File size: 26,494 Bytes
d795566 d7c623e d795566 2701e1f d795566 2701e1f d795566 2701e1f d795566 2701e1f d795566 953982d d795566 cae55d9 d795566 ab2fc5d d795566 ab2fc5d 8f0c470 ab2fc5d 8f0c470 d795566 8f0c470 d795566 2701e1f d795566 2701e1f d795566 2701e1f d795566 2701e1f d795566 2701e1f d795566 d7c623e d795566 d7c623e f736eae d795566 007c224 d795566 007c224 d795566 007c224 d795566 007c224 d795566 007c224 d795566 007c224 d795566 007c224 d795566 007c224 d795566 007c224 2701e1f 007c224 fd4abdb 007c224 2701e1f 007c224 2701e1f 007c224 2701e1f 007c224 2701e1f 007c224 fd4abdb 2701e1f fd4abdb 007c224 fd4abdb 007c224 fd4abdb 007c224 2701e1f 007c224 d795566 fd4abdb 007c224 2701e1f 007c224 d795566 007c224 9068907 007c224 2134e1a d795566 2134e1a d795566 2134e1a d795566 2134e1a d795566 2134e1a d795566 0df2c16 d795566 2134e1a d795566 cd335a7 d795566 9068907 d795566 940bd69 682884a d795566 682884a d795566 2134e1a d795566 2134e1a 915b370 d795566 d94efa4 d795566 2134e1a d795566 fec3865 d795566 2134e1a 99efd77 d795566 525556c d795566 2134e1a d795566 940bd69 4b08af0 2134e1a d795566 2134e1a d795566 2134e1a d795566 2134e1a d795566 2134e1a d795566 2134e1a d795566 2134e1a d795566 2134e1a d795566 5a3bb22 d795566 2701e1f d795566 2701e1f d795566 2701e1f d795566 cae55d9 d795566 cae55d9 d795566 cae55d9 d795566 cae55d9 d795566 2701e1f d795566 d0d8baa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
# FILE: ltx_server_refactored_complete.py
# DESCRIPTION: Backend service for video generation using LTX-Video pipeline.
# Features modular generation, narrative chunking, and resource management.
import gc
import io
import json
import logging
import os
import random
import shutil
import subprocess
import sys
import tempfile
import time
import traceback
import warnings
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import torch
import yaml
from einops import rearrange
from huggingface_hub import hf_hub_download
# ==============================================================================
# --- INITIAL SETUP & CONFIGURATION ---
# ==============================================================================
# Suppress excessive logs from external libraries
warnings.filterwarnings("ignore")
logging.getLogger("huggingface_hub").setLevel(logging.ERROR)
logging.basicConfig(level=logging.INFO, format='[%(levelname)s] %(message)s')
# --- CONSTANTS ---
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
BASE_CONFIG_PATH = LTX_VIDEO_REPO_DIR / "configs"
DEFAULT_CONFIG_FILE = BASE_CONFIG_PATH / "ltxv-13b-0.9.8-distilled-fp8.yaml"
LTX_REPO_ID = "Lightricks/LTX-Video"
RESULTS_DIR = Path("/app/output")
DEFAULT_FPS = 24.0
FRAMES_ALIGNMENT = 8
def add_deps_to_path():
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
sys.path.insert(0, repo_path)
print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}")
add_deps_to_path()
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents
from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent
from api.ltx.inference import (
create_ltx_video_pipeline,
create_latent_upsampler,
load_image_to_tensor_with_resize_and_crop,
seed_everething,
)
from api.gpu_manager import gpu_manager
from managers.vae_manager import vae_manager_singleton
from tools.video_encode_tool import video_encode_tool_singleton
# ==============================================================================
# --- UTILITY & HELPER FUNCTIONS ---
# ==============================================================================
def seed_everything(seed: int):
"""Sets the seed for reproducibility across all relevant libraries."""
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# Potentially faster, but less reproducible
# torch.backends.cudnn.deterministic = False
# torch.backends.cudnn.benchmark = True
def calculate_padding(orig_h: int, orig_w: int, target_h: int, target_w: int) -> Tuple[int, int, int, int]:
"""Calculates symmetric padding values to reach a target dimension."""
pad_h = target_h - orig_h
pad_w = target_w - orig_w
pad_top = pad_h // 2
pad_bottom = pad_h - pad_top
pad_left = pad_w // 2
pad_right = pad_w - pad_left
return (pad_left, pad_right, pad_top, pad_bottom)
def log_tensor_info(tensor: torch.Tensor, name: str = "Tensor"):
"""Logs detailed information about a PyTorch tensor for debugging."""
