Upload 2 files
Browse files- app (4).py +521 -0
- start (4).sh +47 -0
app (4).py
ADDED
|
@@ -0,0 +1,521 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import spaces
|
| 4 |
+
import numpy as np
|
| 5 |
+
import random
|
| 6 |
+
import os
|
| 7 |
+
import yaml
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
import imageio
|
| 10 |
+
import tempfile
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from huggingface_hub import hf_hub_download
|
| 13 |
+
import shutil
|
| 14 |
+
|
| 15 |
+
from inference import (
|
| 16 |
+
create_ltx_video_pipeline,
|
| 17 |
+
create_latent_upsampler,
|
| 18 |
+
load_image_to_tensor_with_resize_and_crop,
|
| 19 |
+
seed_everething,
|
| 20 |
+
get_device,
|
| 21 |
+
calculate_padding,
|
| 22 |
+
load_media_file
|
| 23 |
+
)
|
| 24 |
+
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, LTXVideoPipeline
|
| 25 |
+
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
| 26 |
+
|
| 27 |
+
config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml"
|
| 28 |
+
with open(config_file_path, "r") as file:
|
| 29 |
+
PIPELINE_CONFIG_YAML = yaml.safe_load(file)
|
| 30 |
+
|
| 31 |
+
LTX_REPO = "Lightricks/LTX-Video"
|
| 32 |
+
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280)
|
| 33 |
+
MAX_NUM_FRAMES = 257
|
| 34 |
+
|
| 35 |
+
FPS = 30.0
|
| 36 |
+
|
| 37 |
+
# --- Global variables for loaded models ---
|
| 38 |
+
pipeline_instance = None
|
| 39 |
+
latent_upsampler_instance = None
|
| 40 |
+
models_dir = "downloaded_models_gradio_cpu_init"
|
| 41 |
+
Path(models_dir).mkdir(parents=True, exist_ok=True)
|
| 42 |
+
|
| 43 |
+
print("Downloading models (if not present)...")
|
| 44 |
+
distilled_model_actual_path = hf_hub_download(
|
| 45 |
+
repo_id=LTX_REPO,
|
| 46 |
+
filename=PIPELINE_CONFIG_YAML["checkpoint_path"],
|
| 47 |
+
local_dir=models_dir,
|
| 48 |
+
local_dir_use_symlinks=False
|
| 49 |
+
)
|
| 50 |
+
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
|
| 51 |
+
print(f"Distilled model path: {distilled_model_actual_path}")
|
| 52 |
+
|
| 53 |
+
SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
|
| 54 |
+
spatial_upscaler_actual_path = hf_hub_download(
|
| 55 |
+
repo_id=LTX_REPO,
|
| 56 |
+
filename=SPATIAL_UPSCALER_FILENAME,
|
| 57 |
+
local_dir=models_dir,
|
| 58 |
+
local_dir_use_symlinks=False
|
| 59 |
+
)
|
| 60 |
+
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
|
| 61 |
+
print(f"Spatial upscaler model path: {spatial_upscaler_actual_path}")
|
| 62 |
+
|
| 63 |
+
print("Creating LTX Video pipeline on CPU...")
|
| 64 |
+
pipeline_instance = create_ltx_video_pipeline(
|
| 65 |
+
ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"],
|
| 66 |
+
precision=PIPELINE_CONFIG_YAML["precision"],
|
| 67 |
+
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
|
| 68 |
+
sampler=PIPELINE_CONFIG_YAML["sampler"],
|
| 69 |
+
device="cpu",
|
| 70 |
+
enhance_prompt=False,
|
| 71 |
+
prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"],
|
| 72 |
+
prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"],
|
| 73 |
+
)
|
| 74 |
+
print("LTX Video pipeline created on CPU.")
|
| 75 |
+
|
| 76 |
+
if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
|
| 77 |
+
print("Creating latent upsampler on CPU...")
|
| 78 |
+
latent_upsampler_instance = create_latent_upsampler(
|
| 79 |
+
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"],
|
| 80 |
+
device="cpu"
|
| 81 |
+
)
|
| 82 |
+
print("Latent upsampler created on CPU.")
