|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
|
warnings.filterwarnings("ignore", category=UserWarning) |
|
|
warnings.filterwarnings("ignore", category=FutureWarning) |
|
|
warnings.filterwarnings("ignore", message=".*") |
|
|
|
|
|
from huggingface_hub import logging |
|
|
|
|
|
logging.set_verbosity_error() |
|
|
logging.set_verbosity_warning() |
|
|
logging.set_verbosity_info() |
|
|
logging.set_verbosity_debug() |
|
|
|
|
|
enable_progress_bars() |
|
|
LTXV_DEBUG=1 |
|
|
LTXV_FRAME_LOG_EVERY=8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
import numpy as np |
|
|
import random |
|
|
import os |
|
|
import shlex |
|
|
import yaml |
|
|
from typing import List, Dict |
|
|
from pathlib import Path |
|
|
import imageio |
|
|
import tempfile |
|
|
from huggingface_hub import hf_hub_download |
|
|
import sys |
|
|
import subprocess |
|
|
import gc |
|
|
import shutil |
|
|
import contextlib |
|
|
import time |
|
|
import traceback |
|
|
|
|
|
|
|
|
from tools.vae_manager import vae_manager_singleton |
|
|
from managers.video_encode_tool import video_encode_tool_singleton |
|
|
|
|
|
|
|
|
def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]: |
|
|
try: |
|
|
import psutil |
|
|
import pynvml as nvml |
|
|
nvml.nvmlInit() |
|
|
handle = nvml.nvmlDeviceGetHandleByIndex(device_index) |
|
|
try: |
|
|
procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle) |
|
|
except Exception: |
|
|
procs = nvml.nvmlDeviceGetComputeRunningProcesses(handle) |
|
|
results = [] |
|
|
for p in procs: |
|
|
pid = int(p.pid) |
|
|
used_mb = None |
|
|
try: |
|
|
if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,): |
|
|
used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024)) |
|
|
except Exception: |
|
|
used_mb = None |
|
|
name = "unknown" |
|
|
user = "unknown" |
|
|
try: |
|
|
import psutil |
|
|
pr = psutil.Process(pid) |
|
|
name = pr.name() |
|
|
user = pr.username() |
|
|
except Exception: |
|
|
pass |
|
|
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb}) |
|
|
nvml.nvmlShutdown() |
|
|
return results |
|
|
except Exception: |
|
|
return [] |
|
|
|
|
|
def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]: |
|
|
cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits" |
|
|
try: |
|
|
out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0) |
|
|
except Exception: |
|
|
return [] |
|
|
results = [] |
|
|
for line in out.strip().splitlines(): |
|
|
parts = [p.strip() for p in line.split(",")] |
|
|
if len(parts) >= 3: |
|
|
try: |
|
|
pid = int(parts[0]); name = parts[1]; used_mb = int(parts[2]) |
|
|
user = "unknown" |
|
|
try: |
|
|
import psutil |
|
|
pr = psutil.Process(pid) |
|
|
user = pr.username() |
|
|
except Exception: |
|
|
pass |
|
|
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb}) |
|
|
except Exception: |
|
|
continue |
|
|
return results |
|
|
|
|
|
def _gpu_process_table(processes: List[Dict], current_pid: int) -> str: |
|
|
if not processes: |
|
|
return " - Processos ativos: (nenhum)\n" |
|
|
processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True) |
|
|
lines = [" - Processos ativos (PID | USER | NAME | VRAM MB):"] |
|
|
for p in processes: |
|
|
star = "*" if p["pid"] == current_pid else " " |
|
|
used_str = str(p["used_mb"]) if p.get("used_mb") is not None else "N/A" |
|
|
lines.append(f" {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}") |
|
|
return "\n".join(lines) + "\n" |
|
|
|
|
|
def run_setup(): |
|
|
setup_script_path = "setup.py" |
|
|
if not os.path.exists(setup_script_path): |
