File size: 26,812 Bytes
d9ca9c4
a1a3fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9ca9c4
 
 
37f366a
d9ca9c4
 
 
 
37f366a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
# ltx_server_refactored.py — VideoService (Modular Version with Exact Dimension Calculation)

# --- 0. WARNINGS E AMBIENTE ---
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*")
from huggingface_hub import logging
logging.set_verbosity_error()
logging.set_verbosity_warning()
logging.set_verbosity_info()
logging.set_verbosity_debug()
LTXV_DEBUG=1
LTXV_FRAME_LOG_EVERY=8
import os, subprocess, shlex, tempfile
import torch
import json
import numpy as np
import random
import os
import shlex
import yaml
from typing import List, Dict
from pathlib import Path
import imageio
from PIL import Image
import tempfile
from huggingface_hub import hf_hub_download
import sys
import subprocess
import gc
import shutil
import contextlib
import time
import traceback
from einops import rearrange
import torch.nn.functional as F
from managers.vae_manager import vae_manager_singleton
from tools.video_encode_tool import video_encode_tool_singleton
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"

def run_setup():
    setup_script_path = "setup.py"
    if not os.path.exists(setup_script_path):
        print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.")
        return
    try:
        print("[DEBUG] Executando setup.py para dependências...")
        subprocess.run([sys.executable, setup_script_path], check=True)
        print("[DEBUG] Setup concluído com sucesso.")
    except subprocess.CalledProcessError as e:
        print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.")
        sys.exit(1)
        
if not LTX_VIDEO_REPO_DIR.exists():
    print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...")
    run_setup()

def add_deps_to_path():
    repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
    if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
        sys.path.insert(0, repo_path)
        print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}")

def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]:
    try:
        import psutil
        import pynvml as nvml
        nvml.nvmlInit()
        handle = nvml.nvmlDeviceGetHandleByIndex(device_index)
        try:
            procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle)
        except Exception:
            procs = nvml.nvmlDeviceGetComputeRunningProcesses(handle)
        results = []
        for p in procs:
            pid = int(p.pid)
            used_mb = None
            try:
                if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,):
                    used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024))
            except Exception:
                used_mb = None
            name = "unknown"
            user = "unknown"
            try:
                import psutil
                pr = psutil.Process(pid)
                name = pr.name()
                user = pr.username()
            except Exception:
                pass
            results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
        nvml.nvmlShutdown()
        return results
    except Exception:
        return []

def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]:
    cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits"
    try:
        out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0)
    except Exception:
        return []
    results = []
    for line in out.strip().splitlines():
        parts = [p.strip() for p in line.split(",")]
        if len(parts) >= 3:
            try:
                pid = int(parts[0]); name = parts[1]; used_mb = int(parts[2])
                user = "unknown"
                try:
                    import psutil
                    pr = psutil.Process(pid)
                    user = pr.username()
                except Exception:
                    pass
                results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
            except Exception:
                continue
    return results

def calculate_padding(orig_h, orig_w, target_h, target_w):
    pad_h = target_h - orig_h
    pad_w = target_w - orig_w
    pad_top = pad_h // 2
    pad_bottom = pad_h - pad_top
    pad_left = pad_w // 2
    pad_right = pad_w - pad_left
    return (pad_left, pad_right, pad_top, pad_bottom)

def calculate_new_dimensions(orig_w, orig_h, divisor=8):
    if orig_w == 0 or orig_h == 0:
        return 512, 512
    if orig_w >= orig_h:
        aspect_ratio = orig_w / orig_h
        new_h = 512
        new_w = new_h * aspect_ratio
    else:
        aspect_ratio = orig_h / orig_w
        new_w = 512
        new_h = new_w * aspect_ratio
    final_w = int(round(new_w / divisor)) * divisor
    final_h = int(round(new_h / divisor)) * divisor
    final_w = max(divisor, final_w)
    final_h = max(divisor, final_h)
    print(f"[Dimension Calc] Original: {orig_w}x{orig_h} -> Calculado: {new_w:.0f}x{new_h:.0f} -> Final (divisível por {divisor}): {final_w}x{final_h}")
    return final_h, final_w

