (`int`, *optional*, defaults to 1):
|
| 626 |
+
The patch size to use. Should be a power of 2.
|
| 627 |
+
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
| 628 |
+
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
| 629 |
+
causal (`bool`, *optional*, defaults to `True`):
|
| 630 |
+
Whether to use causal convolutions or not.
|
| 631 |
+
"""
|
| 632 |
+
|
| 633 |
+
def __init__(
|
| 634 |
+
self,
|
| 635 |
+
dims,
|
| 636 |
+
in_channels: int = 3,
|
| 637 |
+
out_channels: int = 3,
|
| 638 |
+
blocks: List[Tuple[str, int | dict]] = [("res_x", 1)],
|
| 639 |
+
base_channels: int = 128,
|
| 640 |
+
layers_per_block: int = 2,
|
| 641 |
+
norm_num_groups: int = 32,
|
| 642 |
+
patch_size: int = 1,
|
| 643 |
+
norm_layer: str = "group_norm",
|
| 644 |
+
causal: bool = True,
|
| 645 |
+
timestep_conditioning: bool = False,
|
| 646 |
+
spatial_padding_mode: str = "zeros",
|
| 647 |
+
):
|
| 648 |
+
super().__init__()
|
| 649 |
+
self.patch_size = patch_size
|
| 650 |
+
self.layers_per_block = layers_per_block
|
| 651 |
+
out_channels = out_channels * patch_size**2
|
| 652 |
+
self.causal = causal
|
| 653 |
+
self.blocks_desc = blocks
|
| 654 |
+
|
| 655 |
+
# Compute output channel to be product of all channel-multiplier blocks
|
| 656 |
+
output_channel = base_channels
|
| 657 |
+
for block_name, block_params in list(reversed(blocks)):
|
| 658 |
+
block_params = block_params if isinstance(block_params, dict) else {}
|
| 659 |
+
if block_name == "res_x_y":
|
| 660 |
+
output_channel = output_channel * block_params.get("multiplier", 2)
|
| 661 |
+
if block_name.startswith("compress"):
|
| 662 |
+
output_channel = output_channel * block_params.get("multiplier", 1)
|
| 663 |
+
|
| 664 |
+
self.conv_in = make_conv_nd(
|
| 665 |
+
dims,
|
| 666 |
+
in_channels,
|
| 667 |
+
output_channel,
|
| 668 |
+
kernel_size=3,
|
| 669 |
+
stride=1,
|
| 670 |
+
padding=1,
|
| 671 |
+
causal=True,
|
| 672 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 673 |
+
)
|
| 674 |
+
|
| 675 |
+
self.up_blocks = nn.ModuleList([])
|
| 676 |
+
|
| 677 |
+
for block_name, block_params in list(reversed(blocks)):
|
| 678 |
+
input_channel = output_channel
|
| 679 |
+
if isinstance(block_params, int):
|
| 680 |
+
block_params = {"num_layers": block_params}
|
| 681 |
+
|
| 682 |
+
if block_name == "res_x":
|
| 683 |
+
block = UNetMidBlock3D(
|
| 684 |
+
dims=dims,
|
| 685 |
+
in_channels=input_channel,
|
| 686 |
+
num_layers=block_params["num_layers"],
|
| 687 |
+
resnet_eps=1e-6,
|
| 688 |
+
resnet_groups=norm_num_groups,
|
| 689 |
+
norm_layer=norm_layer,
|
| 690 |
+
inject_noise=block_params.get("inject_noise", False),
|
| 691 |
+
timestep_conditioning=timestep_conditioning,
|
| 692 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 693 |
+
)
|
| 694 |
+
elif block_name == "attn_res_x":
|
| 695 |
+
block = UNetMidBlock3D(
|
| 696 |
+
dims=dims,
|
| 697 |
+
in_channels=input_channel,
|
| 698 |
+
num_layers=block_params["num_layers"],
|
| 699 |
+
resnet_groups=norm_num_groups,
|
| 700 |
+
norm_layer=norm_layer,
|
| 701 |
+
inject_noise=block_params.get("inject_noise", False),
|
| 702 |
+
timestep_conditioning=timestep_conditioning,
|
| 703 |
+
attention_head_dim=block_params["attention_head_dim"],
|
| 704 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 705 |
+
)
|
| 706 |
+
elif block_name == "res_x_y":
|
| 707 |
+
output_channel = output_channel // block_params.get("multiplier", 2)
|
| 708 |
+
block = ResnetBlock3D(
|
| 709 |
+
dims=dims,
|
| 710 |
+
in_channels=input_channel,
|
| 711 |
+
out_channels=output_channel,
|
| 712 |
+
eps=1e-6,
|
| 713 |
+
groups=norm_num_groups,
|
| 714 |
+
norm_layer=norm_layer,
|
| 715 |
+
inject_noise=block_params.get("inject_noise", False),
|
| 716 |
+
timestep_conditioning=False,
|
| 717 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 718 |
+
)
|
| 719 |
+
elif block_name == "compress_time":
|
| 720 |
+
block = DepthToSpaceUpsample(
|
| 721 |
+
dims=dims,
|
| 722 |
+
in_channels=input_channel,
|
| 723 |
+
stride=(2, 1, 1),
|
| 724 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 725 |
+
)
|
| 726 |
+
elif block_name == "compress_space":
|
| 727 |
+
block = DepthToSpaceUpsample(
|
| 728 |
+
dims=dims,
|
| 729 |
+
in_channels=input_channel,
|
| 730 |
+
stride=(1, 2, 2),
|
| 731 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 732 |
+
)
|
| 733 |
+
elif block_name == "compress_all":
|
| 734 |
+
output_channel = output_channel // block_params.get("multiplier", 1)
|