|
|
print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.") |
|
|
return |
|
|
try: |
|
|
print("[DEBUG] Executando setup.py para dependências...") |
|
|
subprocess.run([sys.executable, setup_script_path], check=True) |
|
|
print("[DEBUG] Setup concluído com sucesso.") |
|
|
except subprocess.CalledProcessError as e: |
|
|
print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.") |
|
|
sys.exit(1) |
|
|
|
|
|
from api.ltx.inference import ( |
|
|
create_ltx_video_pipeline, |
|
|
create_latent_upsampler, |
|
|
load_image_to_tensor_with_resize_and_crop, |
|
|
seed_everething, |
|
|
calculate_padding, |
|
|
load_media_file, |
|
|
) |
|
|
|
|
|
DEPS_DIR = Path("/data") |
|
|
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video" |
|
|
if not LTX_VIDEO_REPO_DIR.exists(): |
|
|
print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...") |
|
|
run_setup() |
|
|
|
|
|
def add_deps_to_path(): |
|
|
repo_path = str(LTX_VIDEO_REPO_DIR.resolve()) |
|
|
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path: |
|
|
sys.path.insert(0, repo_path) |
|
|
print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}") |
|
|
|
|
|
add_deps_to_path() |
|
|
|
|
|
|
|
|
|
|
|
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline |
|
|
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy |
|
|
|
|
|
|
|
|
def log_tensor_info(tensor, name="Tensor"): |
|
|
if not isinstance(tensor, torch.Tensor): |
|
|
print(f"\n[INFO] '{name}' não é tensor.") |
|
|
return |
|
|
print(f"\n--- Tensor: {name} ---") |
|
|
print(f" - Shape: {tuple(tensor.shape)}") |
|
|
print(f" - Dtype: {tensor.dtype}") |
|
|
print(f" - Device: {tensor.device}") |
|
|
if tensor.numel() > 0: |
|
|
try: |
|
|
print(f" - Min: {tensor.min().item():.4f} Max: {tensor.max().item():.4f} Mean: {tensor.mean().item():.4f}") |
|
|
except Exception: |
|
|
pass |
|
|
print("------------------------------------------\n") |
|
|
|
|
|
|
|
|
class VideoService: |
|
|
def __init__(self): |
|
|
t0 = time.perf_counter() |
|
|
print("[DEBUG] Inicializando VideoService...") |
|
|
self.debug = os.getenv("LTXV_DEBUG", "1") == "1" |
|
|
self.frame_log_every = int(os.getenv("LTXV_FRAME_LOG_EVERY", "8")) |
|
|
self.config = self._load_config() |
|
|
print(f"[DEBUG] Config carregada (precision={self.config.get('precision')}, sampler={self.config.get('sampler')})") |
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
print(f"[DEBUG] Device selecionado: {self.device}") |
|
|
self.last_memory_reserved_mb = 0.0 |
|
|
self._tmp_dirs = set(); self._tmp_files = set(); self._last_outputs = [] |
|
|
|
|
|
self.pipeline, self.latent_upsampler = self._load_models() |
|
|
print(f"[DEBUG] Pipeline e Upsampler carregados. Upsampler ativo? {bool(self.latent_upsampler)}") |
|
|
|
|
|
print(f"[DEBUG] Movendo modelos para {self.device}...") |
|
|
self.pipeline.to(self.device) |
|
|
if self.latent_upsampler: |
|
|
self.latent_upsampler.to(self.device) |
|
|
|
|
|
self._apply_precision_policy() |
|
|
print(f"[DEBUG] runtime_autocast_dtype = {getattr(self, 'runtime_autocast_dtype', None)}") |
|
|
|
|
|
|
|
|
vae_manager_singleton.attach_pipeline( |
|
|
self.pipeline, |
|
|
device=self.device, |
|
|
autocast_dtype=self.runtime_autocast_dtype |
|
|
) |
|
|
print(f"[DEBUG] VAE manager conectado: has_vae={hasattr(self.pipeline, 'vae')} device={self.device}") |
|
|
|
|
|
if self.device == "cuda": |
|
|
torch.cuda.empty_cache() |
|
|
self._log_gpu_memory("Após carregar modelos") |
|
|
|
|
|
print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s") |
