|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
|
warnings.filterwarnings("ignore", category=UserWarning) |
|
|
warnings.filterwarnings("ignore", category=FutureWarning) |
|
|
warnings.filterwarnings("ignore", message=".*") |
|
|
from huggingface_hub import logging |
|
|
logging.set_verbosity_error() |
|
|
logging.set_verbosity_warning() |
|
|
logging.set_verbosity_info() |
|
|
logging.set_verbosity_debug() |
|
|
LTXV_DEBUG=1 |
|
|
LTXV_FRAME_LOG_EVERY=8 |
|
|
import os, subprocess, shlex, tempfile |
|
|
import torch |
|
|
import json |
|
|
import numpy as np |
|
|
import random |
|
|
import os |
|
|
import shlex |
|
|
import yaml |
|
|
from typing import List, Dict |
|
|
from pathlib import Path |
|
|
import imageio |
|
|
from PIL import Image |
|
|
import tempfile |
|
|
from huggingface_hub import hf_hub_download |
|
|
import sys |
|
|
import subprocess |
|
|
import gc |
|
|
import shutil |
|
|
import contextlib |
|
|
import time |
|
|
import traceback |
|
|
from einops import rearrange |
|
|
import torch.nn.functional as F |
|
|
from managers.vae_manager import vae_manager_singleton |
|
|
from tools.video_encode_tool import video_encode_tool_singleton |
|
|
DEPS_DIR = Path("/data") |
|
|
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video" |
|
|
|
|
|
def run_setup(): |
|
|
setup_script_path = "setup.py" |
|
|
if not os.path.exists(setup_script_path): |
|
|
print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.") |
|
|
return |
|
|
try: |
|
|
print("[DEBUG] Executando setup.py para dependências...") |
|
|
subprocess.run([sys.executable, setup_script_path], check=True) |
|
|
print("[DEBUG] Setup concluído com sucesso.") |
|
|
except subprocess.CalledProcessError as e: |
|
|
print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.") |
|
|
sys.exit(1) |
|
|
|
|
|
if not LTX_VIDEO_REPO_DIR.exists(): |
|
|
print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...") |
|
|
run_setup() |
|
|
|
|
|
def add_deps_to_path(): |
|
|
repo_path = str(LTX_VIDEO_REPO_DIR.resolve()) |
|
|
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path: |
|
|
sys.path.insert(0, repo_path) |
|
|
print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}") |
|
|
|
|
|
def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]: |
|
|
try: |
|
|
import psutil |
|
|
import pynvml as nvml |
|
|
nvml.nvmlInit() |
|
|
handle = nvml.nvmlDeviceGetHandleByIndex(device_index) |
|
|
try: |
|
|
procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle) |
|
|
except Exception: |
|
|
procs = nvml.nvmlDeviceGetComputeRunningProcesses(handle) |
|
|
results = [] |
|
|
for p in procs: |
|
|
pid = int(p.pid) |
|
|
used_mb = None |
|
|
try: |
|
|
if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,): |
|
|
used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024)) |
|
|
except Exception: |
|
|
used_mb = None |
|
|
name = "unknown" |
|
|
user = "unknown" |
|
|
try: |
|
|
import psutil |
|
|
pr = psutil.Process(pid) |
|
|
name = pr.name() |
|
|
user = pr.username() |
|
|
except Exception: |
|
|
pass |
|
|
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb}) |
|
|
nvml.nvmlShutdown() |
|
|
return results |
|
|
except Exception: |
|
|
return [] |
|
|
|
|
|
def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]: |
|
|
cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits" |
|
|
try: |
|
|
out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0) |
|
|
except Exception: |
|
|
return [] |
|
|
results = [] |
|
|
for line in out.strip().splitlines(): |
|
|
parts = [p.strip() for p in line.split(",")] |
|
|
if len(parts) >= 3: |
|
|
try: |
|
|
pid = int(parts[0]); name = parts[1]; used_mb = int(parts[2]) |