def _gpu_process_table(processes: List[Dict], current_pid: int) -> str:
    if not processes:
        return "  - Processos ativos: (nenhum)\n"
    processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True)
    lines = ["  - Processos ativos (PID | USER | NAME | VRAM MB):"]
    for p in processes:
        star = "*" if p["pid"] == current_pid else " "
        used_str = str(p["used_mb"]) if p.get("used_mb") is not None else "N/A"
        lines.append(f"    {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}")
    return "\n".join(lines) + "\n"

def log_tensor_info(tensor, name="Tensor"):
    if not isinstance(tensor, torch.Tensor):
        print(f"\n[INFO] '{name}' não é tensor.")
        return
    print(f"\n--- Tensor: {name} ---")
    print(f"  - Shape: {tuple(tensor.shape)}")
    print(f"  - Dtype: {tensor.dtype}")
    print(f"  - Device: {tensor.device}")
    if tensor.numel() > 0:
        try:
            print(f"  - Min: {tensor.min().item():.4f}  Max: {tensor.max().item():.4f}  Mean: {tensor.mean().item():.4f}")
        except Exception:
            pass
    print("------------------------------------------\n")

add_deps_to_path()
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents
from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent
from api.ltx.inference import (
    create_ltx_video_pipeline,
    create_latent_upsampler,
    load_image_to_tensor_with_resize_and_crop,
    seed_everething,
)

class VideoService:
    def __init__(self):
        t0 = time.perf_counter()
        print("[DEBUG] Inicializando VideoService...")
        self.debug = os.getenv("LTXV_DEBUG", "1") == "1"
        self.frame_log_every = int(os.getenv("LTXV_FRAME_LOG_EVERY", "8"))
        self.config = self._load_config()
        print(f"[DEBUG] Config carregada (precision={self.config.get('precision')}, sampler={self.config.get('sampler')})")
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        print(f"[DEBUG] Device selecionado: {self.device}")
        self.last_memory_reserved_mb = 0.0
        self._tmp_dirs = set(); self._tmp_files = set(); self._last_outputs = []

        self.pipeline, self.latent_upsampler = self._load_models()
        print(f"[DEBUG] Pipeline e Upsampler carregados. Upsampler ativo? {bool(self.latent_upsampler)}")

        print(f"[DEBUG] Movendo modelos para {self.device}...")
        self.pipeline.to(self.device)
        if self.latent_upsampler:
            self.latent_upsampler.to(self.device)

        self._apply_precision_policy()
        print(f"[DEBUG] runtime_autocast_dtype = {getattr(self, 'runtime_autocast_dtype', None)}")

        vae_manager_singleton.attach_pipeline(
            self.pipeline,
            device=self.device,
            autocast_dtype=self.runtime_autocast_dtype
        )
        print(f"[DEBUG] VAE manager conectado: has_vae={hasattr(self.pipeline, 'vae')} device={self.device}")

        if self.device == "cuda":
            torch.cuda.empty_cache()
            self._log_gpu_memory("Após carregar modelos")

        print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s")

    def _log_gpu_memory(self, stage_name: str):
        if self.device != "cuda":
            return
        device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0
        current_reserved_b = torch.cuda.memory_reserved(device_index)
        current_reserved_mb = current_reserved_b / (1024 ** 2)
        total_memory_b = torch.cuda.get_device_properties(device_index).total_memory
        total_memory_mb = total_memory_b / (1024 ** 2)
        peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2)
        delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0)
        processes = _query_gpu_processes_via_nvml(device_index) or _query_gpu_processes_via_nvidiasmi(device_index)
        print(f"\n--- [LOG GPU] {stage_name} (cuda:{device_index}) ---")
        print(f"  - Reservado: {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB  (Δ={delta_mb:+.2f} MB)")
        if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0):
            print(f"  - Pico reservado (nesta fase): {peak_reserved_mb:.2f} MB")
        print(_gpu_process_table(processes, os.getpid()), end="")
        print("--------------------------------------------------\n")
        self.last_memory_reserved_mb = current_reserved_mb

    def _register_tmp_dir(self, d: str):
        if d and os.path.isdir(d):
            self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}")