|
|
|
|
|
def _log_gpu_memory(self, stage_name: str): |
|
|
if self.device != "cuda": |
|
|
return |
|
|
device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0 |
|
|
current_reserved_b = torch.cuda.memory_reserved(device_index) |
|
|
current_reserved_mb = current_reserved_b / (1024 ** 2) |
|
|
total_memory_b = torch.cuda.get_device_properties(device_index).total_memory |
|
|
total_memory_mb = total_memory_b / (1024 ** 2) |
|
|
peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2) |
|
|
delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0) |
|
|
processes = _query_gpu_processes_via_nvml(device_index) or _query_gpu_processes_via_nvidiasmi(device_index) |
|
|
print(f"\n--- [LOG GPU] {stage_name} (cuda:{device_index}) ---") |
|
|
print(f" - Reservado: {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB (Δ={delta_mb:+.2f} MB)") |
|
|
if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0): |
|
|
print(f" - Pico reservado (nesta fase): {peak_reserved_mb:.2f} MB") |
|
|
print(_gpu_process_table(processes, os.getpid()), end="") |
|
|
print("--------------------------------------------------\n") |
|
|
self.last_memory_reserved_mb = current_reserved_mb |
|
|
|
|
|
def _register_tmp_dir(self, d: str): |
|
|
if d and os.path.isdir(d): |
|
|
self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}") |
|
|
|
|
|
def _register_tmp_file(self, f: str): |
|
|
if f and os.path.exists(f): |
|
|
self._tmp_files.add(f); print(f"[DEBUG] Registrado tmp file: {f}") |
|
|
|
|
|
def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True): |
|
|
print("[DEBUG] Finalize: iniciando limpeza...") |
|
|
keep = set(keep_paths or []); extras = set(extra_paths or []) |
|
|
removed_files = 0 |
|
|
for f in list(self._tmp_files | extras): |
|
|
try: |
|
|
if f not in keep and os.path.isfile(f): |
|
|
os.remove(f); removed_files += 1; print(f"[DEBUG] Removido arquivo tmp: {f}") |
|
|
except Exception as e: |
|
|
print(f"[DEBUG] Falha removendo arquivo {f}: {e}") |
|
|
finally: |
|
|
self._tmp_files.discard(f) |
|
|
removed_dirs = 0 |
|
|
for d in list(self._tmp_dirs): |
|
|
try: |
|
|
if d not in keep and os.path.isdir(d): |
|
|
shutil.rmtree(d, ignore_errors=True); removed_dirs += 1; print(f"[DEBUG] Removido diretório tmp: {d}") |
|
|
except Exception as e: |
|
|
print(f"[DEBUG] Falha removendo diretório {d}: {e}") |
|
|
finally: |
|
|
self._tmp_dirs.discard(d) |
|
|
print(f"[DEBUG] Finalize: arquivos removidos={removed_files}, dirs removidos={removed_dirs}") |
|
|
gc.collect() |
|
|
try: |
|
|
if clear_gpu and torch.cuda.is_available(): |
|
|
torch.cuda.empty_cache() |
|
|
try: |
|
|
torch.cuda.ipc_collect() |
|
|
except Exception: |
|
|
pass |
|
|
except Exception as e: |
|
|
print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}") |
|
|
try: |
|
|
self._log_gpu_memory("Após finalize") |
|
|
except Exception as e: |
|
|
print(f"[DEBUG] Log GPU pós-finalize falhou: {e}") |
|
|
|
|
|
def _load_config(self): |
|
|
base = LTX_VIDEO_REPO_DIR / "configs" |
|
|
candidates = [ |
|
|
base / "ltxv-13b-0.9.8-dev-fp8.yaml", |
|
|
base / "ltxv-13b-0.9.8-distilled-fp8.yaml", |
|
|
base / "ltxv-13b-0.9.8-dev-fp8.yaml.txt", |
|
|
base / "ltxv-13b-0.9.8-distilled.yaml", |
|
|
] |
|
|
for cfg in candidates: |
|
|
if cfg.exists(): |
|
|
print(f"[DEBUG] Config selecionada: {cfg}") |
|
|
with open(cfg, "r") as file: |
|
|
return yaml.safe_load(file) |
|
|
cfg = base / "ltxv-13b-0.9.8-distilled.yaml" |
|
|
print(f"[DEBUG] Config fallback: {cfg}") |
|
|
with open(cfg, "r") as file: |
