|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gradio as gr |
|
|
import traceback |
|
|
import sys |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
|
|
|
|
|
|
from api.ltx_server_refactored_complete import video_generation_service |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
seedvr_inference_server = None |
|
|
print("Backend services imported successfully.") |
|
|
except ImportError as e: |
|
|
print(f"FATAL ERROR: Could not import backend services. Ensure the backend file is accessible. Details: {e}") |
|
|
sys.exit(1) |
|
|
except Exception as e: |
|
|
print(f"FATAL ERROR: An unexpected error occurred during backend initialization. Details: {e}") |
|
|
sys.exit(1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run_generate_base_video( |
|
|
generation_mode: str, prompt: str, neg_prompt: str, start_img: str, |
|
|
height: int, width: int, duration: float, seed: int, randomize_seed: bool, |
|
|
fp_guidance_preset: str, fp_guidance_scale_list: str, fp_stg_scale_list: str, |
|
|
progress=gr.Progress(track_tqdm=True) |
|
|
) -> tuple: |
|
|
""" |
|
|
Wrapper to call the backend for generating the initial low-resolution video. |
|
|
It decides whether to use the 'narrative' or 'single' generation mode. |
|
|
""" |
|
|
try: |
|
|
print(f"[UI] Request received for base video generation. Mode: {generation_mode}") |
|
|
|
|
|
initial_conditions = [] |
|
|
if start_img: |
|
|
|
|
|
num_frames_estimate = int(duration * 24) |
|
|
items_list = [[start_img, 0, 1.0]] |
|
|
initial_conditions = video_generation_service.prepare_condition_items( |
|
|
items_list, height, width, num_frames_estimate |
|
|
) |
|
|
|
|
|
|
|
|
ltx_configs = { |
|
|
"guidance_preset": fp_guidance_preset, |
|
|
"guidance_scale_list": fp_guidance_scale_list, |
|
|
"stg_scale_list": fp_stg_scale_list, |
|
|
} |
|
|
|
|
|
|
|
|
if generation_mode == "Narrativa (Múltiplos Prompts)": |
|
|
func_to_call = video_generation_service.generate_narrative_low |
|
|
else: |
|
|
func_to_call = video_generation_service.generate_single_low |
|
|
|
|
|
video_path, tensor_path, final_seed = func_to_call( |
|
|
prompt=prompt, negative_prompt=neg_prompt, |
|
|
height=height, width=width, duration=duration, |
|
|
seed=None if randomize_seed else int(seed), |
|
|
initial_conditions=initial_conditions, |
|
|
ltx_configs_override=ltx_configs |
|
|
) |
|
|
|
|
|
if not video_path: |
|
|
raise RuntimeError("Backend failed to return a valid video path.") |
|
|
|
|
|
|
|
|
new_state = {"low_res_video": video_path, "low_res_latents": tensor_path, "used_seed": final_seed} |
|
|
|
|
|
print(f"[UI] Base video generation successful. Path: {video_path}") |
|
|
return video_path, new_state, gr.update(visible=True) |
|
|
|
|
|
except Exception as e: |
|
|
error_message = f"❌ An error occurred during base generation:\n{e}" |
|
|
print(f"{error_message}\nDetails: {traceback.format_exc()}") |
|
|
raise gr.Error(error_message) |
|
|
|
|
|
|
|
|
def run_ltx_refinement( |
|
|
state: dict, prompt: str, neg_prompt: str, |
|
|
progress=gr.Progress(track_tqdm=True) |
|
|
) -> tuple: |
|
|
"""Wrapper to call the LTX texture refinement and upscaling backend function.""" |
|
|
if not state or not state.get("low_res_latents"): |
|
|
raise gr.Error("Error: Please generate a base video in Step 1 before refining.") |
|
|
|
|
|
try: |
|
|
print("[UI] Request received for LTX refinement.") |
|
|
video_path, tensor_path = video_generation_service.generate_upscale_denoise( |
|
|
latents_path=state["low_res_latents"], |
|
|
prompt=prompt, |
|
|
negative_prompt=neg_prompt, |
|
|
seed=state["used_seed"] |
|
|
) |
|
|
|
|
|
state["refined_video_ltx"] = video_path |
|
|
state["refined_latents_ltx"] = tensor_path |
|
|
print(f"[UI] LTX refinement successful. Path: {video_path}") |
|
|
return video_path, state |
|
|
except Exception as e: |
|
|
error_message = f"❌ An error occurred during LTX Refinement:\n{e}" |
|
|
print(f"{error_message}\nDetails: {traceback.format_exc()}") |
|
|
raise gr.Error(error_message) |
|
|
|
|
|
|