if not isinstance(tensor, torch.Tensor):
logging.debug(f"'{name}' is not a tensor.")
return
info_str = (
f"--- Tensor: {name} ---\n"
f" - Shape: {tuple(tensor.shape)}\n"
f" - Dtype: {tensor.dtype}\n"
f" - Device: {tensor.device}\n"
)
if tensor.numel() > 0:
try:
info_str += (
f" - Min: {tensor.min().item():.4f} | "
f"Max: {tensor.max().item():.4f} | "
f"Mean: {tensor.mean().item():.4f}\n"
)
except Exception:
pass # Fails on some dtypes
logging.debug(info_str + "----------------------")
# ==============================================================================
# --- VIDEO SERVICE CLASS ---
# ==============================================================================
class VideoService:
"""
Backend service for orchestrating video generation using the LTX-Video pipeline.
Encapsulates model loading, state management, and the logic for multi-stage
video generation (low-resolution, upscale).
"""
def __init__(self):
t0 = time.perf_counter()
print("[DEBUG] Inicializando VideoService...")
# 1. Obter o dispositivo alvo a partir do gerenciador
# Não definimos `self.device` ainda, apenas guardamos o alvo.
target_device = gpu_manager.get_ltx_device()
print(f"[DEBUG] LTX foi alocado para o dispositivo: {target_device}")
# 2. Carregar a configuração e os modelos (na CPU, como a função _load_models faz)
self.config = self._load_config()
self.pipeline, self.latent_upsampler = self._load_models()
# 3. Mover os modelos para o dispositivo alvo e definir `self.device`
self.move_to_device(target_device) # Usando a função que já criamos!
# 4. Configurar o resto dos componentes com o dispositivo correto
self._apply_precision_policy()
vae_manager_singleton.attach_pipeline(
self.pipeline,
device=self.device, # Agora `self.device` está correto
autocast_dtype=self.runtime_autocast_dtype
)
self._tmp_dirs = set()
print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s")
# A função move_to_device que criamos antes é essencial aqui
def move_to_device(self, device):
"""Move os modelos do pipeline para o dispositivo especificado."""
print(f"[LTX] Movendo modelos para {device}...")
self.device = torch.device(device) # Garante que é um objeto torch.device
self.pipeline.to(self.device)
if self.latent_upsampler:
self.latent_upsampler.to(self.device)
print(f"[LTX] Modelos agora estão em {self.device}.")
def move_to_cpu(self):
"""Move os modelos para a CPU para liberar VRAM."""
self.move_to_device(torch.device("cpu"))
if torch.cuda.is_available():
torch.cuda.empty_cache()
# ==========================================================================
# --- LIFECYCLE & MODEL MANAGEMENT ---
# ==========================================================================
def _load_config(self):
base = LTX_VIDEO_REPO_DIR / "configs"
config_path = base / "ltxv-13b-0.9.8-distilled-fp8.yaml"
with open(config_path, "r") as file:
return yaml.safe_load(file)
def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
print("[DEBUG] Finalize: iniciando limpeza...")
keep = set(keep_paths or []); extras = set(extra_paths or [])
gc.collect()
try:
if clear_gpu and torch.cuda.is_available():
torch.cuda.empty_cache()
try:
torch.cuda.ipc_collect()
except Exception:
pass
except Exception as e:
print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}")
def _load_models(self):
t0 = time.perf_counter()
LTX_REPO = "Lightricks/LTX-Video"
print("[DEBUG] Baixando checkpoint principal...")
distilled_model_path = hf_hub_download(
repo_id=LTX_REPO,
filename=self.config["checkpoint_path"],
local_dir=os.getenv("HF_HOME"),
cache_dir=os.getenv("HF_HOME_CACHE"),
token=os.getenv("HF_TOKEN"),
)
self.config["checkpoint_path"] = distilled_model_path
print(f"[DEBUG] Checkpoint em: {distilled_model_path}")
print("[DEBUG] Baixando upscaler espacial...")
spatial_upscaler_path = hf_hub_download(
repo_id=LTX_REPO,
filename=self.config["spatial_upscaler_model_path"],
local_dir=os.getenv("HF_HOME"),
cache_dir=os.getenv("HF_HOME_CACHE"),
token=os.getenv("HF_TOKEN")
)
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}")
print("[DEBUG] Construindo pipeline...")
pipeline = create_ltx_video_pipeline(
ckpt_path=self.config["checkpoint_path"],
precision=self.config["precision"],
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
sampler=self.config["sampler"],
device="cpu",
enhance_prompt=False,
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
)
print("[DEBUG] Pipeline pronto.")
latent_upsampler = None
if self.config.get("spatial_upscaler_model_path"):
print("[DEBUG] Construindo latent_upsampler...")