|
|
return yaml.safe_load(file) |
|
|
|
|
|
def _load_models(self): |
|
|
t0 = time.perf_counter() |
|
|
LTX_REPO = "Lightricks/LTX-Video" |
|
|
print("[DEBUG] Baixando checkpoint principal...") |
|
|
distilled_model_path = hf_hub_download( |
|
|
repo_id=LTX_REPO, |
|
|
filename=self.config["checkpoint_path"], |
|
|
local_dir=os.getenv("HF_HOME"), |
|
|
cache_dir=os.getenv("HF_HOME_CACHE"), |
|
|
token=os.getenv("HF_TOKEN"), |
|
|
) |
|
|
self.config["checkpoint_path"] = distilled_model_path |
|
|
print(f"[DEBUG] Checkpoint em: {distilled_model_path}") |
|
|
|
|
|
print("[DEBUG] Baixando upscaler espacial...") |
|
|
spatial_upscaler_path = hf_hub_download( |
|
|
repo_id=LTX_REPO, |
|
|
filename=self.config["spatial_upscaler_model_path"], |
|
|
local_dir=os.getenv("HF_HOME"), |
|
|
cache_dir=os.getenv("HF_HOME_CACHE"), |
|
|
token=os.getenv("HF_TOKEN"), |
|
|
) |
|
|
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path |
|
|
print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}") |
|
|
|
|
|
print("[DEBUG] Construindo pipeline...") |
|
|
pipeline = create_ltx_video_pipeline( |
|
|
ckpt_path=self.config["checkpoint_path"], |
|
|
precision=self.config["precision"], |
|
|
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"], |
|
|
sampler=self.config["sampler"], |
|
|
device="cpu", |
|
|
enhance_prompt=False, |
|
|
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"], |
|
|
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"], |
|
|
) |
|
|
print("[DEBUG] Pipeline pronto.") |
|
|
|
|
|
latent_upsampler = None |
|
|
if self.config.get("spatial_upscaler_model_path"): |
|
|
print("[DEBUG] Construindo latent_upsampler...") |
|
|
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu") |
|
|
print("[DEBUG] Upsampler pronto.") |
|
|
print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s") |
|
|
return pipeline, latent_upsampler |
|
|
|
|
|
def _promote_fp8_weights_to_bf16(self, module): |
|
|
if not isinstance(module, torch.nn.Module): |
|
|
print("[DEBUG] Promoção FP8→BF16 ignorada: alvo não é nn.Module.") |
|
|
return |
|
|
f8 = getattr(torch, "float8_e4m3fn", None) |
|
|
if f8 is None: |
|
|
print("[DEBUG] torch.float8_e4m3fn indisponível.") |
|
|
return |
|
|
p_cnt = b_cnt = 0 |
|
|
for _, p in module.named_parameters(recurse=True): |
|
|
try: |
|
|
if p.dtype == f8: |
|
|
with torch.no_grad(): |
|
|
p.data = p.data.to(torch.bfloat16); p_cnt += 1 |
|
|
except Exception: |
|
|
pass |
|
|
for _, b in module.named_buffers(recurse=True): |
|
|
try: |
|
|
if hasattr(b, "dtype") and b.dtype == f8: |
|
|
b.data = b.data.to(torch.bfloat16); b_cnt += 1 |
|
|
except Exception: |
|
|
pass |
|
|
print(f"[DEBUG] FP8→BF16: params_promoted={p_cnt}, buffers_promoted={b_cnt}") |
|
|
|
|
|
def _apply_precision_policy(self): |
|
|
prec = str(self.config.get("precision", "")).lower() |
|
|
self.runtime_autocast_dtype = torch.float32 |
|
|
print(f"[DEBUG] Aplicando política de precisão: {prec}") |
|
|
if prec == "float8_e4m3fn": |
|
|
self.runtime_autocast_dtype = torch.bfloat16 |
|
|
force_promote = os.getenv("LTXV_FORCE_BF16_ON_FP8", "0") == "1" |
|
|
print(f"[DEBUG] FP8 detectado. force_promote={force_promote}") |
|
|
if force_promote and hasattr(torch, "float8_e4m3fn"): |
|
|
try: |
|
|
self._promote_fp8_weights_to_bf16(self.pipeline) |
|
|
except Exception as e: |
|
|
print(f"[DEBUG] Promoção FP8→BF16 na pipeline falhou: {e}") |
|
|
try: |
|
|
if self.latent_upsampler: |
|
|
self._promote_fp8_weights_to_bf16(self.latent_upsampler) |
|
|
except Exception as e: |