| 735 |
+
block = DepthToSpaceUpsample(
|
| 736 |
+
dims=dims,
|
| 737 |
+
in_channels=input_channel,
|
| 738 |
+
stride=(2, 2, 2),
|
| 739 |
+
residual=block_params.get("residual", False),
|
| 740 |
+
out_channels_reduction_factor=block_params.get("multiplier", 1),
|
| 741 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 742 |
+
)
|
| 743 |
+
else:
|
| 744 |
+
raise ValueError(f"unknown layer: {block_name}")
|
| 745 |
+
|
| 746 |
+
self.up_blocks.append(block)
|
| 747 |
+
|
| 748 |
+
if norm_layer == "group_norm":
|
| 749 |
+
self.conv_norm_out = nn.GroupNorm(
|
| 750 |
+
num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
|
| 751 |
+
)
|
| 752 |
+
elif norm_layer == "pixel_norm":
|
| 753 |
+
self.conv_norm_out = PixelNorm()
|
| 754 |
+
elif norm_layer == "layer_norm":
|
| 755 |
+
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
|
| 756 |
+
|
| 757 |
+
self.conv_act = nn.SiLU()
|
| 758 |
+
self.conv_out = make_conv_nd(
|
| 759 |
+
dims,
|
| 760 |
+
output_channel,
|
| 761 |
+
out_channels,
|
| 762 |
+
3,
|
| 763 |
+
padding=1,
|
| 764 |
+
causal=True,
|
| 765 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 766 |
+
)
|
| 767 |
+
|
| 768 |
+
self.gradient_checkpointing = False
|
| 769 |
+
|
| 770 |
+
self.timestep_conditioning = timestep_conditioning
|
| 771 |
+
|
| 772 |
+
if timestep_conditioning:
|
| 773 |
+
self.timestep_scale_multiplier = nn.Parameter(
|
| 774 |
+
torch.tensor(1000.0, dtype=torch.float32)
|
| 775 |
+
)
|
| 776 |
+
self.last_time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(
|
| 777 |
+
output_channel * 2, 0
|
| 778 |
+
)
|
| 779 |
+
self.last_scale_shift_table = nn.Parameter(
|
| 780 |
+
torch.randn(2, output_channel) / output_channel**0.5
|
| 781 |
+
)
|
| 782 |
+
|
| 783 |
+
def forward(
|
| 784 |
+
self,
|
| 785 |
+
sample: torch.FloatTensor,
|
| 786 |
+
target_shape,
|
| 787 |
+
timestep: Optional[torch.Tensor] = None,
|
| 788 |
+
) -> torch.FloatTensor:
|
| 789 |
+
r"""The forward method of the `Decoder` class."""
|
| 790 |
+
assert target_shape is not None, "target_shape must be provided"
|
| 791 |
+
batch_size = sample.shape[0]
|
| 792 |
+
|
| 793 |
+
sample = self.conv_in(sample, causal=self.causal)
|
| 794 |
+
|
| 795 |
+
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
| 796 |
+
|
| 797 |
+
checkpoint_fn = (
|
| 798 |
+
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
| 799 |
+
if self.gradient_checkpointing and self.training
|
| 800 |
+
else lambda x: x
|
| 801 |
+
)
|
| 802 |
+
|
| 803 |
+
sample = sample.to(upscale_dtype)
|
| 804 |
+
|
| 805 |
+
if self.timestep_conditioning:
|
| 806 |
+
assert (
|
| 807 |
+
timestep is not None
|
| 808 |
+
), "should pass timestep with timestep_conditioning=True"
|
| 809 |
+
scaled_timestep = timestep * self.timestep_scale_multiplier
|
| 810 |
+
|
| 811 |
+
for up_block in self.up_blocks:
|
| 812 |
+
if self.timestep_conditioning and isinstance(up_block, UNetMidBlock3D):
|
| 813 |
+
sample = checkpoint_fn(up_block)(
|
| 814 |
+
sample, causal=self.causal, timestep=scaled_timestep
|
| 815 |
+
)
|
| 816 |
+
else:
|
| 817 |
+
sample = checkpoint_fn(up_block)(sample, causal=self.causal)
|
| 818 |
+
|
| 819 |
+
sample = self.conv_norm_out(sample)
|
| 820 |
+
|
| 821 |
+
if self.timestep_conditioning:
|
| 822 |
+
embedded_timestep = self.last_time_embedder(
|
| 823 |
+
timestep=scaled_timestep.flatten(),
|
| 824 |
+
resolution=None,
|
| 825 |
+
aspect_ratio=None,
|
| 826 |
+
batch_size=sample.shape[0],
|
| 827 |
+
hidden_dtype=sample.dtype,
|
| 828 |
+
)
|
| 829 |
+
embedded_timestep = embedded_timestep.view(
|
| 830 |
+
batch_size, embedded_timestep.shape[-1], 1, 1, 1
|
| 831 |
+
)
|
| 832 |
+
ada_values = self.last_scale_shift_table[
|
| 833 |
+
None, ..., None, None, None
|
| 834 |
+
] + embedded_timestep.reshape(
|
| 835 |
+
batch_size,
|
| 836 |
+
2,
|
| 837 |
+
-1,
|
| 838 |
+
embedded_timestep.shape[-3],
|
| 839 |
+
embedded_timestep.shape[-2],
|
| 840 |
+
embedded_timestep.shape[-1],
|
| 841 |
+
)
|
| 842 |
+
shift, scale = ada_values.unbind(dim=1)
|
| 843 |
+
sample = sample * (1 + scale) + shift
|
| 844 |
+
|
| 845 |
+
sample = self.conv_act(sample)
|
| 846 |
+
sample = self.conv_out(sample, causal=self.causal)
|
| 847 |
+
|
| 848 |
+
sample = unpatchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
|
| 849 |
+
|
| 850 |
+
return sample
|
| 851 |
+
|
| 852 |
+
|
| 853 |
+
class UNetMidBlock3D(nn.Module):
|
| 854 |
+
"""
|
| 855 |
+
A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks.