|
|
user = "unknown" |
|
|
try: |
|
|
import psutil |
|
|
pr = psutil.Process(pid) |
|
|
user = pr.username() |
|
|
except Exception: |
|
|
pass |
|
|
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb}) |
|
|
except Exception: |
|
|
continue |
|
|
return results |
|
|
|
|
|
def calculate_padding(orig_h, orig_w, target_h, target_w): |
|
|
pad_h = target_h - orig_h |
|
|
pad_w = target_w - orig_w |
|
|
pad_top = pad_h // 2 |
|
|
pad_bottom = pad_h - pad_top |
|
|
pad_left = pad_w // 2 |
|
|
pad_right = pad_w - pad_left |
|
|
return (pad_left, pad_right, pad_top, pad_bottom) |
|
|
|
|
|
def calculate_new_dimensions(orig_w, orig_h, divisor=8): |
|
|
if orig_w == 0 or orig_h == 0: |
|
|
return 512, 512 |
|
|
if orig_w >= orig_h: |
|
|
aspect_ratio = orig_w / orig_h |
|
|
new_h = 512 |
|
|
new_w = new_h * aspect_ratio |
|
|
else: |
|
|
aspect_ratio = orig_h / orig_w |
|
|
new_w = 512 |
|
|
new_h = new_w * aspect_ratio |
|
|
final_w = int(round(new_w / divisor)) * divisor |
|
|
final_h = int(round(new_h / divisor)) * divisor |
|
|
final_w = max(divisor, final_w) |
|
|
final_h = max(divisor, final_h) |
|
|
print(f"[Dimension Calc] Original: {orig_w}x{orig_h} -> Calculado: {new_w:.0f}x{new_h:.0f} -> Final (divisível por {divisor}): {final_w}x{final_h}") |
|
|
return final_h, final_w |
|
|
|
|
|
def _gpu_process_table(processes: List[Dict], current_pid: int) -> str: |
|
|
if not processes: |
|
|
return " - Processos ativos: (nenhum)\n" |
|
|
processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True) |
|
|
lines = [" - Processos ativos (PID | USER | NAME | VRAM MB):"] |
|
|
for p in processes: |
|
|
star = "*" if p["pid"] == current_pid else " " |
|
|
used_str = str(p["used_mb"]) if p.get("used_mb") is not None else "N/A" |
|
|
lines.append(f" {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}") |
|
|
return "\n".join(lines) + "\n" |
|
|
|
|
|
def log_tensor_info(tensor, name="Tensor"): |
|
|
if not isinstance(tensor, torch.Tensor): |
|
|
print(f"\n[INFO] '{name}' não é tensor.") |
|
|
return |
|
|
print(f"\n--- Tensor: {name} ---") |
|
|
print(f" - Shape: {tuple(tensor.shape)}") |
|
|
print(f" - Dtype: {tensor.dtype}") |
|
|
print(f" - Device: {tensor.device}") |
|
|
if tensor.numel() > 0: |
|
|
try: |
|
|
print(f" - Min: {tensor.min().item():.4f} Max: {tensor.max().item():.4f} Mean: {tensor.mean().item():.4f}") |
|
|
except Exception: |
|
|
pass |
|
|
print("------------------------------------------\n") |
|
|
|
|
|
add_deps_to_path() |
|
|
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline |
|
|
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy |
|
|
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents |
|
|
from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent |
|
|
from api.ltx.inference import ( |
|
|
create_ltx_video_pipeline, |
|
|
create_latent_upsampler, |
|
|
load_image_to_tensor_with_resize_and_crop, |
|
|
seed_everething, |
|
|
) |
|
|
|
|
|
class VideoService: |
|
|
def __init__(self): |
|
|
t0 = time.perf_counter() |
|
|
print("[DEBUG] Inicializando VideoService...") |
|
|
self.debug = os.getenv("LTXV_DEBUG", "1") == "1" |
|
|
self.frame_log_every = int(os.getenv("LTXV_FRAME_LOG_EVERY", "8")) |
|
|
self.config = self._load_config() |
|
|
print(f"[DEBUG] Config carregada (precision={self.config.get('precision')}, sampler={self.config.get('sampler')})") |
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
print(f"[DEBUG] Device selecionado: {self.device}") |
|
|
self.last_memory_reserved_mb = 0.0 |
|
|
self._tmp_dirs = set(); self._tmp_files = set(); self._last_outputs = [] |
|
|
|
|
|
self.pipeline, self.latent_upsampler = self._load_models() |