|
|
print(f"[DEBUG] Promoção FP8→BF16 no upsampler falhou: {e}") |
|
|
elif prec == "bfloat16": |
|
|
self.runtime_autocast_dtype = torch.bfloat16 |
|
|
elif prec == "mixed_precision": |
|
|
self.runtime_autocast_dtype = torch.float16 |
|
|
else: |
|
|
self.runtime_autocast_dtype = torch.float32 |
|
|
|
|
|
def _prepare_conditioning_tensor(self, filepath, height, width, padding_values): |
|
|
print(f"[DEBUG] Carregando condicionamento: {filepath}") |
|
|
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width) |
|
|
tensor = torch.nn.functional.pad(tensor, padding_values) |
|
|
out = tensor.to(self.device, dtype=self.runtime_autocast_dtype) if self.device == "cuda" else tensor.to(self.device) |
|
|
print(f"[DEBUG] Cond shape={tuple(out.shape)} dtype={out.dtype} device={out.device}") |
|
|
return out |
|
|
|
|
|
|
|
|
def generate( |
|
|
self, |
|
|
prompt, |
|
|
negative_prompt, |
|
|
mode="text-to-video", |
|
|
start_image_filepath=None, |
|
|
middle_image_filepath=None, |
|
|
middle_frame_number=None, |
|
|
middle_image_weight=1.0, |
|
|
end_image_filepath=None, |
|
|
end_image_weight=1.0, |
|
|
input_video_filepath=None, |
|
|
height=512, |
|
|
width=704, |
|
|
duration=2.0, |
|
|
frames_to_use=9, |
|
|
seed=42, |
|
|
randomize_seed=True, |
|
|
guidance_scale=3.0, |
|
|
improve_texture=True, |
|
|
progress_callback=None, |
|
|
|
|
|
external_decode=True, |
|
|
): |
|
|
t_all = time.perf_counter() |
|
|
print(f"[DEBUG] generate() begin mode={mode} external_decode={external_decode} improve_texture={improve_texture}") |
|
|
if self.device == "cuda": |
|
|
torch.cuda.empty_cache(); torch.cuda.reset_peak_memory_stats() |
|
|
self._log_gpu_memory("Início da Geração") |
|
|
|
|
|
if mode == "image-to-video" and not start_image_filepath: |
|
|
raise ValueError("A imagem de início é obrigatória para o modo image-to-video") |
|
|
if mode == "video-to-video" and not input_video_filepath: |
|
|
raise ValueError("O vídeo de entrada é obrigatório para o modo video-to-video") |
|
|
|
|
|
used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed) |
|
|
seed_everething(used_seed); print(f"[DEBUG] Seed usado: {used_seed}") |
|
|
|
|
|
FPS = 24.0; MAX_NUM_FRAMES = 257 |
|
|
target_frames_rounded = round(duration * FPS) |
|
|
n_val = round((float(target_frames_rounded) - 1.0) / 8.0) |
|
|
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1))) |
|
|
print(f"[DEBUG] Frames alvo: {actual_num_frames} (dur={duration}s @ {FPS}fps)") |
|
|
|
|
|
height_padded = ((height - 1) // 32 + 1) * 32 |
|
|
width_padded = ((width - 1) // 32 + 1) * 32 |
|
|
padding_values = calculate_padding(height, width, height_padded, width_padded) |
|
|
print(f"[DEBUG] Dimensões: ({height},{width}) -> pad ({height_padded},{width_padded}); padding={padding_values}") |
|
|
|
|
|
generator = torch.Generator(device=self.device).manual_seed(used_seed) |
|
|
conditioning_items = [] |
|
|
|
|
|
if mode == "image-to-video": |
|
|
start_tensor = self._prepare_conditioning_tensor(start_image_filepath, height, width, padding_values) |
|
|
conditioning_items.append(ConditioningItem(start_tensor, 0, 1.0)) |
|
|
if middle_image_filepath and middle_frame_number is not None: |
|
|
middle_tensor = self._prepare_conditioning_tensor(middle_image_filepath, height, width, padding_values) |
|
|
safe_middle_frame = max(0, min(int(middle_frame_number), actual_num_frames - 1)) |
|
|
conditioning_items.append(ConditioningItem(middle_tensor, safe_middle_frame, float(middle_image_weight))) |
|
|
if end_image_filepath: |
|
|