    def _register_tmp_file(self, f: str):
        if f and os.path.exists(f):
            self._tmp_files.add(f); print(f"[DEBUG] Registrado tmp file: {f}")

    def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
        print("[DEBUG] Finalize: iniciando limpeza...")
        keep = set(keep_paths or []); extras = set(extra_paths or [])
        removed_files = 0
        for f in list(self._tmp_files | extras):
            try:
                if f not in keep and os.path.isfile(f):
                    os.remove(f); removed_files += 1; print(f"[DEBUG] Removido arquivo tmp: {f}")
            except Exception as e:
                print(f"[DEBUG] Falha removendo arquivo {f}: {e}")
            finally:
                self._tmp_files.discard(f)
        removed_dirs = 0
        for d in list(self._tmp_dirs):
            try:
                if d not in keep and os.path.isdir(d):
                    shutil.rmtree(d, ignore_errors=True); removed_dirs += 1; print(f"[DEBUG] Removido diretório tmp: {d}")
            except Exception as e:
                print(f"[DEBUG] Falha removendo diretório {d}: {e}")
            finally:
                self._tmp_dirs.discard(d)
        print(f"[DEBUG] Finalize: arquivos removidos={removed_files}, dirs removidos={removed_dirs}")
        gc.collect()
        try:
            if clear_gpu and torch.cuda.is_available():
                torch.cuda.empty_cache()
                try:
                    torch.cuda.ipc_collect()
                except Exception:
                    pass
        except Exception as e:
            print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}")
        try:
            self._log_gpu_memory("Após finalize")
        except Exception as e:
            print(f"[DEBUG] Log GPU pós-finalize falhou: {e}")

    def _load_config(self):
        base = LTX_VIDEO_REPO_DIR / "configs"
        config_path = base / "ltxv-13b-0.9.8-distilled-fp8.yaml"
        print(f"[DEBUG] Carregando config: {config_path}")
        with open(config_path, "r") as file:
            return yaml.safe_load(file)

    def _load_models(self):
        t0 = time.perf_counter()
        LTX_REPO = "Lightricks/LTX-Video"
        print("[DEBUG] Baixando checkpoint principal...")
        distilled_model_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["checkpoint_path"])
        self.config["checkpoint_path"] = distilled_model_path
        print(f"[DEBUG] Checkpoint em: {distilled_model_path}")

        print("[DEBUG] Baixando upscaler espacial...")
        spatial_upscaler_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["spatial_upscaler_model_path"])
        self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
        print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}")

        print("[DEBUG] Construindo pipeline...")
        pipeline = create_ltx_video_pipeline(
            ckpt_path=self.config["checkpoint_path"],
            precision=self.config["precision"],
            text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
            sampler=self.config["sampler"], device="cpu", enhance_prompt=False,
            prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
            prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
        )
        print("[DEBUG] Pipeline pronto.")

        latent_upsampler = None
        if self.config.get("spatial_upscaler_model_path"):
            print("[DEBUG] Construindo latent_upsampler...")
            latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
            print("[DEBUG] Upsampler pronto.")
        print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s")
        return pipeline, latent_upsampler

    @torch.no_grad()
    def _upsample_latents_internal(self, latents: torch.Tensor) -> torch.Tensor:
        if not self.latent_upsampler:
            raise ValueError("Latent Upsampler não está carregado.")
        self.latent_upsampler.to(self.device)
        self.pipeline.vae.to(self.device)
        print(f"[DEBUG-UPSAMPLE] Shape de entrada: {tuple(latents.shape)}")
        latents_unnormalized = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True)
        upsampled_latents = self.latent_upsampler(latents_unnormalized)
        upsampled_latents_normalized = normalize_latents(upsampled_latents, self.pipeline.vae, vae_per_channel_normalize=True)
        print(f"[DEBUG-UPSAMPLE] Shape de saída: {tuple(upsampled_latents_normalized.shape)}")
        return upsampled_latents_normalized
        
    def _apply_precision_policy(self):
        prec = str(self.config.get("precision", "")).lower()
        self.runtime_autocast_dtype = torch.float32
        print(f"[DEBUG] Aplicando política de precisão: {prec}")
        if prec in ["float8_e4m3fn", "bfloat16"]:
            self.runtime_autocast_dtype = torch.bfloat16
        elif prec == "mixed_precision":
            self.runtime_autocast_dtype = torch.float16