|
|
print(f"[DEBUG] Pipeline e Upsampler carregados. Upsampler ativo? {bool(self.latent_upsampler)}") |
|
|
|
|
|
print(f"[DEBUG] Movendo modelos para {self.device}...") |
|
|
self.pipeline.to(self.device) |
|
|
if self.latent_upsampler: |
|
|
self.latent_upsampler.to(self.device) |
|
|
|
|
|
self._apply_precision_policy() |
|
|
print(f"[DEBUG] runtime_autocast_dtype = {getattr(self, 'runtime_autocast_dtype', None)}") |
|
|
|
|
|
vae_manager_singleton.attach_pipeline( |
|
|
self.pipeline, |
|
|
device=self.device, |
|
|
autocast_dtype=self.runtime_autocast_dtype |
|
|
) |
|
|
print(f"[DEBUG] VAE manager conectado: has_vae={hasattr(self.pipeline, 'vae')} device={self.device}") |
|
|
|
|
|
if self.device == "cuda": |
|
|
torch.cuda.empty_cache() |
|
|
self._log_gpu_memory("Após carregar modelos") |
|
|
|
|
|
print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s") |
|
|
|
|
|
def _log_gpu_memory(self, stage_name: str): |
|
|
if self.device != "cuda": |
|
|
return |
|
|
device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0 |
|
|
current_reserved_b = torch.cuda.memory_reserved(device_index) |
|
|
current_reserved_mb = current_reserved_b / (1024 ** 2) |
|
|
total_memory_b = torch.cuda.get_device_properties(device_index).total_memory |
|
|
total_memory_mb = total_memory_b / (1024 ** 2) |
|
|
peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2) |
|
|
delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0) |
|
|
processes = _query_gpu_processes_via_nvml(device_index) or _query_gpu_processes_via_nvidiasmi(device_index) |
|
|
print(f"\n--- [LOG GPU] {stage_name} (cuda:{device_index}) ---") |
|
|
print(f" - Reservado: {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB (Δ={delta_mb:+.2f} MB)") |
|
|
if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0): |
|
|
print(f" - Pico reservado (nesta fase): {peak_reserved_mb:.2f} MB") |
|
|
print(_gpu_process_table(processes, os.getpid()), end="") |
|
|
print("--------------------------------------------------\n") |
|
|
self.last_memory_reserved_mb = current_reserved_mb |
|
|
|
|
|
def _register_tmp_dir(self, d: str): |
|
|
if d and os.path.isdir(d): |
|
|
self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}") |
|
|
|
|
|
def _register_tmp_file(self, f: str): |
|
|
if f and os.path.exists(f): |
|
|
self._tmp_files.add(f); print(f"[DEBUG] Registrado tmp file: {f}") |
|
|
|
|
|
def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True): |
|
|
print("[DEBUG] Finalize: iniciando limpeza...") |
|
|
keep = set(keep_paths or []); extras = set(extra_paths or []) |
|
|
removed_files = 0 |
|
|
for f in list(self._tmp_files | extras): |
|
|
try: |
|
|
if f not in keep and os.path.isfile(f): |
|
|
os.remove(f); removed_files += 1; print(f"[DEBUG] Removido arquivo tmp: {f}") |
|
|
except Exception as e: |
|
|
print(f"[DEBUG] Falha removendo arquivo {f}: {e}") |
|
|
finally: |
|
|
self._tmp_files.discard(f) |
|
|
removed_dirs = 0 |
|
|
for d in list(self._tmp_dirs): |
|
|
try: |
|
|
if d not in keep and os.path.isdir(d): |
|
|
shutil.rmtree(d, ignore_errors=True); removed_dirs += 1; print(f"[DEBUG] Removido diretório tmp: {d}") |
|
|
except Exception as e: |
|
|
print(f"[DEBUG] Falha removendo diretório {d}: {e}") |
|
|
finally: |
|
|
self._tmp_dirs.discard(d) |
|
|
print(f"[DEBUG] Finalize: arquivos removidos={removed_files}, dirs removidos={removed_dirs}") |
|
|
gc.collect() |
|
|
try: |
|
|
if clear_gpu and torch.cuda.is_available(): |
|
|
torch.cuda.empty_cache() |
|
|
try: |
|
|
torch.cuda.ipc_collect() |
|
|
except Exception: |
|
|
pass |
|
|
except Exception as e: |
|
|
print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}") |