|
| 856 |
+
|
| 857 |
+
Args:
|
| 858 |
+
in_channels (`int`): The number of input channels.
|
| 859 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
|
| 860 |
+
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
|
| 861 |
+
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
|
| 862 |
+
resnet_groups (`int`, *optional*, defaults to 32):
|
| 863 |
+
The number of groups to use in the group normalization layers of the resnet blocks.
|
| 864 |
+
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
| 865 |
+
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
| 866 |
+
inject_noise (`bool`, *optional*, defaults to `False`):
|
| 867 |
+
Whether to inject noise into the hidden states.
|
| 868 |
+
timestep_conditioning (`bool`, *optional*, defaults to `False`):
|
| 869 |
+
Whether to condition the hidden states on the timestep.
|
| 870 |
+
attention_head_dim (`int`, *optional*, defaults to -1):
|
| 871 |
+
The dimension of the attention head. If -1, no attention is used.
|
| 872 |
+
|
| 873 |
+
Returns:
|
| 874 |
+
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
|
| 875 |
+
in_channels, height, width)`.
|
| 876 |
+
|
| 877 |
+
"""
|
| 878 |
+
|
| 879 |
+
def __init__(
|
| 880 |
+
self,
|
| 881 |
+
dims: Union[int, Tuple[int, int]],
|
| 882 |
+
in_channels: int,
|
| 883 |
+
dropout: float = 0.0,
|
| 884 |
+
num_layers: int = 1,
|
| 885 |
+
resnet_eps: float = 1e-6,
|
| 886 |
+
resnet_groups: int = 32,
|
| 887 |
+
norm_layer: str = "group_norm",
|
| 888 |
+
inject_noise: bool = False,
|
| 889 |
+
timestep_conditioning: bool = False,
|
| 890 |
+
attention_head_dim: int = -1,
|
| 891 |
+
spatial_padding_mode: str = "zeros",
|
| 892 |
+
):
|
| 893 |
+
super().__init__()
|
| 894 |
+
resnet_groups = (
|
| 895 |
+
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
| 896 |
+
)
|
| 897 |
+
self.timestep_conditioning = timestep_conditioning
|
| 898 |
+
|
| 899 |
+
if timestep_conditioning:
|
| 900 |
+
self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(
|
| 901 |
+
in_channels * 4, 0
|
| 902 |
+
)
|
| 903 |
+
|
| 904 |
+
self.res_blocks = nn.ModuleList(
|
| 905 |
+
[
|
| 906 |
+
ResnetBlock3D(
|
| 907 |
+
dims=dims,
|
| 908 |
+
in_channels=in_channels,
|
| 909 |
+
out_channels=in_channels,
|
| 910 |
+
eps=resnet_eps,
|
| 911 |
+
groups=resnet_groups,
|
| 912 |
+
dropout=dropout,
|
| 913 |
+
norm_layer=norm_layer,
|
| 914 |
+
inject_noise=inject_noise,
|
| 915 |
+
timestep_conditioning=timestep_conditioning,
|
| 916 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 917 |
+
)
|
| 918 |
+
for _ in range(num_layers)
|
| 919 |
+
]
|
| 920 |
+
)
|
| 921 |
+
|
| 922 |
+
self.attention_blocks = None
|
| 923 |
+
|
| 924 |
+
if attention_head_dim > 0:
|
| 925 |
+
if attention_head_dim > in_channels:
|
| 926 |
+
raise ValueError(
|
| 927 |
+
"attention_head_dim must be less than or equal to in_channels"
|
| 928 |
+
)
|
| 929 |
+
|
| 930 |
+
self.attention_blocks = nn.ModuleList(
|
| 931 |
+
[
|
| 932 |
+
Attention(
|
| 933 |
+
query_dim=in_channels,
|
| 934 |
+
heads=in_channels // attention_head_dim,
|
| 935 |
+
dim_head=attention_head_dim,
|
| 936 |
+
bias=True,
|
| 937 |
+
out_bias=True,
|
| 938 |
+
qk_norm="rms_norm",
|
| 939 |
+
residual_connection=True,
|
| 940 |
+
)
|
| 941 |
+
for _ in range(num_layers)
|
| 942 |
+
]
|
| 943 |
+
)
|
| 944 |
+
|
| 945 |
+
def forward(
|
| 946 |
+
self,
|
| 947 |
+
hidden_states: torch.FloatTensor,
|
| 948 |
+
causal: bool = True,
|
| 949 |
+
timestep: Optional[torch.Tensor] = None,
|
| 950 |
+
) -> torch.FloatTensor:
|
| 951 |
+
timestep_embed = None
|
| 952 |
+
if self.timestep_conditioning:
|
| 953 |
+
assert (
|
| 954 |
+
timestep is not None
|
| 955 |
+
), "should pass timestep with timestep_conditioning=True"
|
| 956 |
+
batch_size = hidden_states.shape[0]
|
| 957 |
+
timestep_embed = self.time_embedder(
|
| 958 |
+
timestep=timestep.flatten(),
|
| 959 |
+
resolution=None,
|
| 960 |
+
aspect_ratio=None,
|
| 961 |
+
batch_size=batch_size,
|
| 962 |
+
hidden_dtype=hidden_states.dtype,
|
| 963 |
+
)
|
| 964 |
+
timestep_embed = timestep_embed.view(
|
| 965 |
+
batch_size, timestep_embed.shape[-1], 1, 1, 1
|
| 966 |
+
)
|
| 967 |
+
|
| 968 |
+
if self.attention_blocks:
|
| 969 |
+
for resnet, attention in zip(self.res_blocks, self.attention_blocks):
|
| 970 |
+
hidden_states = resnet(
|
| 971 |
+
hidden_states, causal=causal, timestep=timestep_embed
|
| 972 |
+
)
|
| 973 |
+
|
| 974 |
+
# Reshape the hidden states to be (batch_size, frames * height * width, channel)
|
| 975 |
+
batch_size, channel, frames, height, width = hidden_states.shape
|
| 976 |
+
hidden_states = hidden_states.view(
|
| 977 |
+
batch_size, channel, frames * height * width
|
| 978 |
+
).transpose(1, 2)
|
| 979 |
+
|
| 980 |
+
if attention.use_tpu_flash_attention:
|
| 981 |
+
# Pad the second dimension to be divisible by block_k_major (block in flash attention)
|
| 982 |
+
seq_len = hidden_states.shape[1]
|
| 983 |
+
block_k_major = 512
|
| 984 |
+
pad_len = (block_k_major - seq_len % block_k_major) % block_k_major
|
| 985 |
+
if pad_len > 0:
|
| 986 |
+
hidden_states = F.pad(
|
| 987 |
+
hidden_states, (0, 0, 0, pad_len), "constant", 0
|
| 988 |
+
)
|
| 989 |
+
|
| 990 |
+
# Create a mask with ones for the original sequence length and zeros for the padded indexes
|
| 991 |
+
mask = torch.ones(
|
| 992 |
+
(hidden_states.shape[0], seq_len),
|
| 993 |
+
device=hidden_states.device,
|
| 994 |
+
dtype=hidden_states.dtype,
|
| 995 |
+
)
|
| 996 |
+
if pad_len > 0:
|
| 997 |
+
mask = F.pad(mask, (0, pad_len), "constant", 0)
|
| 998 |
+
|
| 999 |
+
hidden_states = attention(
|
| 1000 |
+
hidden_states,
|
| 1001 |
+
attention_mask=(
|
| 1002 |
+
None if not attention.use_tpu_flash_attention else mask
|
| 1003 |
+
),
|
| 1004 |
+
)
|
| 1005 |
+
|
| 1006 |
+
if attention.use_tpu_flash_attention:
|
| 1007 |
+
# Remove the padding
|
| 1008 |
+
if pad_len > 0:
|
| 1009 |
+
hidden_states = hidden_states[:, :-pad_len, :]
|
| 1010 |
+
|
| 1011 |
+
# Reshape the hidden states back to (batch_size, channel, frames, height, width, channel)
|
| 1012 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
| 1013 |
+
batch_size, channel, frames, height, width
|
| 1014 |
+
)
|
| 1015 |
+
else:
|
| 1016 |
+
for resnet in self.res_blocks:
|
| 1017 |
+
hidden_states = resnet(
|
| 1018 |
+
hidden_states, causal=causal, timestep=timestep_embed
|
| 1019 |
+
)
|
| 1020 |
+
|
| 1021 |
+
return hidden_states
|
| 1022 |
+
|
| 1023 |
+
|
| 1024 |
+
class SpaceToDepthDownsample(nn.Module):
|
| 1025 |
+
def __init__(self, dims, in_channels, out_channels, stride, spatial_padding_mode):
|
| 1026 |
+
super().__init__()
|
| 1027 |
+
self.stride = stride
|
| 1028 |
+
self.group_size = in_channels * np.prod(stride) // out_channels
|
| 1029 |
+
self.conv = make_conv_nd(
|
| 1030 |
+
dims=dims,
|
| 1031 |
+
in_channels=in_channels,
|
| 1032 |
+
out_channels=out_channels // np.prod(stride),
|
| 1033 |
+
kernel_size=3,
|
| 1034 |
+
stride=1,
|
| 1035 |
+
causal=True,
|
| 1036 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 1037 |
+
)
|
| 1038 |