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
print("[DEBUG] Upsampler pronto.")
print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s")
return pipeline, latent_upsampler
def _apply_precision_policy(self):
prec = str(self.config.get("precision", "")).lower()
self.runtime_autocast_dtype = torch.float32
if prec in ["float8_e4m3fn", "bfloat16"]:
self.runtime_autocast_dtype = torch.bfloat16
elif prec == "mixed_precision":
self.runtime_autocast_dtype = torch.float16
def _register_tmp_dir(self, d: str):
if d and os.path.isdir(d):
self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}")
@torch.no_grad()
def _upsample_latents_internal(self, latents: torch.Tensor) -> torch.Tensor:
try:
if not self.latent_upsampler:
raise ValueError("Latent Upsampler não está carregado.")
latents_unnormalized = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True)
upsampled_latents = self.latent_upsampler(latents_unnormalized)
return normalize_latents(upsampled_latents, self.pipeline.vae, vae_per_channel_normalize=True)
except Exception as e:
pass
finally:
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
self.finalize(keep_paths=[])
def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
tensor = torch.nn.functional.pad(tensor, padding_values)
log_tensor_info(tensor, f"_prepare_conditioning_tensor")
return tensor.to(self.device, dtype=self.runtime_autocast_dtype)
def _save_and_log_video(self, pixel_tensor, base_filename, fps, temp_dir, results_dir, used_seed, progress_callback=None):
output_path = os.path.join(temp_dir, f"{base_filename}_.mp4")
video_encode_tool_singleton.save_video_from_tensor(
pixel_tensor, output_path, fps=fps, progress_callback=progress_callback
)
final_path = os.path.join(results_dir, f"{base_filename}_.mp4")
shutil.move(output_path, final_path)
print(f"[DEBUG] Vídeo salvo em: {final_path}")
return final_path
def _load_tensor(self, caminho):
# Se já é um tensor, retorna diretamente
if isinstance(caminho, torch.Tensor):
return caminho
# Se é bytes, carrega do buffer
if isinstance(caminho, (bytes, bytearray)):
return torch.load(io.BytesIO(caminho))
# Caso contrário, assume que é um caminho de arquivo
return torch.load(caminho
# ==========================================================================
# --- PUBLIC ORCHESTRATORS ---
# These are the main entry points called by the frontend.
# ==========================================================================
def generate_narrative_low(self, prompt: str, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
"""
[ORCHESTRATOR] Generates a video from a multi-line prompt, creating a sequence of scenes.
Returns:
A tuple of (video_path, latents_path, used_seed).
"""
logging.info("Starting narrative low-res generation...")
used_seed = self._resolve_seed(kwargs.get("seed"))
seed_everything(used_seed)
prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
if not prompt_list:
raise ValueError("Prompt is empty or contains no valid lines.")
num_chunks = len(prompt_list)
total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0))
frames_per_chunk = (total_frames // num_chunks // FRAMES_ALIGNMENT) * FRAMES_ALIGNMENT
overlap_frames = self.config.get("overlap_frames", 8)
all_latents_paths = []
overlap_condition_item = None
try:
for i, chunk_prompt in enumerate(prompt_list):
logging.info(f"Generating narrative chunk {i+1}/{num_chunks}: '{chunk_prompt[:50]}...'")
current_frames = frames_per_chunk
if i > 0:
current_frames += overlap_frames
# Use initial image conditions only for the first chunk
current_conditions = kwargs.get("initial_conditions", []) if i == 0 else []
if overlap_condition_item:
current_conditions.append(overlap_condition_item)
chunk_latents = self._generate_single_chunk_low(
prompt=chunk_prompt,
num_frames=current_frames,
seed=used_seed + i,
conditioning_items=current_conditions,
**kwargs
)
if chunk_latents is None:
raise RuntimeError(f"Failed to generate latents for chunk {i+1}.")