|
|
try: |
|
|
self._log_gpu_memory("Após finalize") |
|
|
except Exception as e: |
|
|
print(f"[DEBUG] Log GPU pós-finalize falhou: {e}") |
|
|
|
|
|
def _load_config(self): |
|
|
base = LTX_VIDEO_REPO_DIR / "configs" |
|
|
config_path = base / "ltxv-13b-0.9.8-distilled-fp8.yaml" |
|
|
print(f"[DEBUG] Carregando config: {config_path}") |
|
|
with open(config_path, "r") as file: |
|
|
return yaml.safe_load(file) |
|
|
|
|
|
def _load_models(self): |
|
|
t0 = time.perf_counter() |
|
|
LTX_REPO = "Lightricks/LTX-Video" |
|
|
print("[DEBUG] Baixando checkpoint principal...") |
|
|
distilled_model_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["checkpoint_path"]) |
|
|
self.config["checkpoint_path"] = distilled_model_path |
|
|
print(f"[DEBUG] Checkpoint em: {distilled_model_path}") |
|
|
|
|
|
print("[DEBUG] Baixando upscaler espacial...") |
|
|
spatial_upscaler_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["spatial_upscaler_model_path"]) |
|
|
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path |
|
|
print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}") |
|
|
|
|
|
print("[DEBUG] Construindo pipeline...") |
|
|
pipeline = create_ltx_video_pipeline( |
|
|
ckpt_path=self.config["checkpoint_path"], |
|
|
precision=self.config["precision"], |
|
|
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"], |
|
|
sampler=self.config["sampler"], device="cpu", enhance_prompt=False, |
|
|
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"], |
|
|
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"], |
|
|
) |
|
|
print("[DEBUG] Pipeline pronto.") |
|
|
|
|
|
latent_upsampler = None |
|
|
if self.config.get("spatial_upscaler_model_path"): |
|
|
print("[DEBUG] Construindo latent_upsampler...") |
|
|
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu") |
|
|
print("[DEBUG] Upsampler pronto.") |
|
|
print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s") |
|
|
return pipeline, latent_upsampler |
|
|
|
|
|
@torch.no_grad() |
|
|
def _upsample_latents_internal(self, latents: torch.Tensor) -> torch.Tensor: |
|
|
if not self.latent_upsampler: |
|
|
raise ValueError("Latent Upsampler não está carregado.") |
|
|
self.latent_upsampler.to(self.device) |
|
|
self.pipeline.vae.to(self.device) |
|
|
print(f"[DEBUG-UPSAMPLE] Shape de entrada: {tuple(latents.shape)}") |
|
|
latents_unnormalized = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True) |
|
|
upsampled_latents = self.latent_upsampler(latents_unnormalized) |
|
|
upsampled_latents_normalized = normalize_latents(upsampled_latents, self.pipeline.vae, vae_per_channel_normalize=True) |
|
|
print(f"[DEBUG-UPSAMPLE] Shape de saída: {tuple(upsampled_latents_normalized.shape)}") |
|
|
return upsampled_latents_normalized |
|
|
|
|
|
def _apply_precision_policy(self): |
|
|
prec = str(self.config.get("precision", "")).lower() |
|
|
self.runtime_autocast_dtype = torch.float32 |
|
|
print(f"[DEBUG] Aplicando política de precisão: {prec}") |
|
|
if prec in ["float8_e4m3fn", "bfloat16"]: |
|
|
self.runtime_autocast_dtype = torch.bfloat16 |
|
|
elif prec == "mixed_precision": |
|
|
self.runtime_autocast_dtype = torch.float16 |
|
|
|
|
|
def _prepare_conditioning_tensor(self, filepath, height, width, padding_values): |
|
|
print(f"[DEBUG] Carregando condicionamento: {filepath}") |
|
|
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width) |
|
|
tensor = torch.nn.functional.pad(tensor, padding_values) |
|
|
out = tensor.to(self.device, dtype=self.runtime_autocast_dtype) |
|
|
print(f"[DEBUG] Cond shape={tuple(out.shape)} dtype={out.dtype} device={out.device}") |
|
|
return out |
|
|
|
|
|