|
| 83 |
+
|
| 84 |
+
target_inference_device = "cuda"
|
| 85 |
+
print(f"Target inference device: {target_inference_device}")
|
| 86 |
+
pipeline_instance.to(target_inference_device)
|
| 87 |
+
if latent_upsampler_instance:
|
| 88 |
+
latent_upsampler_instance.to(target_inference_device)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
# --- Helper function for dimension calculation ---
|
| 92 |
+
MIN_DIM_SLIDER = 256 # As defined in the sliders minimum attribute
|
| 93 |
+
TARGET_FIXED_SIDE = 768 # Desired fixed side length as per requirement
|
| 94 |
+
|
| 95 |
+
def calculate_new_dimensions(orig_w, orig_h):
|
| 96 |
+
"""
|
| 97 |
+
Calculates new dimensions for height and width sliders based on original media dimensions.
|
| 98 |
+
Ensures one side is TARGET_FIXED_SIDE, the other is scaled proportionally,
|
| 99 |
+
both are multiples of 32, and within [MIN_DIM_SLIDER, MAX_IMAGE_SIZE].
|
| 100 |
+
"""
|
| 101 |
+
if orig_w == 0 or orig_h == 0:
|
| 102 |
+
# Default to TARGET_FIXED_SIDE square if original dimensions are invalid
|
| 103 |
+
return int(TARGET_FIXED_SIDE), int(TARGET_FIXED_SIDE)
|
| 104 |
+
|
| 105 |
+
if orig_w >= orig_h: # Landscape or square
|
| 106 |
+
new_h = TARGET_FIXED_SIDE
|
| 107 |
+
aspect_ratio = orig_w / orig_h
|
| 108 |
+
new_w_ideal = new_h * aspect_ratio
|
| 109 |
+
|
| 110 |
+
# Round to nearest multiple of 32
|
| 111 |
+
new_w = round(new_w_ideal / 32) * 32
|
| 112 |
+
|
| 113 |
+
# Clamp to [MIN_DIM_SLIDER, MAX_IMAGE_SIZE]
|
| 114 |
+
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))
|
| 115 |
+
# Ensure new_h is also clamped (TARGET_FIXED_SIDE should be within these bounds if configured correctly)
|
| 116 |
+
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE))
|
| 117 |
+
else: # Portrait
|
| 118 |
+
new_w = TARGET_FIXED_SIDE
|
| 119 |
+
aspect_ratio = orig_h / orig_w # Use H/W ratio for portrait scaling
|
| 120 |
+
new_h_ideal = new_w * aspect_ratio
|
| 121 |
+
|
| 122 |
+
# Round to nearest multiple of 32
|
| 123 |
+
new_h = round(new_h_ideal / 32) * 32
|
| 124 |
+
|
| 125 |
+
# Clamp to [MIN_DIM_SLIDER, MAX_IMAGE_SIZE]
|
| 126 |
+
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE))
|
| 127 |
+
# Ensure new_w is also clamped
|
| 128 |
+
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))
|
| 129 |
+
|
| 130 |
+
return int(new_h), int(new_w)
|
| 131 |
+
|
| 132 |
+
def get_duration(prompt, negative_prompt, input_image_filepath, input_video_filepath,
|
| 133 |
+
height_ui, width_ui, mode,
|
| 134 |
+
duration_ui, # Removed ui_steps
|
| 135 |
+
ui_frames_to_use,
|
| 136 |
+
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag,
|
| 137 |
+
progress):
|
| 138 |
+
if duration_ui > 7:
|
| 139 |
+
return 75
|
| 140 |
+
else:
|
| 141 |
+
return 60
|
| 142 |
+
|
| 143 |
+
@spaces.GPU(duration=get_duration)
|
| 144 |
+
def generate(prompt, negative_prompt, input_image_filepath=None, input_video_filepath=None,
|
| 145 |
+
height_ui=512, width_ui=704, mode="text-to-video",
|
| 146 |
+
duration_ui=2.0,
|
| 147 |
+
ui_frames_to_use=9,
|
| 148 |
+
seed_ui=42, randomize_seed=True, ui_guidance_scale=3.0, improve_texture_flag=True,
|
| 149 |
+
progress=gr.Progress(track_tqdm=True)):
|
| 150 |
+
"""
|
| 151 |
+
Generate high-quality videos using LTX Video model with support for text-to-video, image-to-video, and video-to-video modes.
|
| 152 |
+
|
| 153 |
+
Args:
|
| 154 |
+
prompt (str): Text description of the desired video content. Required for all modes.
|
| 155 |
+
negative_prompt (str): Text describing what to avoid in the generated video. Optional, can be empty string.
|
| 156 |
+
input_image_filepath (str or None): Path to input image file. Required for image-to-video mode, None for other modes.
|
| 157 |
+
input_video_filepath (str or None): Path to input video file. Required for video-to-video mode, None for other modes.
|
| 158 |
+
height_ui (int): Height of the output video in pixels, must be divisible by 32. Default: 512.