# Create overlap for the next chunk
if i < num_chunks - 1:
overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone()
log_tensor_info(overlap_latents, f"Overlap Latents from chunk {i+1}")
overlap_condition_item = ConditioningItem(
media_item=overlap_latents, media_frame_number=0, conditioning_strength=1.0
)
# Trim the overlap from the current chunk before saving
if i > 0:
chunk_latents = chunk_latents[:, :, overlap_frames:, :, :]
# Save chunk latents to disk to manage memory
chunk_path = RESULTS_DIR / f"chunk_{i}_{used_seed}.pt"
torch.save(chunk_latents.cpu(), chunk_path)
all_latents_paths.append(chunk_path)
# Concatenate, decode, and save the final video
return self._finalize_generation(all_latents_paths, "narrative_video", used_seed)
except Exception as e:
logging.error(f"Error during narrative generation: {e}")
traceback.print_exc()
return None, None, None
finally:
# Clean up intermediate chunk files
for path in all_latents_paths:
if os.path.exists(path):
os.remove(path)
self.finalize()
def generate_single_low(self, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
"""
[ORCHESTRATOR] Generates a video from a single prompt in one go.
Returns:
A tuple of (video_path, latents_path, used_seed).
"""
logging.info("Starting single-prompt low-res generation...")
used_seed = self._resolve_seed(kwargs.get("seed"))
seed_everything(used_seed)
try:
total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0), min_frames=9)
final_latents = self._generate_single_chunk_low(
num_frames=total_frames,
seed=used_seed,
conditioning_items=kwargs.get("initial_conditions", []),
**kwargs
)
if final_latents is None:
raise RuntimeError("Failed to generate latents.")
# Save latents to a single file, then decode and save video
latents_path = RESULTS_DIR / f"single_{used_seed}.pt"
torch.save(final_latents.cpu(), latents_path)
return self._finalize_generation([latents_path], "single_video", used_seed)
except Exception as e:
logging.error(f"Error during single generation: {e}")
traceback.print_exc()
return None, None, None
finally:
self.finalize()
# ==========================================================================
# --- INTERNAL WORKER UNITS ---
# ==========================================================================
def _generate_single_chunk_low(
self, prompt: str, negative_prompt: str, height: int, width: int, num_frames: int, seed: int,
conditioning_items: List[ConditioningItem], ltx_configs_override: Optional[Dict], **kwargs
) -> Optional[torch.Tensor]:
"""
[WORKER] Generates a single chunk of latents. This is the core generation unit.
Returns the raw latents tensor on the target device, or None on failure.
"""
height_padded, width_padded = (self._align(d) for d in (height, width))
downscale_factor = self.config.get("downscale_factor", 0.6666666)
vae_scale_factor = self.pipeline.vae_scale_factor
downscaled_height = self._align(int(height_padded * downscale_factor), vae_scale_factor)
downscaled_width = self._align(int(width_padded * downscale_factor), vae_scale_factor)
first_pass_config = self.config.get("first_pass", {}).copy()
if ltx_configs_override:
first_pass_config.update(self._prepare_guidance_overrides(ltx_configs_override))
pipeline_kwargs = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"height": downscaled_height,
"width": downscaled_width,
"num_frames": num_frames,
"frame_rate": DEFAULT_FPS,
"generator": torch.Generator(device=self.device).manual_seed(seed),
"output_type": "latent",
"conditioning_items": conditioning_items,
**first_pass_config
}
logging.debug(f"Pipeline call args: { {k: v for k, v in pipeline_kwargs.items() if k != 'conditioning_items'} }")
with torch.autocast(device_type=self.device.type, dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
latents_raw = self.pipeline(**pipeline_kwargs).images
log_tensor_info(latents_raw, f"Raw Latents for '{prompt[:40]}...'")
return latents_raw
# ==========================================================================
# --- HELPERS & UTILITY METHODS ---
# ==========================================================================
def _finalize_generation(self, latents_paths: List[Path], base_filename: str, seed: int) -> Tuple[str, str, int]:
"""
Loads latents from paths, concatenates them, decodes to video, and saves both.
"""
logging.info("Finalizing generation: decoding latents to video.")
# Load all tensors and concatenate them on the CPU first
all_tensors_cpu = [torch.load(p) for p in latents_paths]
final_latents_cpu = torch.cat(all_tensors_cpu, dim=2)
# Save final combined latents
final_latents_path = RESULTS_DIR / f"latents_{base_filename}_{seed}.pt"
torch.save(final_latents_cpu, final_latents_path)
logging.info(f"Final latents saved to: {final_latents_path}")
# Move to GPU for decoding
final_latents_gpu = final_latents_cpu.to(self.device)
log_tensor_info(final_latents_gpu, "Final Concatenated Latents")
with torch.autocast(device_type=self.device.type, dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
pixel_tensor = vae_manager_singleton.decode(
final_latents_gpu,
decode_timestep=float(self.config.get("decode_timestep", 0.05))
)
video_path = self._save_and_log_video(pixel_tensor, f"{base_filename}_{seed}")
return str(video_path), str(final_latents_path), seed
def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int) -> List[ConditioningItem]:
"""Prepares a list of ConditioningItem objects from file paths or tensors."""