def _concat_mp4s_no_reencode(self, mp4_list: List[str], out_path: str): |
|
|
if not mp4_list: |
|
|
raise ValueError("A lista de MP4s para concatenar está vazia.") |
|
|
if len(mp4_list) == 1: |
|
|
shutil.move(mp4_list[0], out_path) |
|
|
print(f"[DEBUG] Apenas um vídeo, movido para: {out_path}") |
|
|
return |
|
|
|
|
|
with tempfile.NamedTemporaryFile("w", delete=False, suffix=".txt") as f: |
|
|
for mp4 in mp4_list: |
|
|
f.write(f"file '{os.path.abspath(mp4)}'\n") |
|
|
list_path = f.name |
|
|
|
|
|
cmd = f"ffmpeg -y -f concat -safe 0 -i {list_path} -c copy {out_path}" |
|
|
print(f"[DEBUG] Concat: {cmd}") |
|
|
|
|
|
try: |
|
|
subprocess.check_call(shlex.split(cmd)) |
|
|
finally: |
|
|
os.remove(list_path) |
|
|
|
|
|
def _save_and_log_video(self, pixel_tensor, base_filename, fps, temp_dir, results_dir, used_seed, progress_callback=None): |
|
|
"""Função auxiliar para salvar um tensor de pixels em um arquivo MP4.""" |
|
|
output_path = os.path.join(temp_dir, f"{base_filename}_{used_seed}.mp4") |
|
|
|
|
|
video_encode_tool_singleton.save_video_from_tensor( |
|
|
pixel_tensor, output_path, fps=fps, progress_callback=progress_callback |
|
|
) |
|
|
|
|
|
final_path = os.path.join(results_dir, f"{base_filename}_{used_seed}.mp4") |
|
|
shutil.move(output_path, final_path) |
|
|
print(f"[DEBUG] Vídeo salvo em: {final_path}") |
|
|
return final_path |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int): |
|
|
if not items_list: |
|
|
return [] |
|
|
|
|
|
height_padded = ((height - 1) // 8 + 1) * 8 |
|
|
width_padded = ((width - 1) // 8 + 1) * 8 |
|
|
padding_values = calculate_padding(height, width, height_padded, width_padded) |
|
|
|
|
|
conditioning_items = [] |
|
|
print("\n--- Preparando Itens de Condicionamento ---") |
|
|
for item in items_list: |
|
|
media, frame, weight = item |
|
|
|
|
|
if isinstance(media, str): |
|
|
print(f" - Carregando imagem: {media} para o frame {frame}") |
|
|
tensor = self._prepare_conditioning_tensor(media, height, width, padding_values) |
|
|
elif isinstance(media, torch.Tensor): |
|
|
print(f" - Usando tensor fornecido para o frame {frame}") |
|
|
tensor = media.to(self.device, dtype=self.runtime_autocast_dtype) |
|
|
else: |
|
|
warnings.warn(f"Tipo de item desconhecido: {type(media)}. Ignorando.") |
|
|
continue |
|
|
|
|
|
safe_frame = max(0, min(int(frame), num_frames - 1)) |
|
|
conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight))) |
|
|
|
|
|
print(f"Total de itens de condicionamento preparados: {len(conditioning_items)}") |
|
|
return conditioning_items |
|
|
|
|
|
def generate_low(self, prompt, negative_prompt, height, width, duration, guidance_scale, seed, conditioning_items=None): |
|
|
print("\n--- INICIANDO ETAPA 1: GERAÇÃO EM BAIXA RESOLUÇÃO ---") |
|
|
self._log_gpu_memory("Início da Geração Low-Res") |
|
|
|
|
|
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed) |
|
|
seed_everething(used_seed) |
|
|
|
|
|
FPS = 24.0 |
|
|
target_frames = round(duration * FPS) |
|
|
actual_num_frames = max(9, int(round((target_frames - 1) / 8.0) * 8 + 1)) |
|
|
|
|
|
height_padded = ((height - 1) // 8 + 1) * 8 |
|
|
width_padded = ((width - 1) // 8 + 1) * 8 |
|
|
generator = torch.Generator(device=self.device).manual_seed(used_seed) |
|
|
|
|
|
temp_dir = tempfile.mkdtemp(prefix="ltxv_low_"); self._register_tmp_dir(temp_dir) |
|
|
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True) |
|
|
|
|
|
downscale_factor = self.config.get("downscale_factor", 0.6666666) |
|
|
vae_scale_factor = self.pipeline.vae_scale_factor |
|
|
|
|
|
|
|
|
|
|
|
x_width = int(width_padded * downscale_factor) |
|
|
downscaled_width = x_width - (x_width % vae_scale_factor) |
|
|
|