end_tensor = self._prepare_conditioning_tensor(end_image_filepath, height, width, padding_values) |
|
|
last_frame_index = actual_num_frames - 1 |
|
|
conditioning_items.append(ConditioningItem(end_tensor, last_frame_index, float(end_image_weight))) |
|
|
print(f"[DEBUG] Conditioning items: {len(conditioning_items)}") |
|
|
|
|
|
|
|
|
call_kwargs = { |
|
|
"prompt": prompt, |
|
|
"negative_prompt": negative_prompt, |
|
|
"height": height_padded, |
|
|
"width": width_padded, |
|
|
"num_frames": actual_num_frames, |
|
|
"frame_rate": int(FPS), |
|
|
"generator": generator, |
|
|
"output_type": "latent", |
|
|
"conditioning_items": conditioning_items if conditioning_items else None, |
|
|
"media_items": None, |
|
|
"decode_timestep": self.config["decode_timestep"], |
|
|
"decode_noise_scale": self.config["decode_noise_scale"], |
|
|
"stochastic_sampling": self.config["stochastic_sampling"], |
|
|
"image_cond_noise_scale": 0.15, |
|
|
"is_video": True, |
|
|
"vae_per_channel_normalize": True, |
|
|
"mixed_precision": (self.config["precision"] == "mixed_precision"), |
|
|
"offload_to_cpu": False, |
|
|
"enhance_prompt": False, |
|
|
"skip_layer_strategy": SkipLayerStrategy.AttentionValues, |
|
|
} |
|
|
print(f"[DEBUG] output_type={call_kwargs['output_type']} skip_layer_strategy={call_kwargs['skip_layer_strategy']}") |
|
|
|
|
|
if mode == "video-to-video": |
|
|
media = load_media_file( |
|
|
media_path=input_video_filepath, |
|
|
height=height, |
|
|
width=width, |
|
|
max_frames=int(frames_to_use), |
|
|
padding=padding_values, |
|
|
).to(self.device) |
|
|
call_kwargs["media_items"] = media |
|
|
print(f"[DEBUG] media_items shape={tuple(media.shape)}") |
|
|
|
|
|
latents = None |
|
|
multi_scale_pipeline = None |
|
|
|
|
|
try: |
|
|
if improve_texture: |
|
|
if not self.latent_upsampler: |
|
|
raise ValueError("Upscaler espacial não carregado.") |
|
|
print("[DEBUG] Multi-escala: construindo pipeline...") |
|
|
multi_scale_pipeline = LTXMultiScalePipeline(self.pipeline, self.latent_upsampler) |
|
|
first_pass_args = self.config.get("first_pass", {}).copy() |
|
|
first_pass_args["guidance_scale"] = float(guidance_scale) |
|
|
second_pass_args = self.config.get("second_pass", {}).copy() |
|
|
second_pass_args["guidance_scale"] = float(guidance_scale) |
|
|
|
|
|
multi_scale_call_kwargs = call_kwargs.copy() |
|
|
multi_scale_call_kwargs.update( |
|
|
{ |
|
|
"downscale_factor": self.config["downscale_factor"], |
|
|
"first_pass": first_pass_args, |
|
|
"second_pass": second_pass_args, |
|
|
} |
|
|
) |
|
|
print("[DEBUG] Chamando multi_scale_pipeline...") |
|
|
t_ms = time.perf_counter() |
|
|
ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext() |
|
|
with ctx: |
|
|
result = multi_scale_pipeline(**multi_scale_call_kwargs) |
|
|
print(f"[DEBUG] multi_scale_pipeline tempo={time.perf_counter()-t_ms:.3f}s") |
|
|
|
|
|
if hasattr(result, "latents"): |
|
|
latents = result.latents |
|
|
elif hasattr(result, "images") and isinstance(result.images, torch.Tensor): |
|
|
latents = result.images |
|
|
else: |
|
|
latents = result |
|
|
print(f"[DEBUG] Latentes (multi-escala): shape={tuple(latents.shape)}") |
|
|
else: |
|
|
single_pass_kwargs = call_kwargs.copy() |
|
|
first_pass_config = self.config.get("first_pass", {}) |
|
|
single_pass_kwargs.update( |
|
|
{ |
|
|
"guidance_scale": float(guidance_scale), |
|
|
"stg_scale": first_pass_config.get("stg_scale"), |
|
|
"rescaling_scale": first_pass_config.get("rescaling_scale"), |
|
|
"skip_block_list": first_pass_config.get("skip_block_list"), |
