File size: 26,494 Bytes
d795566
 
 
d7c623e
d795566
 
2701e1f
d795566
2701e1f
d795566
2701e1f
d795566
 
 
2701e1f
 
d795566
 
 
 
 
 
953982d
d795566
 
 
 
 
cae55d9
d795566
 
 
 
 
 
ab2fc5d
 
d795566
 
 
 
 
 
 
ab2fc5d
 
8f0c470
ab2fc5d
8f0c470
d795566
 
8f0c470
 
 
 
 
 
 
 
 
 
 
d795566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2701e1f
 
 
 
 
 
 
d795566
 
 
2701e1f
d795566
2701e1f
d795566
 
 
 
 
 
 
2701e1f
 
d795566
 
 
 
 
2701e1f
d795566
 
d7c623e
d795566
 
 
 
d7c623e
f736eae
d795566
 
 
 
 
 
 
 
007c224
d795566
007c224
 
d795566
007c224
 
 
 
 
 
 
 
d795566
007c224
d795566
 
 
007c224
d795566
 
007c224
 
 
 
 
 
 
 
 
 
 
 
d795566
007c224
 
 
 
 
d795566
007c224
d795566
 
 
 
007c224
 
 
2701e1f
 
 
007c224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd4abdb
007c224
 
2701e1f
007c224
2701e1f
007c224
 
2701e1f
 
 
007c224
2701e1f
007c224
 
 
 
 
 
 
 
 
 
 
 
fd4abdb
2701e1f
fd4abdb
007c224
 
 
 
 
 
fd4abdb
007c224
 
fd4abdb
 
007c224
2701e1f
007c224
 
d795566
fd4abdb
007c224
 
 
 
 
 
 
2701e1f
007c224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d795566
007c224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9068907
007c224
 
 
 
 
 
 
 
 
2134e1a
d795566
 
 
 
 
 
2134e1a
d795566
 
 
 
2134e1a
d795566
 
 
2134e1a
d795566
 
 
 
 
 
 
 
2134e1a
d795566
 
0df2c16
d795566
 
 
2134e1a
d795566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd335a7
d795566
 
9068907
d795566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
940bd69
682884a
d795566
682884a
d795566
2134e1a
d795566
 
 
 
 
2134e1a
915b370
d795566
 
 
d94efa4
d795566
 
 
 
 
 
2134e1a
d795566
 
fec3865
d795566
 
 
 
 
2134e1a
99efd77
d795566
 
525556c
d795566
 
 
 
2134e1a
 
d795566
940bd69
4b08af0
2134e1a
d795566
 
 
 
 
 
 
 
 
 
 
2134e1a
d795566
 
2134e1a
d795566
 
 
2134e1a
d795566
 
2134e1a
d795566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2134e1a
d795566
2134e1a
d795566
 
2134e1a
d795566
 
 
 
 
 
 
5a3bb22
d795566
 
 
 
 
 
 
 
2701e1f
d795566
 
 
 
2701e1f
d795566
 
 
 
 
 
 
 
 
2701e1f
d795566
 
cae55d9
d795566
 
 
 
cae55d9
d795566
 
 
 
 
 
 
 
 
cae55d9
d795566
 
 
 
 
 
cae55d9
d795566
 
 
 
2701e1f
d795566
 
 
 
 
 
 
 
 
 
 
d0d8baa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
# FILE: ltx_server_refactored_complete.py
# DESCRIPTION: Backend service for video generation using LTX-Video pipeline.
#              Features modular generation, narrative chunking, and resource management.

import gc
import io
import json
import logging
import os
import random
import shutil
import subprocess
import sys
import tempfile
import time
import traceback
import warnings
from pathlib import Path
from typing import Dict, List, Optional, Tuple

import torch
import yaml
from einops import rearrange
from huggingface_hub import hf_hub_download

# ==============================================================================
# --- INITIAL SETUP & CONFIGURATION ---
# ==============================================================================

# Suppress excessive logs from external libraries
warnings.filterwarnings("ignore")
logging.getLogger("huggingface_hub").setLevel(logging.ERROR)
logging.basicConfig(level=logging.INFO, format='[%(levelname)s] %(message)s')