|
| 159 |
+
width_ui (int): Width of the output video in pixels, must be divisible by 32. Default: 704.
|
| 160 |
+
mode (str): Generation mode. Required. One of "text-to-video", "image-to-video", or "video-to-video". Default: "text-to-video".
|
| 161 |
+
duration_ui (float): Duration of the output video in seconds. Range: 0.3 to 8.5. Default: 2.0.
|
| 162 |
+
ui_frames_to_use (int): Number of frames to use from input video. Only used in video-to-video mode. Must be N*8+1. Default: 9.
|
| 163 |
+
seed_ui (int): Random seed for reproducible generation. Range: 0 to 2^32-1. Default: 42.
|
| 164 |
+
randomize_seed (bool): Whether to use a random seed instead of seed_ui. Default: True.
|
| 165 |
+
ui_guidance_scale (float): CFG scale controlling prompt influence. Range: 1.0 to 10.0. Higher values = stronger prompt influence. Default: 3.0.
|
| 166 |
+
improve_texture_flag (bool): Whether to use multi-scale generation for better texture quality. Slower but higher quality. Default: True.
|
| 167 |
+
progress (gr.Progress): Progress tracker for the generation process. Optional, used for UI updates.
|
| 168 |
+
|
| 169 |
+
Returns:
|
| 170 |
+
tuple: A tuple containing (output_video_path, used_seed) where output_video_path is the path to the generated video file and used_seed is the actual seed used for generation.
|
| 171 |
+
"""
|
| 172 |
+
|
| 173 |
+
# Validate mode-specific required parameters
|
| 174 |
+
if mode == "image-to-video":
|
| 175 |
+
if not input_image_filepath:
|
| 176 |
+
raise gr.Error("input_image_filepath is required for image-to-video mode")
|
| 177 |
+
elif mode == "video-to-video":
|
| 178 |
+
if not input_video_filepath:
|
| 179 |
+
raise gr.Error("input_video_filepath is required for video-to-video mode")
|
| 180 |
+
elif mode == "text-to-video":
|
| 181 |
+
# No additional file inputs required for text-to-video
|
| 182 |
+
pass
|
| 183 |
+
else:
|
| 184 |
+
raise gr.Error(f"Invalid mode: {mode}. Must be one of: text-to-video, image-to-video, video-to-video")
|
| 185 |
+
|
| 186 |
+
if randomize_seed:
|
| 187 |
+
seed_ui = random.randint(0, 2**32 - 1)
|
| 188 |
+
seed_everething(int(seed_ui))
|
| 189 |
+
|
| 190 |
+
target_frames_ideal = duration_ui * FPS
|
| 191 |
+
target_frames_rounded = round(target_frames_ideal)
|
| 192 |
+
if target_frames_rounded < 1:
|
| 193 |
+
target_frames_rounded = 1
|
| 194 |
+
|
| 195 |
+
n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
|
| 196 |
+
actual_num_frames = int(n_val * 8 + 1)
|
| 197 |
+
|
| 198 |
+
actual_num_frames = max(9, actual_num_frames)
|
| 199 |
+
actual_num_frames = min(MAX_NUM_FRAMES, actual_num_frames)
|
| 200 |
+
|
| 201 |
+
actual_height = int(height_ui)
|
| 202 |
+
actual_width = int(width_ui)
|
| 203 |
+
|
| 204 |
+
height_padded = ((actual_height - 1) // 32 + 1) * 32
|
| 205 |
+
width_padded = ((actual_width - 1) // 32 + 1) * 32
|
| 206 |
+
num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1
|
| 207 |
+
if num_frames_padded != actual_num_frames:
|
| 208 |
+
print(f"Warning: actual_num_frames ({actual_num_frames}) and num_frames_padded ({num_frames_padded}) differ. Using num_frames_padded for pipeline.")