if not items_list:
return []
height_padded, width_padded = self._align(height), self._align(width)
padding_values = calculate_padding(height, width, height_padded, width_padded)
conditioning_items = []
for media, frame, weight in items_list:
tensor = self._prepare_conditioning_tensor(media, height, width, padding_values)
safe_frame = max(0, min(int(frame), num_frames - 1))
conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
return conditioning_items
def _prepare_conditioning_tensor(self, media_path: str, height: int, width: int, padding: Tuple) -> torch.Tensor:
"""Loads and processes an image to be a conditioning tensor."""
tensor = load_image_to_tensor_with_resize_and_crop(media_path, height, width)
tensor = torch.nn.functional.pad(tensor, padding)
log_tensor_info(tensor, f"Prepared Conditioning Tensor from {media_path}")
return tensor.to(self.device, dtype=self.runtime_autocast_dtype)
def _prepare_guidance_overrides(self, ltx_configs: Dict) -> Dict:
"""Parses UI presets for guidance into pipeline-compatible arguments."""
overrides = {}
preset = ltx_configs.get("guidance_preset", "Padrão (Recomendado)")
# Default LTX values are used if preset is 'Padrão'
if preset == "Agressivo":
overrides["guidance_scale"] = [1, 2, 8, 12, 8, 2, 1]
overrides["stg_scale"] = [0, 0, 5, 6, 5, 3, 2]
elif preset == "Suave":
overrides["guidance_scale"] = [1, 1, 4, 5, 4, 1, 1]
overrides["stg_scale"] = [0, 0, 2, 2, 2, 1, 0]
elif preset == "Customizado":
try:
overrides["guidance_scale"] = json.loads(ltx_configs["guidance_scale_list"])
overrides["stg_scale"] = json.loads(ltx_configs["stg_scale_list"])
except (json.JSONDecodeError, KeyError) as e:
logging.warning(f"Failed to parse custom guidance values: {e}. Falling back to defaults.")
if overrides:
logging.info(f"Applying '{preset}' guidance preset overrides.")
return overrides
def _save_and_log_video(self, pixel_tensor: torch.Tensor, base_filename: str) -> Path:
"""Saves a pixel tensor to an MP4 file and returns the final path."""
# Work in a temporary directory to handle atomic move
with tempfile.TemporaryDirectory() as temp_dir:
temp_path = os.path.join(temp_dir, f"{base_filename}.mp4")
video_encode_tool_singleton.save_video_from_tensor(
pixel_tensor, temp_path, fps=DEFAULT_FPS
)
final_path = RESULTS_DIR / f"{base_filename}.mp4"
shutil.move(temp_path, final_path)
logging.info(f"Video saved successfully to: {final_path}")
return final_path
def _apply_precision_policy(self):
"""Sets the autocast dtype based on the configuration file."""
precision = str(self.config.get("precision", "bfloat16")).lower()
if precision in ["float8_e4m3fn", "bfloat16"]:
self.runtime_autocast_dtype = torch.bfloat16
elif precision == "mixed_precision":
self.runtime_autocast_dtype = torch.float16
else:
self.runtime_autocast_dtype = torch.float32
logging.info(f"Runtime precision policy set for autocast: {self.runtime_autocast_dtype}")
def _align(self, dim: int, alignment: int = FRAMES_ALIGNMENT) -> int:
"""Aligns a dimension to the nearest multiple of `alignment`."""
return ((dim - 1) // alignment + 1) * alignment
def _calculate_aligned_frames(self, duration_s: float, min_frames: int = 1) -> int:
"""Calculates the total number of frames based on duration, ensuring alignment."""
num_frames = int(round(duration_s * DEFAULT_FPS))
aligned_frames = self._align(num_frames)
# Ensure it's at least 1 frame longer than the alignment for some ops, and respects min_frames
final_frames = max(aligned_frames + 1, min_frames)
return final_frames
def _resolve_seed(self, seed: Optional[int]) -> int:
"""Returns the given seed or generates a new random one."""
return random.randint(0, 2**32 - 1) if seed is None else int(seed)
# ==============================================================================
# --- SINGLETON INSTANTIATION ---
# ==============================================================================
# The service is instantiated once when the module is imported, ensuring a single
# instance manages the models and GPU resources throughout the application's life.
try:
video_generation_service = VideoService()
logging.info("Global VideoService instance created successfully.")
except Exception as e:
logging.critical(f"Failed to initialize VideoService: {e}")
traceback.print_exc()
# Exit if the core service fails to start, as the app is non-functional
sys.exit(1) |