# --- CONSTANTS ---
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
BASE_CONFIG_PATH = LTX_VIDEO_REPO_DIR / "configs"
DEFAULT_CONFIG_FILE = BASE_CONFIG_PATH / "ltxv-13b-0.9.8-distilled-fp8.yaml"
LTX_REPO_ID = "Lightricks/LTX-Video"
RESULTS_DIR = Path("/app/output")
DEFAULT_FPS = 24.0
FRAMES_ALIGNMENT = 8

def add_deps_to_path():
    repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
    if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
        sys.path.insert(0, repo_path)
        print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}")
add_deps_to_path()

from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents
from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent
from api.ltx.inference import (
    create_ltx_video_pipeline,
    create_latent_upsampler,
    load_image_to_tensor_with_resize_and_crop,
    seed_everething,
)

from api.gpu_manager import gpu_manager
from managers.vae_manager import vae_manager_singleton
from tools.video_encode_tool import video_encode_tool_singleton


# ==============================================================================
# --- UTILITY & HELPER FUNCTIONS ---
# ==============================================================================

def seed_everything(seed: int):
    """Sets the seed for reproducibility across all relevant libraries."""
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    # Potentially faster, but less reproducible
    # torch.backends.cudnn.deterministic = False
    # torch.backends.cudnn.benchmark = True

def calculate_padding(orig_h: int, orig_w: int, target_h: int, target_w: int) -> Tuple[int, int, int, int]:
    """Calculates symmetric padding values to reach a target dimension."""
    pad_h = target_h - orig_h
    pad_w = target_w - orig_w
    pad_top = pad_h // 2
    pad_bottom = pad_h - pad_top
    pad_left = pad_w // 2
    pad_right = pad_w - pad_left
    return (pad_left, pad_right, pad_top, pad_bottom)

def log_tensor_info(tensor: torch.Tensor, name: str = "Tensor"):
    """Logs detailed information about a PyTorch tensor for debugging."""
    if not isinstance(tensor, torch.Tensor):
        logging.debug(f"'{name}' is not a tensor.")
        return
    
    info_str = (
        f"--- Tensor: {name} ---\n"
        f"  - Shape: {tuple(tensor.shape)}\n"
        f"  - Dtype: {tensor.dtype}\n"
        f"  - Device: {tensor.device}\n"
    )
    if tensor.numel() > 0:
        try:
            info_str += (
                f"  - Min: {tensor.min().item():.4f} | "
                f"Max: {tensor.max().item():.4f} | "
                f"Mean: {tensor.mean().item():.4f}\n"
            )
        except Exception:
            pass # Fails on some dtypes
    logging.debug(info_str + "----------------------")


# ==============================================================================
# --- VIDEO SERVICE CLASS ---
# ==============================================================================

class VideoService:
    """
    Backend service for orchestrating video generation using the LTX-Video pipeline.
    Encapsulates model loading, state management, and the logic for multi-stage
    video generation (low-resolution, upscale).
    """

    def __init__(self):
        t0 = time.perf_counter()
        print("[DEBUG] Inicializando VideoService...")
        
        # 1. Obter o dispositivo alvo a partir do gerenciador
        #    Não definimos `self.device` ainda, apenas guardamos o alvo.
        target_device = gpu_manager.get_ltx_device()
        print(f"[DEBUG] LTX foi alocado para o dispositivo: {target_device}")

        # 2. Carregar a configuração e os modelos (na CPU, como a função _load_models faz)
        self.config = self._load_config()
        self.pipeline, self.latent_upsampler = self._load_models()

        # 3. Mover os modelos para o dispositivo alvo e definir `self.device`
        self.move_to_device(target_device) # Usando a função que já criamos!

        # 4. Configurar o resto dos componentes com o dispositivo correto
        self._apply_precision_policy()
        vae_manager_singleton.attach_pipeline(
            self.pipeline,
            device=self.device, # Agora `self.device` está correto
            autocast_dtype=self.runtime_autocast_dtype
        )
        self._tmp_dirs = set()
        print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s")
    
    # A função move_to_device que criamos antes é essencial aqui
    def move_to_device(self, device):
        """Move os modelos do pipeline para o dispositivo especificado."""
        print(f"[LTX] Movendo modelos para {device}...")
        self.device = torch.device(device) # Garante que é um objeto torch.device
        self.pipeline.to(self.device)
        if self.latent_upsampler:
            self.latent_upsampler.to(self.device)
        print(f"[LTX] Modelos agora estão em {self.device}.")
        