|
| 209 |
+
|
| 210 |
+
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)
|
| 211 |
+
|
| 212 |
+
call_kwargs = {
|
| 213 |
+
"prompt": prompt,
|
| 214 |
+
"negative_prompt": negative_prompt,
|
| 215 |
+
"height": height_padded,
|
| 216 |
+
"width": width_padded,
|
| 217 |
+
"num_frames": num_frames_padded,
|
| 218 |
+
"frame_rate": int(FPS),
|
| 219 |
+
"generator": torch.Generator(device=target_inference_device).manual_seed(int(seed_ui)),
|
| 220 |
+
"output_type": "pt",
|
| 221 |
+
"conditioning_items": None,
|
| 222 |
+
"media_items": None,
|
| 223 |
+
"decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"],
|
| 224 |
+
"decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"],
|
| 225 |
+
"stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"],
|
| 226 |
+
"image_cond_noise_scale": 0.15,
|
| 227 |
+
"is_video": True,
|
| 228 |
+
"vae_per_channel_normalize": True,
|
| 229 |
+
"mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"),
|
| 230 |
+
"offload_to_cpu": False,
|
| 231 |
+
"enhance_prompt": False,
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values")
|
| 235 |
+
if stg_mode_str.lower() in ["stg_av", "attention_values"]:
|
| 236 |
+
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionValues
|
| 237 |
+
elif stg_mode_str.lower() in ["stg_as", "attention_skip"]:
|
| 238 |
+
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionSkip
|
| 239 |
+
elif stg_mode_str.lower() in ["stg_r", "residual"]:
|
| 240 |
+
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.Residual
|
| 241 |
+
elif stg_mode_str.lower() in ["stg_t", "transformer_block"]:
|
| 242 |
+
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.TransformerBlock
|
| 243 |
+
else:
|
| 244 |
+
raise ValueError(f"Invalid stg_mode: {stg_mode_str}")
|
| 245 |
+
|
| 246 |
+
if mode == "image-to-video" and input_image_filepath:
|
| 247 |
+
try:
|
| 248 |
+
media_tensor = load_image_to_tensor_with_resize_and_crop(
|
| 249 |
+
input_image_filepath, actual_height, actual_width
|
| 250 |
+
)
|
| 251 |
+
media_tensor = torch.nn.functional.pad(media_tensor, padding_values)
|
| 252 |
+
call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(target_inference_device), 0, 1.0)]
|
| 253 |
+
except Exception as e:
|
| 254 |
+
print(f"Error loading image {input_image_filepath}: {e}")
|
| 255 |
+
raise gr.Error(f"Could not load image: {e}")
|
| 256 |
+
elif mode == "video-to-video" and input_video_filepath:
|
| 257 |
+
try:
|
| 258 |
+
call_kwargs["media_items"] = load_media_file(
|
| 259 |
+
media_path=input_video_filepath,
|
| 260 |
+
height=actual_height,
|
| 261 |
+
width=actual_width,
|
| 262 |
+
max_frames=int(ui_frames_to_use),
|
| 263 |
+
padding=padding_values
|
| 264 |
+
).to(target_inference_device)
|
| 265 |
+
except Exception as e:
|
| 266 |
+
print(f"Error loading video {input_video_filepath}: {e}")
|
| 267 |
+
raise gr.Error(f"Could not load video: {e}")
|
| 268 |
+
|
| 269 |
+
print(f"Moving models to {target_inference_device} for inference (if not already there)...")
|
| 270 |
+
|
| 271 |
+
active_latent_upsampler = None
|
| 272 |
+
if improve_texture_flag and latent_upsampler_instance:
|
| 273 |
+
active_latent_upsampler = latent_upsampler_instance
|
| 274 |
+
|
| 275 |
+
result_images_tensor = None
|
| 276 |
+
if improve_texture_flag:
|
| 277 |
+
if not active_latent_upsampler:
|
| 278 |
+
raise gr.Error("Spatial upscaler model not loaded or improve_texture not selected, cannot use multi-scale.")