|
|
} |
|
|
) |
|
|
schedule = first_pass_config.get("timesteps") or first_pass_config.get("guidance_timesteps") |
|
|
if mode == "video-to-video": |
|
|
schedule = [0.7]; print("[INFO] Modo video-to-video (etapa única): timesteps=[0.7]") |
|
|
if isinstance(schedule, (list, tuple)) and len(schedule) > 0: |
|
|
single_pass_kwargs["timesteps"] = schedule |
|
|
single_pass_kwargs["guidance_timesteps"] = schedule |
|
|
print(f"[DEBUG] Single-pass: timesteps_len={len(schedule) if schedule else 0}") |
|
|
|
|
|
print("\n[INFO] Executando pipeline de etapa única...") |
|
|
t_sp = time.perf_counter() |
|
|
ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext() |
|
|
with ctx: |
|
|
result = self.pipeline(**single_pass_kwargs) |
|
|
print(f"[DEBUG] single-pass tempo={time.perf_counter()-t_sp:.3f}s") |
|
|
|
|
|
if hasattr(result, "latents"): |
|
|
latents = result.latents |
|
|
elif hasattr(result, "images") and isinstance(result.images, torch.Tensor): |
|
|
latents = result.images |
|
|
else: |
|
|
latents = result |
|
|
print(f"[DEBUG] Latentes (single-pass): shape={tuple(latents.shape)}") |
|
|
|
|
|
|
|
|
temp_dir = tempfile.mkdtemp(prefix="ltxv_"); self._register_tmp_dir(temp_dir) |
|
|
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True) |
|
|
output_video_path = os.path.join(temp_dir, f"output_{used_seed}.mp4") |
|
|
final_output_path = None |
|
|
|
|
|
print("[DEBUG] Decodificando bloco de latentes com VAE → tensor de pixels...") |
|
|
|
|
|
pixel_tensor = vae_manager_singleton.decode( |
|
|
latents.to(self.device, non_blocking=True), |
|
|
decode_timestep=float(self.config.get("decode_timestep", 0.05)) |
|
|
) |
|
|
log_tensor_info(pixel_tensor, "Pixel tensor (VAE saída)") |
|
|
|
|
|
print("[DEBUG] Codificando MP4 a partir do tensor de pixels (bloco inteiro)...") |
|
|
video_encode_tool_singleton.save_video_from_tensor( |
|
|
pixel_tensor, |
|
|
output_video_path, |
|
|
fps=call_kwargs["frame_rate"], |
|
|
progress_callback=progress_callback |
|
|
) |
|
|
|
|
|
candidate_final = os.path.join(results_dir, f"output_{used_seed}.mp4") |
|
|
try: |
|
|
shutil.move(output_video_path, candidate_final) |
|
|
final_output_path = candidate_final |
|
|
print(f"[DEBUG] MP4 movido para {final_output_path}") |
|
|
except Exception as e: |
|
|
final_output_path = output_video_path |
|
|
print(f"[DEBUG] Falha no move; usando tmp como final: {e}") |
|
|
|
|
|
self._register_tmp_file(output_video_path) |
|
|
self._log_gpu_memory("Fim da Geração") |
|
|
print(f"[DEBUG] generate() fim ok. total_time={time.perf_counter()-t_all:.3f}s") |
|
|
return final_output_path, used_seed |
|
|
|
|
|
except Exception as e: |
|
|
print("[DEBUG] EXCEÇÃO NA GERAÇÃO:") |
|
|
print("".join(traceback.format_exception(type(e), e, e.__traceback__))) |
|
|
raise |
|
|
finally: |
|
|
try: |
|
|
del latents |
|
|
except Exception: |
|
|
pass |
|
|
try: |
|
|
del multi_scale_pipeline |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
gc.collect() |
|
|
try: |
|
|
if self.device == "cuda": |
|
|
torch.cuda.empty_cache() |
|
|
try: |
|
|
torch.cuda.ipc_collect() |
|
|
except Exception: |
|
|
pass |
|
|
except Exception as e: |
|
|
print(f"[DEBUG] Limpeza GPU no finally falhou: {e}") |
|
|
|
|
|
try: |
|
|
self.finalize(keep_paths=[]) |
|
|
except Exception as e: |
|
|
print(f"[DEBUG] finalize() no finally falhou: {e}") |
|
|
|
|
|
print("Criando instância do VideoService. O carregamento do modelo começará agora...") |
|
|
video_generation_service = VideoService() |
|
|
|