    def move_to_cpu(self):
        """Move os modelos para a CPU para liberar VRAM."""
        self.move_to_device(torch.device("cpu"))
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

            
    # ==========================================================================
    # --- LIFECYCLE & MODEL MANAGEMENT ---
    # ==========================================================================

    def _load_config(self):
        base = LTX_VIDEO_REPO_DIR / "configs"
        config_path = base / "ltxv-13b-0.9.8-distilled-fp8.yaml"
        with open(config_path, "r") as file:
            return yaml.safe_load(file)

    def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
        print("[DEBUG] Finalize: iniciando limpeza...")
        keep = set(keep_paths or []); extras = set(extra_paths or [])
        gc.collect()
        try:
            if clear_gpu and torch.cuda.is_available():
                torch.cuda.empty_cache()
                try:
                    torch.cuda.ipc_collect()
                except Exception:
                    pass
        except Exception as e:
            print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}")
            
    def _load_models(self):
        t0 = time.perf_counter()
        LTX_REPO = "Lightricks/LTX-Video"
        print("[DEBUG] Baixando checkpoint principal...")
        distilled_model_path = hf_hub_download(
            repo_id=LTX_REPO,
            filename=self.config["checkpoint_path"],
            local_dir=os.getenv("HF_HOME"),
            cache_dir=os.getenv("HF_HOME_CACHE"),
            token=os.getenv("HF_TOKEN"),
        )
        self.config["checkpoint_path"] = distilled_model_path
        print(f"[DEBUG] Checkpoint em: {distilled_model_path}")

        print("[DEBUG] Baixando upscaler espacial...")
        spatial_upscaler_path = hf_hub_download(
            repo_id=LTX_REPO,
            filename=self.config["spatial_upscaler_model_path"],
            local_dir=os.getenv("HF_HOME"),
            cache_dir=os.getenv("HF_HOME_CACHE"),
            token=os.getenv("HF_TOKEN")
        )
        self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
        print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}")

        print("[DEBUG] Construindo pipeline...")
        pipeline = create_ltx_video_pipeline(
            ckpt_path=self.config["checkpoint_path"],
            precision=self.config["precision"],
            text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
            sampler=self.config["sampler"],
            device="cpu",
            enhance_prompt=False,
            prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
            prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
        )
        print("[DEBUG] Pipeline pronto.")

        latent_upsampler = None
        if self.config.get("spatial_upscaler_model_path"):
            print("[DEBUG] Construindo latent_upsampler...")
            latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
            print("[DEBUG] Upsampler pronto.")
        print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s")
        return pipeline, latent_upsampler

    def _apply_precision_policy(self):
        prec = str(self.config.get("precision", "")).lower()
        self.runtime_autocast_dtype = torch.float32
        if prec in ["float8_e4m3fn", "bfloat16"]:
            self.runtime_autocast_dtype = torch.bfloat16
        elif prec == "mixed_precision":
            self.runtime_autocast_dtype = torch.float16

    def _register_tmp_dir(self, d: str):
        if d and os.path.isdir(d):
            self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}")

    @torch.no_grad()
    def _upsample_latents_internal(self, latents: torch.Tensor) -> torch.Tensor:
        try:
            if not self.latent_upsampler:
                raise ValueError("Latent Upsampler não está carregado.")
            latents_unnormalized = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True)
            upsampled_latents = self.latent_upsampler(latents_unnormalized)
            return normalize_latents(upsampled_latents, self.pipeline.vae, vae_per_channel_normalize=True)
        except Exception as e:
            pass
        finally:
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()
            self.finalize(keep_paths=[])

    def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
        tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
        tensor = torch.nn.functional.pad(tensor, padding_values)
        log_tensor_info(tensor, f"_prepare_conditioning_tensor")
        return tensor.to(self.device, dtype=self.runtime_autocast_dtype)

            
    def _save_and_log_video(self, pixel_tensor, base_filename, fps, temp_dir, results_dir, used_seed, progress_callback=None):
        output_path = os.path.join(temp_dir, f"{base_filename}_.mp4")
        video_encode_tool_singleton.save_video_from_tensor(
            pixel_tensor, output_path, fps=fps, progress_callback=progress_callback
        )
        final_path = os.path.join(results_dir, f"{base_filename}_.mp4")
        shutil.move(output_path, final_path)
        print(f"[DEBUG] Vídeo salvo em: {final_path}")
        return final_path

    def _load_tensor(self, caminho):
        # Se já é um tensor, retorna diretamente
        if isinstance(caminho, torch.Tensor):
            return caminho
        # Se é bytes, carrega do buffer
        if isinstance(caminho, (bytes, bytearray)):
            return torch.load(io.BytesIO(caminho))
        # Caso contrário, assume que é um caminho de arquivo
        return torch.load(caminho