|
| 279 |
+
|
| 280 |
+
multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler)
|
| 281 |
+
|
| 282 |
+
first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
|
| 283 |
+
first_pass_args["guidance_scale"] = float(ui_guidance_scale) # UI overrides YAML
|
| 284 |
+
# num_inference_steps will be derived from len(timesteps) in the pipeline
|
| 285 |
+
first_pass_args.pop("num_inference_steps", None)
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy()
|
| 289 |
+
second_pass_args["guidance_scale"] = float(ui_guidance_scale) # UI overrides YAML
|
| 290 |
+
# num_inference_steps will be derived from len(timesteps) in the pipeline
|
| 291 |
+
second_pass_args.pop("num_inference_steps", None)
|
| 292 |
+
|
| 293 |
+
multi_scale_call_kwargs = call_kwargs.copy()
|
| 294 |
+
multi_scale_call_kwargs.update({
|
| 295 |
+
"downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
|
| 296 |
+
"first_pass": first_pass_args,
|
| 297 |
+
"second_pass": second_pass_args,
|
| 298 |
+
})
|
| 299 |
+
|
| 300 |
+
print(f"Calling multi-scale pipeline (eff. HxW: {actual_height}x{actual_width}, Frames: {actual_num_frames} -> Padded: {num_frames_padded}) on {target_inference_device}")
|
| 301 |
+
result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images
|
| 302 |
+
else:
|
| 303 |
+
single_pass_call_kwargs = call_kwargs.copy()
|
| 304 |
+
first_pass_config_from_yaml = PIPELINE_CONFIG_YAML.get("first_pass", {})
|
| 305 |
+
|
| 306 |
+
single_pass_call_kwargs["timesteps"] = first_pass_config_from_yaml.get("timesteps")
|
| 307 |
+
single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale) # UI overrides YAML
|
| 308 |
+
single_pass_call_kwargs["stg_scale"] = first_pass_config_from_yaml.get("stg_scale")
|
| 309 |
+
single_pass_call_kwargs["rescaling_scale"] = first_pass_config_from_yaml.get("rescaling_scale")
|
| 310 |
+
single_pass_call_kwargs["skip_block_list"] = first_pass_config_from_yaml.get("skip_block_list")
|
| 311 |
+
|
| 312 |
+
# Remove keys that might conflict or are not used in single pass / handled by above
|
| 313 |
+
single_pass_call_kwargs.pop("num_inference_steps", None)
|
| 314 |
+
single_pass_call_kwargs.pop("first_pass", None)
|
| 315 |
+
single_pass_call_kwargs.pop("second_pass", None)
|
| 316 |
+
single_pass_call_kwargs.pop("downscale_factor", None)
|
| 317 |
+
|
| 318 |
+
print(f"Calling base pipeline (padded HxW: {height_padded}x{width_padded}, Frames: {actual_num_frames} -> Padded: {num_frames_padded}) on {target_inference_device}")
|
| 319 |
+
result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images
|
| 320 |
+
|
| 321 |
+
if result_images_tensor is None:
|
| 322 |
+
raise gr.Error("Generation failed.")
|
| 323 |
+
|
| 324 |
+
pad_left, pad_right, pad_top, pad_bottom = padding_values
|
| 325 |
+
slice_h_end = -pad_bottom if pad_bottom > 0 else None
|
| 326 |
+
slice_w_end = -pad_right if pad_right > 0 else None
|
| 327 |
+
|
| 328 |
+
result_images_tensor = result_images_tensor[
|
| 329 |
+
:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end
|
| 330 |
+
]
|
| 331 |
+
|
| 332 |
+
video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
|
| 333 |
+
|
| 334 |
+
video_np = np.clip(video_np, 0, 1)
|
| 335 |
+
video_np = (video_np * 255).astype(np.uint8)
|
| 336 |
+
|
| 337 |
+
temp_dir = tempfile.mkdtemp()
|
| 338 |
+
timestamp = random.randint(10000,99999)
|
| 339 |
+
output_video_path = os.path.join(temp_dir, f"output_{timestamp}.mp4")
|
| 340 |
+
|
| 341 |
+
try:
|
| 342 |
+
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer:
|
| 343 |
+
for frame_idx in range(video_np.shape[0]):
|
| 344 |
+
progress(frame_idx / video_np.shape[0], desc="Saving video")
|
| 345 |
+
video_writer.append_data(video_np[frame_idx])
|
| 346 |
+
except Exception as e:
|
| 347 |
+
print(f"Error saving video with macro_block_size=1: {e}")
|
| 348 |
+
try:
|
| 349 |
+
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8) as video_writer:
|
| 350 |
+
for frame_idx in range(video_np.shape[0]):
|
| 351 |
+
progress(frame_idx / video_np.shape[0], desc="Saving video (fallback ffmpeg)")
|
| 352 |
+
video_writer.append_data(video_np[frame_idx])
|
| 353 |
+