+
|
| 1039 |
+
def forward(self, x, causal: bool = True):
|
| 1040 |
+
if self.stride[0] == 2:
|
| 1041 |
+
x = torch.cat(
|
| 1042 |
+
[x[:, :, :1, :, :], x], dim=2
|
| 1043 |
+
) # duplicate first frames for padding
|
| 1044 |
+
|
| 1045 |
+
# skip connection
|
| 1046 |
+
x_in = rearrange(
|
| 1047 |
+
x,
|
| 1048 |
+
"b c (d p1) (h p2) (w p3) -> b (c p1 p2 p3) d h w",
|
| 1049 |
+
p1=self.stride[0],
|
| 1050 |
+
p2=self.stride[1],
|
| 1051 |
+
p3=self.stride[2],
|
| 1052 |
+
)
|
| 1053 |
+
x_in = rearrange(x_in, "b (c g) d h w -> b c g d h w", g=self.group_size)
|
| 1054 |
+
x_in = x_in.mean(dim=2)
|
| 1055 |
+
|
| 1056 |
+
# conv
|
| 1057 |
+
x = self.conv(x, causal=causal)
|
| 1058 |
+
x = rearrange(
|
| 1059 |
+
x,
|
| 1060 |
+
"b c (d p1) (h p2) (w p3) -> b (c p1 p2 p3) d h w",
|
| 1061 |
+
p1=self.stride[0],
|
| 1062 |
+
p2=self.stride[1],
|
| 1063 |
+
p3=self.stride[2],
|
| 1064 |
+
)
|
| 1065 |
+
|
| 1066 |
+
x = x + x_in
|
| 1067 |
+
|
| 1068 |
+
return x
|
| 1069 |
+
|
| 1070 |
+
|
| 1071 |
+
class DepthToSpaceUpsample(nn.Module):
|
| 1072 |
+
def __init__(
|
| 1073 |
+
self,
|
| 1074 |
+
dims,
|
| 1075 |
+
in_channels,
|
| 1076 |
+
stride,
|
| 1077 |
+
residual=False,
|
| 1078 |
+
out_channels_reduction_factor=1,
|
| 1079 |
+
spatial_padding_mode="zeros",
|
| 1080 |
+
):
|
| 1081 |
+
super().__init__()
|
| 1082 |
+
self.stride = stride
|
| 1083 |
+
self.out_channels = (
|
| 1084 |
+
np.prod(stride) * in_channels // out_channels_reduction_factor
|
| 1085 |
+
)
|
| 1086 |
+
self.conv = make_conv_nd(
|
| 1087 |
+
dims=dims,
|
| 1088 |
+
in_channels=in_channels,
|
| 1089 |
+
out_channels=self.out_channels,
|
| 1090 |
+
kernel_size=3,
|
| 1091 |
+
stride=1,
|
| 1092 |
+
causal=True,
|
| 1093 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 1094 |
+
)
|
| 1095 |
+
self.pixel_shuffle = PixelShuffleND(dims=dims, upscale_factors=stride)
|
| 1096 |
+
self.residual = residual
|
| 1097 |
+
self.out_channels_reduction_factor = out_channels_reduction_factor
|
| 1098 |
+
|
| 1099 |
+
def forward(self, x, causal: bool = True):
|
| 1100 |
+
if self.residual:
|
| 1101 |
+
# Reshape and duplicate the input to match the output shape
|
| 1102 |
+
x_in = self.pixel_shuffle(x)
|
| 1103 |
+
num_repeat = np.prod(self.stride) // self.out_channels_reduction_factor
|
| 1104 |
+
x_in = x_in.repeat(1, num_repeat, 1, 1, 1)
|
| 1105 |
+
if self.stride[0] == 2:
|
| 1106 |
+
x_in = x_in[:, :, 1:, :, :]
|
| 1107 |
+
x = self.conv(x, causal=causal)
|
| 1108 |
+
x = self.pixel_shuffle(x)
|
| 1109 |
+
if self.stride[0] == 2:
|
| 1110 |
+
x = x[:, :, 1:, :, :]
|
| 1111 |
+
if self.residual:
|
| 1112 |
+
x = x + x_in
|
| 1113 |
+
return x
|
| 1114 |
+
|
| 1115 |
+
|
| 1116 |
+
class LayerNorm(nn.Module):
|
| 1117 |
+
def __init__(self, dim, eps, elementwise_affine=True) -> None:
|
| 1118 |
+
super().__init__()
|
| 1119 |
+
self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine)
|
| 1120 |
+
|
| 1121 |
+
def forward(self, x):
|
| 1122 |
+
x = rearrange(x, "b c d h w -> b d h w c")
|
| 1123 |
+
x = self.norm(x)
|
| 1124 |
+
x = rearrange(x, "b d h w c -> b c d h w")
|
| 1125 |
+
return x
|
| 1126 |
+
|
| 1127 |
+
|
| 1128 |
+
class ResnetBlock3D(nn.Module):
|
| 1129 |
+
r"""
|
| 1130 |
+
A Resnet block.
|
| 1131 |
+
|
| 1132 |
+
Parameters:
|
| 1133 |
+
in_channels (`int`): The number of channels in the input.
|
| 1134 |
+
out_channels (`int`, *optional*, default to be `None`):
|
| 1135 |
+
The number of output channels for the first conv layer. If None, same as `in_channels`.