    # ==========================================================================
    # --- PUBLIC ORCHESTRATORS ---
    # These are the main entry points called by the frontend.
    # ==========================================================================

    def generate_narrative_low(self, prompt: str, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
        """
        [ORCHESTRATOR] Generates a video from a multi-line prompt, creating a sequence of scenes.
        
        Returns:
            A tuple of (video_path, latents_path, used_seed).
        """
        logging.info("Starting narrative low-res generation...")
        used_seed = self._resolve_seed(kwargs.get("seed"))
        seed_everything(used_seed)

        prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
        if not prompt_list:
            raise ValueError("Prompt is empty or contains no valid lines.")

        num_chunks = len(prompt_list)
        total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0))
        frames_per_chunk = (total_frames // num_chunks // FRAMES_ALIGNMENT) * FRAMES_ALIGNMENT
        overlap_frames = self.config.get("overlap_frames", 8)
        
        all_latents_paths = []
        overlap_condition_item = None
        
        try:
            for i, chunk_prompt in enumerate(prompt_list):
                logging.info(f"Generating narrative chunk {i+1}/{num_chunks}: '{chunk_prompt[:50]}...'")

                current_frames = frames_per_chunk
                if i > 0:
                    current_frames += overlap_frames
                
                # Use initial image conditions only for the first chunk
                current_conditions = kwargs.get("initial_conditions", []) if i == 0 else []
                if overlap_condition_item:
                    current_conditions.append(overlap_condition_item)

                chunk_latents = self._generate_single_chunk_low(
                    prompt=chunk_prompt,
                    num_frames=current_frames,
                    seed=used_seed + i,
                    conditioning_items=current_conditions,
                    **kwargs
                )

                if chunk_latents is None:
                    raise RuntimeError(f"Failed to generate latents for chunk {i+1}.")

                # Create overlap for the next chunk
                if i < num_chunks - 1:
                    overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone()
                    log_tensor_info(overlap_latents, f"Overlap Latents from chunk {i+1}")
                    overlap_condition_item = ConditioningItem(
                        media_item=overlap_latents, media_frame_number=0, conditioning_strength=1.0
                    )
                
                # Trim the overlap from the current chunk before saving
                if i > 0:
                    chunk_latents = chunk_latents[:, :, overlap_frames:, :, :]
                
                # Save chunk latents to disk to manage memory
                chunk_path = RESULTS_DIR / f"chunk_{i}_{used_seed}.pt"
                torch.save(chunk_latents.cpu(), chunk_path)
                all_latents_paths.append(chunk_path)
            
            # Concatenate, decode, and save the final video
            return self._finalize_generation(all_latents_paths, "narrative_video", used_seed)

        except Exception as e:
            logging.error(f"Error during narrative generation: {e}")
            traceback.print_exc()
            return None, None, None
        finally:
            # Clean up intermediate chunk files
            for path in all_latents_paths:
                if os.path.exists(path):
                    os.remove(path)
            self.finalize()


    def generate_single_low(self, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
        """
        [ORCHESTRATOR] Generates a video from a single prompt in one go.
        
        Returns:
            A tuple of (video_path, latents_path, used_seed).
        """
        logging.info("Starting single-prompt low-res generation...")
        used_seed = self._resolve_seed(kwargs.get("seed"))
        seed_everything(used_seed)
        
        try:
            total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0), min_frames=9)
            
            final_latents = self._generate_single_chunk_low(
                num_frames=total_frames,
                seed=used_seed,
                conditioning_items=kwargs.get("initial_conditions", []),
                **kwargs
            )
            
            if final_latents is None:
                raise RuntimeError("Failed to generate latents.")