except Exception as e2:
|
| 354 |
+
print(f"Fallback video saving error: {e2}")
|
| 355 |
+
raise gr.Error(f"Failed to save video: {e2}")
|
| 356 |
+
|
| 357 |
+
return output_video_path, seed_ui
|
| 358 |
+
|
| 359 |
+
def update_task_image():
|
| 360 |
+
return "image-to-video"
|
| 361 |
+
|
| 362 |
+
def update_task_text():
|
| 363 |
+
return "text-to-video"
|
| 364 |
+
|
| 365 |
+
def update_task_video():
|
| 366 |
+
return "video-to-video"
|
| 367 |
+
|
| 368 |
+
# --- Gradio UI Definition ---
|
| 369 |
+
css="""
|
| 370 |
+
#col-container {
|
| 371 |
+
margin: 0 auto;
|
| 372 |
+
max-width: 900px;
|
| 373 |
+
}
|
| 374 |
+
"""
|
| 375 |
+
|
| 376 |
+
with gr.Blocks(css=css) as demo:
|
| 377 |
+
gr.Markdown("# LTX Video 0.9.8 13B Distilled")
|
| 378 |
+
gr.Markdown("Fast high quality video generation.**Update (17/07):** now with the new v0.9.8 for improved prompt understanding and detail generation" )
|
| 379 |
+
gr.Markdown("[Model](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-13b-0.9.8-distilled.safetensors) [GitHub](https://github.com/Lightricks/LTX-Video) [Diffusers](https://huggingface.co/Lightricks/LTX-Video-0.9.8-13B-distilled#diffusers-🧨)")
|
| 380 |
+
with gr.Row():
|
| 381 |
+
with gr.Column():
|
| 382 |
+
with gr.Tab("image-to-video") as image_tab:
|
| 383 |
+
video_i_hidden = gr.Textbox(label="video_i", visible=False, value=None)
|
| 384 |
+
image_i2v = gr.Image(label="Input Image", type="filepath", sources=["upload", "webcam", "clipboard"])
|
| 385 |
+
i2v_prompt = gr.Textbox(label="Prompt", value="The creature from the image starts to move", lines=3)
|
| 386 |
+
i2v_button = gr.Button("Generate Image-to-Video", variant="primary")
|
| 387 |
+
with gr.Tab("text-to-video") as text_tab:
|
| 388 |
+
image_n_hidden = gr.Textbox(label="image_n", visible=False, value=None)
|
| 389 |
+
video_n_hidden = gr.Textbox(label="video_n", visible=False, value=None)
|
| 390 |
+
t2v_prompt = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3)
|
| 391 |
+
t2v_button = gr.Button("Generate Text-to-Video", variant="primary")
|
| 392 |
+
with gr.Tab("video-to-video", visible=False) as video_tab:
|
| 393 |
+
image_v_hidden = gr.Textbox(label="image_v", visible=False, value=None)
|
| 394 |
+
video_v2v = gr.Video(label="Input Video", sources=["upload", "webcam"]) # type defaults to filepath
|
| 395 |
+
frames_to_use = gr.Slider(label="Frames to use from input video", minimum=9, maximum=MAX_NUM_FRAMES, value=9, step=8, info="Number of initial frames to use for conditioning/transformation. Must be N*8+1.")
|
| 396 |
+
v2v_prompt = gr.Textbox(label="Prompt", value="Change the style to cinematic anime", lines=3)
|
| 397 |
+
v2v_button = gr.Button("Generate Video-to-Video", variant="primary")
|
| 398 |
+
|
| 399 |
+
duration_input = gr.Slider(
|
| 400 |
+
label="Video Duration (seconds)",
|
| 401 |
+
minimum=0.3,
|
| 402 |
+
maximum=8.5,
|
| 403 |
+
value=2,
|
| 404 |
+
step=0.1,
|
| 405 |
+
info=f"Target video duration (0.3s to 8.5s)"
|
| 406 |
+
)
|
| 407 |
+
improve_texture = gr.Checkbox(label="Improve Texture (multi-scale)", value=True,visible=False, info="Uses a two-pass generation for better quality, but is slower. Recommended for final output.")
|
| 408 |
+
|
| 409 |
+
with gr.Column():
|
| 410 |
+
output_video = gr.Video(label="Generated Video", interactive=False)
|
| 411 |
+
# gr.DeepLinkButton()
|
| 412 |
+
|
| 413 |
+
with gr.Accordion("Advanced settings", open=False):
|
| 414 |
+
mode = gr.Dropdown(["text-to-video", "image-to-video", "video-to-video"], label="task", value="image-to-video", visible=False)
|
| 415 |
+
negative_prompt_input = gr.Textbox(label="Negative Prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted", lines=2)
|
| 416 |
+
with gr.Row():
|
| 417 |
+
seed_input = gr.Number(label="Seed", value=42, precision=0, minimum=0, maximum=2**32-1)
|
| 418 |
+
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
|
| 419 |
+
with gr.Row(visible=False):
|
| 420 |
+
guidance_scale_input = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0), step=0.1, info="Controls how much the prompt influences the output. Higher values = stronger influence.")