|
|
def run_seedvr_upscaling( |
|
|
state: dict, seed: int, resolution: int, batch_size: int, fps: int, |
|
|
progress=gr.Progress(track_tqdm=True) |
|
|
) -> tuple: |
|
|
"""Wrapper to call the SeedVR upscaling backend service.""" |
|
|
if not state or not state.get("low_res_video"): |
|
|
raise gr.Error("Error: Please generate a base video in Step 1 before upscaling.") |
|
|
if not seedvr_inference_server: |
|
|
raise gr.Error("Error: The SeedVR upscaling server is not available.") |
|
|
|
|
|
try: |
|
|
print("[UI] Request received for SeedVR upscaling.") |
|
|
def progress_wrapper(p, desc=""): progress(p, desc=desc) |
|
|
|
|
|
output_filepath = seedvr_inference_server.run_inference( |
|
|
file_path=state["low_res_video"], seed=seed, resolution=resolution, |
|
|
batch_size=batch_size, fps=fps, progress=progress_wrapper |
|
|
) |
|
|
|
|
|
status_message = f"✅ Upscaling complete!\nSaved to: {output_filepath}" |
|
|
print(f"[UI] SeedVR upscaling successful. Path: {output_filepath}") |
|
|
return gr.update(value=output_filepath), gr.update(value=status_message) |
|
|
except Exception as e: |
|
|
error_message = f"❌ An error occurred during SeedVR Upscaling:\n{e}" |
|
|
print(f"{error_message}\nDetails: {traceback.format_exc()}") |
|
|
return None, gr.update(value=error_message) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def build_ui(): |
|
|
"""Constructs the entire Gradio application UI.""" |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo: |
|
|
|
|
|
app_state = gr.State(value={"low_res_video": None, "low_res_latents": None, "used_seed": None}) |
|
|
|
|
|
gr.Markdown("# LTX Video - Geração e Pós-Produção por Etapas", elem_id="main-title") |
|
|
|
|
|
ui_components = {} |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
|
|
|
_build_generation_controls(ui_components) |
|
|
|
|
|
with gr.Column(scale=1): |
|
|
gr.Markdown("### Vídeo Base Gerado") |
|
|
ui_components['low_res_video_output'] = gr.Video( |
|
|
label="O resultado da Etapa 1 aparecerá aqui", interactive=False |
|
|
) |
|
|
|
|
|
|
|
|
_build_postprod_controls(ui_components) |
|
|
|
|
|
|
|
|
_register_event_handlers(app_state, ui_components) |
|
|
|
|
|
return demo |
|
|
|
|
|
def _build_generation_controls(ui: dict): |
|
|
"""Builds the UI components for Step 1: Base Video Generation.""" |
|
|
gr.Markdown("### Etapa 1: Configurações de Geração") |
|
|
|
|
|
ui['generation_mode'] = gr.Radio( |
|
|
label="Modo de Geração", |
|
|
choices=["Simples (Prompt Único)", "Narrativa (Múltiplos Prompts)"], |
|
|
value="Narrativa (Múltiplos Prompts)", |
|
|
info="Simples para uma ação contínua, Narrativa para uma sequência de cenas (uma por linha)." |
|
|
) |
|
|
ui['prompt'] = gr.Textbox(label="Prompt(s)", value="Um leão majestoso caminha pela savana\nEle sobe em uma grande pedra e olha o horizonte", lines=4) |
|
|
ui['neg_prompt'] = gr.Textbox(label="Negative Prompt", value="blurry, low quality, bad anatomy, deformed", lines=2) |
|
|
ui['start_image'] = gr.Image(label="Imagem de Início (Opcional)", type="filepath", sources=["upload"]) |
|
|
|
|
|
with gr.Accordion("Parâmetros Principais", open=True): |
|
|
ui['duration'] = gr.Slider(label="Duração Total (s)", value=4, step=1, minimum=1, maximum=30) |
|
|
with gr.Row(): |
|
|
ui['height'] = gr.Slider(label="Height", value=432, step=16, minimum=256, maximum=1024) |
|
|
ui['width'] = gr.Slider(label="Width", value=768, step=16, minimum=256, maximum=1024) |
|
|
with gr.Row(): |
|
|
ui['seed'] = gr.Number(label="Seed", value=42, precision=0) |
|
|
ui['randomize_seed'] = gr.Checkbox(label="Randomize Seed", value=True) |
|
|
|
|
|
with gr.Accordion("Opções Avançadas de Guiagem (First Pass)", open=False): |
|
|
ui['fp_guidance_preset'] = gr.Dropdown( |
|
|
label="Preset de Guiagem", |
|
|
choices=["Padrão (Recomendado)", "Agressivo", "Suave", "Customizado"], |
|
|
value="Padrão (Recomendado)", |
|
|
info="Controla como a guiagem de texto se comporta ao longo da difusão." |
|
|
) |
|
|
with gr.Group(visible=False) as ui['custom_guidance_group']: |