            # Save latents to a single file, then decode and save video
            latents_path = RESULTS_DIR / f"single_{used_seed}.pt"
            torch.save(final_latents.cpu(), latents_path)
            return self._finalize_generation([latents_path], "single_video", used_seed)

        except Exception as e:
            logging.error(f"Error during single generation: {e}")
            traceback.print_exc()
            return None, None, None
        finally:
            self.finalize()
    

    # ==========================================================================
    # --- INTERNAL WORKER UNITS ---
    # ==========================================================================

    def _generate_single_chunk_low(
        self, prompt: str, negative_prompt: str, height: int, width: int, num_frames: int, seed: int,
        conditioning_items: List[ConditioningItem], ltx_configs_override: Optional[Dict], **kwargs
    ) -> Optional[torch.Tensor]:
        """
        [WORKER] Generates a single chunk of latents. This is the core generation unit.
        Returns the raw latents tensor on the target device, or None on failure.
        """
        height_padded, width_padded = (self._align(d) for d in (height, width))
        downscale_factor = self.config.get("downscale_factor", 0.6666666)
        vae_scale_factor = self.pipeline.vae_scale_factor

        downscaled_height = self._align(int(height_padded * downscale_factor), vae_scale_factor)
        downscaled_width = self._align(int(width_padded * downscale_factor), vae_scale_factor)

        first_pass_config = self.config.get("first_pass", {}).copy()
        if ltx_configs_override:
             first_pass_config.update(self._prepare_guidance_overrides(ltx_configs_override))

        pipeline_kwargs = {
            "prompt": prompt,
            "negative_prompt": negative_prompt,
            "height": downscaled_height,
            "width": downscaled_width,
            "num_frames": num_frames,
            "frame_rate": DEFAULT_FPS,
            "generator": torch.Generator(device=self.device).manual_seed(seed),
            "output_type": "latent",
            "conditioning_items": conditioning_items,
            **first_pass_config
        }
        
        logging.debug(f"Pipeline call args: { {k: v for k, v in pipeline_kwargs.items() if k != 'conditioning_items'} }")
        
        with torch.autocast(device_type=self.device.type, dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
            latents_raw = self.pipeline(**pipeline_kwargs).images
        
        log_tensor_info(latents_raw, f"Raw Latents for '{prompt[:40]}...'")
        return latents_raw


    # ==========================================================================
    # --- HELPERS & UTILITY METHODS ---
    # ==========================================================================
    
    def _finalize_generation(self, latents_paths: List[Path], base_filename: str, seed: int) -> Tuple[str, str, int]:
        """
        Loads latents from paths, concatenates them, decodes to video, and saves both.
        """
        logging.info("Finalizing generation: decoding latents to video.")
        # Load all tensors and concatenate them on the CPU first
        all_tensors_cpu = [torch.load(p) for p in latents_paths]
        final_latents_cpu = torch.cat(all_tensors_cpu, dim=2)
        
        # Save final combined latents
        final_latents_path = RESULTS_DIR / f"latents_{base_filename}_{seed}.pt"
        torch.save(final_latents_cpu, final_latents_path)
        logging.info(f"Final latents saved to: {final_latents_path}")
        
        # Move to GPU for decoding
        final_latents_gpu = final_latents_cpu.to(self.device)
        log_tensor_info(final_latents_gpu, "Final Concatenated Latents")

        with torch.autocast(device_type=self.device.type, dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
            pixel_tensor = vae_manager_singleton.decode(
                final_latents_gpu,
                decode_timestep=float(self.config.get("decode_timestep", 0.05))
            )
        
        video_path = self._save_and_log_video(pixel_tensor, f"{base_filename}_{seed}")
        return str(video_path), str(final_latents_path), seed

    def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int) -> List[ConditioningItem]:
        """Prepares a list of ConditioningItem objects from file paths or tensors."""
        if not items_list:
            return []
        
        height_padded, width_padded = self._align(height), self._align(width)
        padding_values = calculate_padding(height, width, height_padded, width_padded)
        
        conditioning_items = []
        for media, frame, weight in items_list:
            tensor = self._prepare_conditioning_tensor(media, height, width, padding_values)
            safe_frame = max(0, min(int(frame), num_frames - 1))
            conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
        return conditioning_items