|
| 1136 |
+
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
|
| 1137 |
+
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
|
| 1138 |
+
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
|
| 1139 |
+
"""
|
| 1140 |
+
|
| 1141 |
+
def __init__(
|
| 1142 |
+
self,
|
| 1143 |
+
dims: Union[int, Tuple[int, int]],
|
| 1144 |
+
in_channels: int,
|
| 1145 |
+
out_channels: Optional[int] = None,
|
| 1146 |
+
dropout: float = 0.0,
|
| 1147 |
+
groups: int = 32,
|
| 1148 |
+
eps: float = 1e-6,
|
| 1149 |
+
norm_layer: str = "group_norm",
|
| 1150 |
+
inject_noise: bool = False,
|
| 1151 |
+
timestep_conditioning: bool = False,
|
| 1152 |
+
spatial_padding_mode: str = "zeros",
|
| 1153 |
+
):
|
| 1154 |
+
super().__init__()
|
| 1155 |
+
self.in_channels = in_channels
|
| 1156 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 1157 |
+
self.out_channels = out_channels
|
| 1158 |
+
self.inject_noise = inject_noise
|
| 1159 |
+
|
| 1160 |
+
if norm_layer == "group_norm":
|
| 1161 |
+
self.norm1 = nn.GroupNorm(
|
| 1162 |
+
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
| 1163 |
+
)
|
| 1164 |
+
elif norm_layer == "pixel_norm":
|
| 1165 |
+
self.norm1 = PixelNorm()
|
| 1166 |
+
elif norm_layer == "layer_norm":
|
| 1167 |
+
self.norm1 = LayerNorm(in_channels, eps=eps, elementwise_affine=True)
|
| 1168 |
+
|
| 1169 |
+
self.non_linearity = nn.SiLU()
|
| 1170 |
+
|
| 1171 |
+
self.conv1 = make_conv_nd(
|
| 1172 |
+
dims,
|
| 1173 |
+
in_channels,
|
| 1174 |
+
out_channels,
|
| 1175 |
+
kernel_size=3,
|
| 1176 |
+
stride=1,
|
| 1177 |
+
padding=1,
|
| 1178 |
+
causal=True,
|
| 1179 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 1180 |
+
)
|
| 1181 |
+
|
| 1182 |
+
if inject_noise:
|
| 1183 |
+
self.per_channel_scale1 = nn.Parameter(torch.zeros((in_channels, 1, 1)))
|
| 1184 |
+
|
| 1185 |
+
if norm_layer == "group_norm":
|
| 1186 |
+
self.norm2 = nn.GroupNorm(
|
| 1187 |
+
num_groups=groups, num_channels=out_channels, eps=eps, affine=True
|
| 1188 |
+
)
|
| 1189 |
+
elif norm_layer == "pixel_norm":
|
| 1190 |
+
self.norm2 = PixelNorm()
|
| 1191 |
+
elif norm_layer == "layer_norm":
|
| 1192 |
+
self.norm2 = LayerNorm(out_channels, eps=eps, elementwise_affine=True)
|
| 1193 |
+
|
| 1194 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 1195 |
+
|
| 1196 |
+
self.conv2 = make_conv_nd(
|
| 1197 |
+
dims,
|
| 1198 |
+
out_channels,
|
| 1199 |
+
out_channels,
|
| 1200 |
+
kernel_size=3,
|
| 1201 |
+
stride=1,
|
| 1202 |
+
padding=1,
|
| 1203 |
+
causal=True,
|
| 1204 |
+
spatial_padding_mode=spatial_padding_mode,
|
| 1205 |
+
)
|
| 1206 |
+
|
| 1207 |
+
if inject_noise:
|
| 1208 |
+
self.per_channel_scale2 = nn.Parameter(torch.zeros((in_channels, 1, 1)))
|
| 1209 |
+
|
| 1210 |
+
self.conv_shortcut = (
|
| 1211 |
+
make_linear_nd(
|
| 1212 |
+
dims=dims, in_channels=in_channels, out_channels=out_channels
|
| 1213 |
+
)
|
| 1214 |
+
if in_channels != out_channels
|
| 1215 |
+
else nn.Identity()
|
| 1216 |
+
)
|
| 1217 |
+
|
| 1218 |
+
self.norm3 = (
|
| 1219 |
+
LayerNorm(in_channels, eps=eps, elementwise_affine=True)
|
| 1220 |
+
if in_channels != out_channels
|
| 1221 |
+
else nn.Identity()
|
| 1222 |
+
)
|
| 1223 |
+
|
| 1224 |
+
self.timestep_conditioning = timestep_conditioning
|
| 1225 |
+
|
| 1226 |
+
if timestep_conditioning:
|
| 1227 |
+
self.scale_shift_table = nn.Parameter(
|
| 1228 |
+
torch.randn(4, in_channels) / in_channels**0.5
|
| 1229 |
+
)
|
| 1230 |
+
|
| 1231 |
+
def _feed_spatial_noise(
|
| 1232 |
+
self, hidden_states: torch.FloatTensor, per_channel_scale: torch.FloatTensor
|
| 1233 |
+
) -> torch.FloatTensor:
|
| 1234 |
+
spatial_shape = hidden_states.shape[-2:]
|
| 1235 |
+
device = hidden_states.device
|
| 1236 |
+
dtype = hidden_states.dtype
|
| 1237 |
+
|
| 1238 |
+
# similar to the "explicit noise inputs" method in style-gan
|
| 1239 |
+
spatial_noise = torch.randn(spatial_shape, device=device, dtype=dtype)[None]
|
| 1240 |
+
scaled_noise = (spatial_noise * per_channel_scale)[None, :, None, ...]