|
| 421 |
+
with gr.Row():
|
| 422 |
+
height_input = gr.Slider(label="Height", value=512, step=32, minimum=MIN_DIM_SLIDER, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
|
| 423 |
+
width_input = gr.Slider(label="Width", value=704, step=32, minimum=MIN_DIM_SLIDER, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
# --- Event handlers for updating dimensions on upload ---
|
| 427 |
+
def handle_image_upload_for_dims(image_filepath, current_h, current_w):
|
| 428 |
+
if not image_filepath: # Image cleared or no image initially
|
| 429 |
+
# Keep current slider values if image is cleared or no input
|
| 430 |
+
return gr.update(value=current_h), gr.update(value=current_w)
|
| 431 |
+
try:
|
| 432 |
+
img = Image.open(image_filepath)
|
| 433 |
+
orig_w, orig_h = img.size
|
| 434 |
+
new_h, new_w = calculate_new_dimensions(orig_w, orig_h)
|
| 435 |
+
return gr.update(value=new_h), gr.update(value=new_w)
|
| 436 |
+
except Exception as e:
|
| 437 |
+
print(f"Error processing image for dimension update: {e}")
|
| 438 |
+
# Keep current slider values on error
|
| 439 |
+
return gr.update(value=current_h), gr.update(value=current_w)
|
| 440 |
+
|
| 441 |
+
def handle_video_upload_for_dims(video_filepath, current_h, current_w):
|
| 442 |
+
if not video_filepath: # Video cleared or no video initially
|
| 443 |
+
return gr.update(value=current_h), gr.update(value=current_w)
|
| 444 |
+
try:
|
| 445 |
+
# Ensure video_filepath is a string for os.path.exists and imageio
|
| 446 |
+
video_filepath_str = str(video_filepath)
|
| 447 |
+
if not os.path.exists(video_filepath_str):
|
| 448 |
+
print(f"Video file path does not exist for dimension update: {video_filepath_str}")
|
| 449 |
+
return gr.update(value=current_h), gr.update(value=current_w)
|
| 450 |
+
|
| 451 |
+
orig_w, orig_h = -1, -1
|
| 452 |
+
with imageio.get_reader(video_filepath_str) as reader:
|
| 453 |
+
meta = reader.get_meta_data()
|
| 454 |
+
if 'size' in meta:
|
| 455 |
+
orig_w, orig_h = meta['size']
|
| 456 |
+
else:
|
| 457 |
+
# Fallback: read first frame if 'size' not in metadata
|
| 458 |
+
try:
|
| 459 |
+
first_frame = reader.get_data(0)
|
| 460 |
+
# Shape is (h, w, c) for frames
|
| 461 |
+
orig_h, orig_w = first_frame.shape[0], first_frame.shape[1]
|
| 462 |
+
except Exception as e_frame:
|
| 463 |
+
print(f"Could not get video size from metadata or first frame: {e_frame}")
|
| 464 |
+
return gr.update(value=current_h), gr.update(value=current_w)
|
| 465 |
+
|
| 466 |
+
if orig_w == -1 or orig_h == -1: # If dimensions couldn't be determined
|
| 467 |
+
print(f"Could not determine dimensions for video: {video_filepath_str}")
|
| 468 |
+
return gr.update(value=current_h), gr.update(value=current_w)
|
| 469 |
+
|
| 470 |
+
new_h, new_w = calculate_new_dimensions(orig_w, orig_h)
|
| 471 |
+
return gr.update(value=new_h), gr.update(value=new_w)
|
| 472 |
+
except Exception as e:
|
| 473 |
+
# Log type of video_filepath for debugging if it's not a path-like string
|
| 474 |
+
print(f"Error processing video for dimension update: {e} (Path: {video_filepath}, Type: {type(video_filepath)})")
|
| 475 |
+
return gr.update(value=current_h), gr.update(value=current_w)
|
| 476 |
+
|
| 477 |
+
|
| 478 |
+
image_i2v.upload(
|
| 479 |
+
fn=handle_image_upload_for_dims,
|
| 480 |
+
inputs=[image_i2v, height_input, width_input],
|
| 481 |
+
outputs=[height_input, width_input]
|
| 482 |
+
)
|
| 483 |
+
video_v2v.upload(
|
| 484 |
+
fn=handle_video_upload_for_dims,
|
| 485 |
+
inputs=[video_v2v, height_input, width_input],
|
| 486 |
+