    def _prepare_conditioning_tensor(self, media_path: str, height: int, width: int, padding: Tuple) -> torch.Tensor:
        """Loads and processes an image to be a conditioning tensor."""
        tensor = load_image_to_tensor_with_resize_and_crop(media_path, height, width)
        tensor = torch.nn.functional.pad(tensor, padding)
        log_tensor_info(tensor, f"Prepared Conditioning Tensor from {media_path}")
        return tensor.to(self.device, dtype=self.runtime_autocast_dtype)

    def _prepare_guidance_overrides(self, ltx_configs: Dict) -> Dict:
        """Parses UI presets for guidance into pipeline-compatible arguments."""
        overrides = {}
        preset = ltx_configs.get("guidance_preset", "Padrão (Recomendado)")
        
        # Default LTX values are used if preset is 'Padrão'
        if preset == "Agressivo":
            overrides["guidance_scale"] = [1, 2, 8, 12, 8, 2, 1]
            overrides["stg_scale"] = [0, 0, 5, 6, 5, 3, 2]
        elif preset == "Suave":
            overrides["guidance_scale"] = [1, 1, 4, 5, 4, 1, 1]
            overrides["stg_scale"] = [0, 0, 2, 2, 2, 1, 0]
        elif preset == "Customizado":
            try:
                overrides["guidance_scale"] = json.loads(ltx_configs["guidance_scale_list"])
                overrides["stg_scale"] = json.loads(ltx_configs["stg_scale_list"])
            except (json.JSONDecodeError, KeyError) as e:
                logging.warning(f"Failed to parse custom guidance values: {e}. Falling back to defaults.")
        
        if overrides:
            logging.info(f"Applying '{preset}' guidance preset overrides.")
        return overrides

    def _save_and_log_video(self, pixel_tensor: torch.Tensor, base_filename: str) -> Path:
        """Saves a pixel tensor to an MP4 file and returns the final path."""
        # Work in a temporary directory to handle atomic move
        with tempfile.TemporaryDirectory() as temp_dir:
            temp_path = os.path.join(temp_dir, f"{base_filename}.mp4")
            video_encode_tool_singleton.save_video_from_tensor(
                pixel_tensor, temp_path, fps=DEFAULT_FPS
            )
            final_path = RESULTS_DIR / f"{base_filename}.mp4"
            shutil.move(temp_path, final_path)
            logging.info(f"Video saved successfully to: {final_path}")
            return final_path
    
    def _apply_precision_policy(self):
        """Sets the autocast dtype based on the configuration file."""
        precision = str(self.config.get("precision", "bfloat16")).lower()
        if precision in ["float8_e4m3fn", "bfloat16"]:
            self.runtime_autocast_dtype = torch.bfloat16
        elif precision == "mixed_precision":
            self.runtime_autocast_dtype = torch.float16
        else:
            self.runtime_autocast_dtype = torch.float32
        logging.info(f"Runtime precision policy set for autocast: {self.runtime_autocast_dtype}")

    def _align(self, dim: int, alignment: int = FRAMES_ALIGNMENT) -> int:
        """Aligns a dimension to the nearest multiple of `alignment`."""
        return ((dim - 1) // alignment + 1) * alignment
    
    def _calculate_aligned_frames(self, duration_s: float, min_frames: int = 1) -> int:
        """Calculates the total number of frames based on duration, ensuring alignment."""
        num_frames = int(round(duration_s * DEFAULT_FPS))
        aligned_frames = self._align(num_frames)
        # Ensure it's at least 1 frame longer than the alignment for some ops, and respects min_frames
        final_frames = max(aligned_frames + 1, min_frames)
        return final_frames

    def _resolve_seed(self, seed: Optional[int]) -> int:
        """Returns the given seed or generates a new random one."""
        return random.randint(0, 2**32 - 1) if seed is None else int(seed)


# ==============================================================================
# --- SINGLETON INSTANTIATION ---
# ==============================================================================
# The service is instantiated once when the module is imported, ensuring a single
# instance manages the models and GPU resources throughout the application's life.

try:
    video_generation_service = VideoService()
    logging.info("Global VideoService instance created successfully.")
except Exception as e:
    logging.critical(f"Failed to initialize VideoService: {e}")
    traceback.print_exc()
    # Exit if the core service fails to start, as the app is non-functional
    sys.exit(1)