|
| 1241 |
+
hidden_states = hidden_states + scaled_noise
|
| 1242 |
+
|
| 1243 |
+
return hidden_states
|
| 1244 |
+
|
| 1245 |
+
def forward(
|
| 1246 |
+
self,
|
| 1247 |
+
input_tensor: torch.FloatTensor,
|
| 1248 |
+
causal: bool = True,
|
| 1249 |
+
timestep: Optional[torch.Tensor] = None,
|
| 1250 |
+
) -> torch.FloatTensor:
|
| 1251 |
+
hidden_states = input_tensor
|
| 1252 |
+
batch_size = hidden_states.shape[0]
|
| 1253 |
+
|
| 1254 |
+
hidden_states = self.norm1(hidden_states)
|
| 1255 |
+
if self.timestep_conditioning:
|
| 1256 |
+
assert (
|
| 1257 |
+
timestep is not None
|
| 1258 |
+
), "should pass timestep with timestep_conditioning=True"
|
| 1259 |
+
ada_values = self.scale_shift_table[
|
| 1260 |
+
None, ..., None, None, None
|
| 1261 |
+
] + timestep.reshape(
|
| 1262 |
+
batch_size,
|
| 1263 |
+
4,
|
| 1264 |
+
-1,
|
| 1265 |
+
timestep.shape[-3],
|
| 1266 |
+
timestep.shape[-2],
|
| 1267 |
+
timestep.shape[-1],
|
| 1268 |
+
)
|
| 1269 |
+
shift1, scale1, shift2, scale2 = ada_values.unbind(dim=1)
|
| 1270 |
+
|
| 1271 |
+
hidden_states = hidden_states * (1 + scale1) + shift1
|
| 1272 |
+
|
| 1273 |
+
hidden_states = self.non_linearity(hidden_states)
|
| 1274 |
+
|
| 1275 |
+
hidden_states = self.conv1(hidden_states, causal=causal)
|
| 1276 |
+
|
| 1277 |
+
if self.inject_noise:
|
| 1278 |
+
hidden_states = self._feed_spatial_noise(
|
| 1279 |
+
hidden_states, self.per_channel_scale1
|
| 1280 |
+
)
|
| 1281 |
+
|
| 1282 |
+
hidden_states = self.norm2(hidden_states)
|
| 1283 |
+
|
| 1284 |
+
if self.timestep_conditioning:
|
| 1285 |
+
hidden_states = hidden_states * (1 + scale2) + shift2
|
| 1286 |
+
|
| 1287 |
+
hidden_states = self.non_linearity(hidden_states)
|
| 1288 |
+
|
| 1289 |
+
hidden_states = self.dropout(hidden_states)
|
| 1290 |
+
|
| 1291 |
+
hidden_states = self.conv2(hidden_states, causal=causal)
|
| 1292 |
+
|
| 1293 |
+
if self.inject_noise:
|
| 1294 |
+
hidden_states = self._feed_spatial_noise(
|
| 1295 |
+
hidden_states, self.per_channel_scale2
|
| 1296 |
+
)
|
| 1297 |
+
|
| 1298 |
+
input_tensor = self.norm3(input_tensor)
|
| 1299 |
+
|
| 1300 |
+
batch_size = input_tensor.shape[0]
|
| 1301 |
+
|
| 1302 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
| 1303 |
+
|
| 1304 |
+
output_tensor = input_tensor + hidden_states
|
| 1305 |
+
|
| 1306 |
+
return output_tensor
|
| 1307 |
+
|
| 1308 |
+
|
| 1309 |
+
def patchify(x, patch_size_hw, patch_size_t=1):
|
| 1310 |
+
if patch_size_hw == 1 and patch_size_t == 1:
|
| 1311 |
+
return x
|
| 1312 |
+
if x.dim() == 4:
|
| 1313 |
+
x = rearrange(
|
| 1314 |
+
x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw
|
| 1315 |
+
)
|
| 1316 |
+
elif x.dim() == 5:
|
| 1317 |
+
x = rearrange(
|
| 1318 |
+
x,
|
| 1319 |
+
"b c (f p) (h q) (w r) -> b (c p r q) f h w",
|
| 1320 |
+
p=patch_size_t,
|
| 1321 |
+
q=patch_size_hw,
|
| 1322 |
+
r=patch_size_hw,
|
| 1323 |
+
)
|
| 1324 |
+
else:
|
| 1325 |
+
raise ValueError(f"Invalid input shape: {x.shape}")
|
| 1326 |
+
|
| 1327 |
+
return x
|
| 1328 |
+
|
| 1329 |
+
|
| 1330 |
+
def unpatchify(x, patch_size_hw, patch_size_t=1):
|
| 1331 |
+
if patch_size_hw == 1 and patch_size_t == 1:
|
| 1332 |
+
return x
|
| 1333 |
+
|
| 1334 |
+
if x.dim() == 4:
|
| 1335 |
+
x = rearrange(
|
| 1336 |
+
x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw
|
| 1337 |
+
)
|
| 1338 |
+
elif x.dim() == 5:
|
| 1339 |
+
x = rearrange(
|
| 1340 |
+
x,
|
| 1341 |
+
"b (c p r q) f h w -> b c (f p) (h q) (w r)",
|
| 1342 |
+
p=patch_size_t,
|
| 1343 |
+
q=patch_size_hw,
|
| 1344 |
+
r=patch_size_hw,
|
| 1345 |
+
)
|
| 1346 |
+
|
| 1347 |
+
return x
|
| 1348 |
+
|
| 1349 |
+
|
| 1350 |
+
def create_video_autoencoder_demo_config(
|
| 1351 |
+
latent_channels: int = 64,
|
| 1352 |
+
):
|
| 1353 |
+
encoder_blocks = [
|
| 1354 |
+
("res_x", {"num_layers": 2}),
|
| 1355 |
+
("compress_space_res", {"multiplier": 2}),
|
| 1356 |
+
("compress_time_res", {"multiplier": 2}),
|
| 1357 |
+
("compress_all_res", {"multiplier": 2}),
|
| 1358 |
+
("compress_all_res", {"multiplier": 2}),
|
| 1359 |
+
("res_x", {"num_layers": 1}),
|
| 1360 |
+
]
|
| 1361 |
+
decoder_blocks = [
|
| 1362 |
+