outputs=[height_input, width_input]
|
| 487 |
+
)
|
| 488 |
+
|
| 489 |
+
image_tab.select(
|
| 490 |
+
fn=update_task_image,
|
| 491 |
+
outputs=[mode]
|
| 492 |
+
)
|
| 493 |
+
text_tab.select(
|
| 494 |
+
fn=update_task_text,
|
| 495 |
+
outputs=[mode]
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
t2v_inputs = [t2v_prompt, negative_prompt_input, image_n_hidden, video_n_hidden,
|
| 499 |
+
height_input, width_input, mode,
|
| 500 |
+
duration_input, frames_to_use,
|
| 501 |
+
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
|
| 502 |
+
|
| 503 |
+
i2v_inputs = [i2v_prompt, negative_prompt_input, image_i2v, video_i_hidden,
|
| 504 |
+
height_input, width_input, mode,
|
| 505 |
+
duration_input, frames_to_use,
|
| 506 |
+
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
|
| 507 |
+
|
| 508 |
+
v2v_inputs = [v2v_prompt, negative_prompt_input, image_v_hidden, video_v2v,
|
| 509 |
+
height_input, width_input, mode,
|
| 510 |
+
duration_input, frames_to_use,
|
| 511 |
+
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
|
| 512 |
+
|
| 513 |
+
t2v_button.click(fn=generate, inputs=t2v_inputs, outputs=[output_video, seed_input], api_name="text_to_video")
|
| 514 |
+
i2v_button.click(fn=generate, inputs=i2v_inputs, outputs=[output_video, seed_input], api_name="image_to_video")
|
| 515 |
+
v2v_button.click(fn=generate, inputs=v2v_inputs, outputs=[output_video, seed_input], api_name="video_to_video")
|
| 516 |
+
|
| 517 |
+
if __name__ == "__main__":
|
| 518 |
+
if os.path.exists(models_dir) and os.path.isdir(models_dir):
|
| 519 |
+
print(f"Model directory: {Path(models_dir).resolve()}")
|
| 520 |
+
|
| 521 |
+
demo.queue().launch(debug=True, share=False, mcp_server=True)
|
start (4).sh
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env bash
|
| 2 |
+
set -euo pipefail
|
| 3 |
+
|
| 4 |
+
tree -L 4 /app
|
| 5 |
+
tree -L 4 /data
|
| 6 |
+
|
| 7 |
+
echo "🚀 Iniciando o script de setup e lançamento do LTX-Video..."
|
| 8 |
+
echo "Usuário atual: $(whoami)"
|
| 9 |
+
|
| 10 |
+
# Define as variáveis de ambiente que o LTXServer irá consumir
|
| 11 |
+
export HF_HOME="${HF_HOME:-/data/.cache/huggingface}"
|
| 12 |
+
export OUTPUT_ROOT="${OUTPUT_ROOT:-/app/outputs/ltx}"
|
| 13 |
+
export LTXV_FRAME_LOG_EVERY=8
|
| 14 |
+
export LTXV_DEBUG=1
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
# --- Garante que Diretórios Existam ---
|
| 18 |
+
mkdir -p "$OUTPUT_ROOT" "$HF_HOME"
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# 1) Builder (garante Apex/Flash e deps CUDA)
|
| 22 |
+
#echo "🛠️ Iniciando o builder.sh para compilar/instalar dependências CUDA..."
|
| 23 |
+
#if [ -f "/app/builder.sh" ]; then
|
| 24 |
+
# /bin/bash /app/builder.sh
|
| 25 |
+
# echo "✅ Builder finalizado."
|
| 26 |
+
#else
|
| 27 |
+
# echo "⚠️ Aviso: builder.sh não encontrado. Pulando etapa de compilação de dependências."
|
| 28 |
+
#fi
|
| 29 |
+
|
| 30 |
+
python setup.py
|
| 31 |
+
|
| 32 |
+
cp -rfv /app/LTX-Video/ /data/
|
| 33 |
+
|
| 34 |
+
export OUTPUT_ROOT="${OUTPUT_ROOT:-/app/outputs}"
|
| 35 |
+
export INPUT_ROOT="${INPUT_ROOT:-/app/inputs}"
|
| 36 |
+
|
| 37 |
+
mkdir -p "$OUTPUT_ROOT" "$INPUT_ROOT"
|
| 38 |
+
echo "[aduc][start] Verificando ambiente como usuário: $(whoami)"
|
| 39 |
+
|
| 40 |
+
# Env da UI
|
| 41 |
+
export GRADIO_SERVER_NAME="0.0.0.0"
|
| 42 |
+
export GRADIO_SERVER_PORT="${PORT:-7860}"
|
| 43 |
+
export GRADIO_ENABLE_QUEUE="True"
|
| 44 |
+
|
| 45 |
+
echo "[ltx][start] Lançando app_ltx.py..."
|
| 46 |
+
# Executa diretamente o python.
|
| 47 |
+
exec python app_ltx.py
|