|
|
gr.Markdown("⚠️ Edite as listas em formato JSON. Ex: `[1.0, 2.5, 3.0]`") |
|
|
ui['fp_guidance_scale_list'] = gr.Textbox(label="Lista de Guidance Scale", value="[1, 1, 6, 8, 6, 1, 1]") |
|
|
ui['fp_stg_scale_list'] = gr.Textbox(label="Lista de STG Scale (Movimento)", value="[0, 0, 4, 4, 4, 2, 1]") |
|
|
|
|
|
ui['generate_low_btn'] = gr.Button("1. Gerar Vídeo Base", variant="primary") |
|
|
|
|
|
def _build_postprod_controls(ui: dict): |
|
|
"""Builds the UI components for Step 2: Post-Production.""" |
|
|
with gr.Group(visible=False) as ui['post_prod_group']: |
|
|
gr.Markdown("--- \n## Etapa 2: Pós-Produção", elem_id="postprod-title") |
|
|
|
|
|
with gr.Tabs(): |
|
|
with gr.TabItem("🚀 Upscaler de Textura (LTX)"): |
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
gr.Markdown("Usa o prompt e a semente originais para refinar o vídeo, adicionando detalhes e texturas de alta qualidade.") |
|
|
ui['ltx_refine_btn'] = gr.Button("2. Aplicar Refinamento LTX", variant="primary") |
|
|
with gr.Column(scale=1): |
|
|
ui['ltx_refined_video_output'] = gr.Video(label="Vídeo com Textura Refinada", interactive=False) |
|
|
|
|
|
with gr.TabItem("✨ Upscaler de Resolução (SeedVR)"): |
|
|
is_seedvr_available = seedvr_inference_server is not None |
|
|
if not is_seedvr_available: |
|
|
gr.Markdown("🔴 *O serviço SeedVR não está disponível nesta instância.*") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
ui['seedvr_seed'] = gr.Slider(minimum=0, maximum=999999, value=42, step=1, label="Seed") |
|
|
ui['seedvr_resolution'] = gr.Slider(minimum=720, maximum=1440, value=1072, step=8, label="Resolução Vertical") |
|
|
ui['seedvr_batch_size'] = gr.Slider(minimum=1, maximum=16, value=4, step=1, label="Batch Size por GPU") |
|
|
ui['seedvr_fps'] = gr.Number(label="FPS de Saída (0 = original)", value=0) |
|
|
ui['run_seedvr_btn'] = gr.Button("2. Iniciar Upscaling SeedVR", variant="primary", interactive=is_seedvr_available) |
|
|
with gr.Column(scale=1): |
|
|
ui['seedvr_video_output'] = gr.Video(label="Vídeo com Upscale SeedVR", interactive=False) |
|
|
ui['seedvr_status_box'] = gr.Textbox(label="Status", value="Aguardando...", lines=3, interactive=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _register_event_handlers(app_state: gr.State, ui: dict): |
|
|
"""Registers all Gradio event handlers.""" |
|
|
|
|
|
|
|
|
def toggle_custom_guidance(preset_choice: str) -> gr.update: |
|
|
return gr.update(visible=(preset_choice == "Customizado")) |
|
|
|
|
|
ui['fp_guidance_preset'].change( |
|
|
fn=toggle_custom_guidance, |
|
|
inputs=ui['fp_guidance_preset'], |
|
|
outputs=ui['custom_guidance_group'] |
|
|
) |
|
|
|
|
|
|
|
|
gen_inputs = [ |
|
|
ui['generation_mode'], ui['prompt'], ui['neg_prompt'], ui['start_image'], |
|
|
ui['height'], ui['width'], ui['duration'], ui['seed'], ui['randomize_seed'], |
|
|
ui['fp_guidance_preset'], ui['fp_guidance_scale_list'], ui['fp_stg_scale_list'] |
|
|
] |
|
|
gen_outputs = [ |
|
|
ui['low_res_video_output'], app_state, ui['post_prod_group'] |
|
|
] |
|
|
ui['generate_low_btn'].click(fn=run_generate_base_video, inputs=gen_inputs, outputs=gen_outputs) |
|
|
|
|
|
|
|
|
refine_inputs = [app_state, ui['prompt'], ui['neg_prompt']] |
|
|
refine_outputs = [ui['ltx_refined_video_output'], app_state] |
|
|
ui['ltx_refine_btn'].click(fn=run_ltx_refinement, inputs=refine_inputs, outputs=refine_outputs) |
|
|
|
|
|
|
|
|
if 'run_seedvr_btn' in ui: |
|
|
seedvr_inputs = [app_state, ui['seedvr_seed'], ui['seedvr_resolution'], ui['seedvr_batch_size'], ui['seedvr_fps']] |
|
|
seedvr_outputs = [ui['seedvr_video_output'], ui['seedvr_status_box']] |
|
|
ui['run_seedvr_btn'].click(fn=run_seedvr_upscaling, inputs=seedvr_inputs, outputs=seedvr_outputs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
print("Building Gradio UI...") |
|
|
gradio_app = build_ui() |
|
|
print("Launching Gradio app...") |
|
|
gradio_app.queue().launch( |
|
|
server_name="0.0.0.0", |
|
|
server_port=7860, |
|
|
debug=True, |
|
|
show_error=True |
|
|
) |