("res_x", {"num_layers": 2, "inject_noise": False}),
|
| 1363 |
+
("compress_all", {"residual": True, "multiplier": 2}),
|
| 1364 |
+
("compress_all", {"residual": True, "multiplier": 2}),
|
| 1365 |
+
("compress_all", {"residual": True, "multiplier": 2}),
|
| 1366 |
+
("res_x", {"num_layers": 2, "inject_noise": False}),
|
| 1367 |
+
]
|
| 1368 |
+
return {
|
| 1369 |
+
"_class_name": "CausalVideoAutoencoder",
|
| 1370 |
+
"dims": 3,
|
| 1371 |
+
"encoder_blocks": encoder_blocks,
|
| 1372 |
+
"decoder_blocks": decoder_blocks,
|
| 1373 |
+
"latent_channels": latent_channels,
|
| 1374 |
+
"norm_layer": "pixel_norm",
|
| 1375 |
+
"patch_size": 4,
|
| 1376 |
+
"latent_log_var": "uniform",
|
| 1377 |
+
"use_quant_conv": False,
|
| 1378 |
+
"causal_decoder": False,
|
| 1379 |
+
"timestep_conditioning": True,
|
| 1380 |
+
"spatial_padding_mode": "replicate",
|
| 1381 |
+
}
|
| 1382 |
+
|
| 1383 |
+
|
| 1384 |
+
def test_vae_patchify_unpatchify():
|
| 1385 |
+
import torch
|
| 1386 |
+
|
| 1387 |
+
x = torch.randn(2, 3, 8, 64, 64)
|
| 1388 |
+
x_patched = patchify(x, patch_size_hw=4, patch_size_t=4)
|
| 1389 |
+
x_unpatched = unpatchify(x_patched, patch_size_hw=4, patch_size_t=4)
|
| 1390 |
+
assert torch.allclose(x, x_unpatched)
|
| 1391 |
+
|
| 1392 |
+
|
| 1393 |
+
def demo_video_autoencoder_forward_backward():
|
| 1394 |
+
# Configuration for the VideoAutoencoder
|
| 1395 |
+
config = create_video_autoencoder_demo_config()
|
| 1396 |
+
|
| 1397 |
+
# Instantiate the VideoAutoencoder with the specified configuration
|
| 1398 |
+
video_autoencoder = CausalVideoAutoencoder.from_config(config)
|
| 1399 |
+
|
| 1400 |
+
print(video_autoencoder)
|
| 1401 |
+
video_autoencoder.eval()
|
| 1402 |
+
# Print the total number of parameters in the video autoencoder
|
| 1403 |
+
total_params = sum(p.numel() for p in video_autoencoder.parameters())
|
| 1404 |
+
print(f"Total number of parameters in VideoAutoencoder: {total_params:,}")
|
| 1405 |
+
|
| 1406 |
+
# Create a mock input tensor simulating a batch of videos
|
| 1407 |
+
# Shape: (batch_size, channels, depth, height, width)
|
| 1408 |
+
# E.g., 4 videos, each with 3 color channels, 16 frames, and 64x64 pixels per frame
|
| 1409 |
+
input_videos = torch.randn(2, 3, 17, 64, 64)
|
| 1410 |
+
|
| 1411 |
+
# Forward pass: encode and decode the input videos
|
| 1412 |
+
latent = video_autoencoder.encode(input_videos).latent_dist.mode()
|
| 1413 |
+
print(f"input shape={input_videos.shape}")
|
| 1414 |
+
print(f"latent shape={latent.shape}")
|
| 1415 |
+
|
| 1416 |
+
timestep = torch.ones(input_videos.shape[0]) * 0.1
|
| 1417 |
+
reconstructed_videos = video_autoencoder.decode(
|
| 1418 |
+
latent, target_shape=input_videos.shape, timestep=timestep
|
| 1419 |
+
).sample
|
| 1420 |
+
|
| 1421 |
+
print(f"reconstructed shape={reconstructed_videos.shape}")
|
| 1422 |
+
|
| 1423 |
+
# Validate that single image gets treated the same way as first frame
|
| 1424 |
+
input_image = input_videos[:, :, :1, :, :]
|
| 1425 |
+
image_latent = video_autoencoder.encode(input_image).latent_dist.mode()
|
| 1426 |
+
_ = video_autoencoder.decode(
|
| 1427 |
+
image_latent, target_shape=image_latent.shape, timestep=timestep
|
| 1428 |
+
).sample
|
| 1429 |
+
|
| 1430 |
+
first_frame_latent = latent[:, :, :1, :, :]
|
| 1431 |
+
|
| 1432 |
+
assert torch.allclose(image_latent, first_frame_latent, atol=1e-6)
|
| 1433 |
+
# assert torch.allclose(reconstructed_image, reconstructed_videos[:, :, :1, :, :], atol=1e-6)
|
| 1434 |
+
# assert torch.allclose(image_latent, first_frame_latent, atol=1e-6)
|
| 1435 |
+
# assert (reconstructed_image == reconstructed_videos[:, :, :1, :, :]).all()
|
| 1436 |
+
|
| 1437 |
+
# Calculate the loss (e.g., mean squared error)
|
| 1438 |
+
loss = torch.nn.functional.mse_loss(input_videos, reconstructed_videos)
|
| 1439 |
+
|
| 1440 |
+
# Perform backward pass
|
| 1441 |
+
loss.backward()
|
| 1442 |
+
|
| 1443 |
+
print(f"Demo completed with loss: {loss.item()}")
|
| 1444 |
+
|
| 1445 |
+
|
| 1446 |
+
# Ensure to call the demo function to execute the forward and backward pass
|
| 1447 |
+
if __name__ == "__main__":
|
| 1448 |
+
demo_video_autoencoder_forward_backward()
|