    def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
        print(f"[DEBUG] Carregando condicionamento: {filepath}")
        tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
        tensor = torch.nn.functional.pad(tensor, padding_values)
        out = tensor.to(self.device, dtype=self.runtime_autocast_dtype)
        print(f"[DEBUG] Cond shape={tuple(out.shape)} dtype={out.dtype} device={out.device}")
        return out

    def _concat_mp4s_no_reencode(self, mp4_list: List[str], out_path: str):
        if not mp4_list:
            raise ValueError("A lista de MP4s para concatenar está vazia.")
        if len(mp4_list) == 1:
            shutil.move(mp4_list[0], out_path)
            print(f"[DEBUG] Apenas um vídeo, movido para: {out_path}")
            return
            
        with tempfile.NamedTemporaryFile("w", delete=False, suffix=".txt") as f:
            for mp4 in mp4_list:
                f.write(f"file '{os.path.abspath(mp4)}'\n")
            list_path = f.name
    
        cmd = f"ffmpeg -y -f concat -safe 0 -i {list_path} -c copy {out_path}"
        print(f"[DEBUG] Concat: {cmd}")
    
        try:
            subprocess.check_call(shlex.split(cmd))
        finally:
            os.remove(list_path)

    def _save_and_log_video(self, pixel_tensor, base_filename, fps, temp_dir, results_dir, used_seed, progress_callback=None):
        """Função auxiliar para salvar um tensor de pixels em um arquivo MP4."""
        output_path = os.path.join(temp_dir, f"{base_filename}_{used_seed}.mp4")
        
        video_encode_tool_singleton.save_video_from_tensor(
            pixel_tensor, output_path, fps=fps, progress_callback=progress_callback
        )
        
        final_path = os.path.join(results_dir, f"{base_filename}_{used_seed}.mp4")
        shutil.move(output_path, final_path)
        print(f"[DEBUG] Vídeo salvo em: {final_path}")
        return final_path

    # ==============================================================================
    # --- NOVAS FUNÇÕES MODULARES ---
    # ==============================================================================

    def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int):
        if not items_list:
            return []

        height_padded = ((height - 1) // 8 + 1) * 8
        width_padded = ((width - 1) // 8 + 1) * 8
        padding_values = calculate_padding(height, width, height_padded, width_padded)
        
        conditioning_items = []
        print("\n--- Preparando Itens de Condicionamento ---")
        for item in items_list:
            media, frame, weight = item
            
            if isinstance(media, str): 
                print(f"  - Carregando imagem: {media} para o frame {frame}")
                tensor = self._prepare_conditioning_tensor(media, height, width, padding_values)
            elif isinstance(media, torch.Tensor):
                print(f"  - Usando tensor fornecido para o frame {frame}")
                tensor = media.to(self.device, dtype=self.runtime_autocast_dtype)
            else:
                warnings.warn(f"Tipo de item desconhecido: {type(media)}. Ignorando.")
                continue

            safe_frame = max(0, min(int(frame), num_frames - 1))
            conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))

        print(f"Total de itens de condicionamento preparados: {len(conditioning_items)}")
        return conditioning_items

    def generate_low(self, prompt, negative_prompt, height, width, duration, guidance_scale, seed, conditioning_items=None):
        print("\n--- INICIANDO ETAPA 1: GERAÇÃO EM BAIXA RESOLUÇÃO ---")
        self._log_gpu_memory("Início da Geração Low-Res")
        
        used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
        seed_everething(used_seed)
        
        FPS = 24.0
        target_frames = round(duration * FPS)
        actual_num_frames = max(9, int(round((target_frames - 1) / 8.0) * 8 + 1))
        
        height_padded = ((height - 1) // 8 + 1) * 8
        width_padded = ((width - 1) // 8 + 1) * 8
        generator = torch.Generator(device=self.device).manual_seed(used_seed)
        
        temp_dir = tempfile.mkdtemp(prefix="ltxv_low_"); self._register_tmp_dir(temp_dir)
        results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
        
        downscale_factor = self.config.get("downscale_factor", 0.6666666)
        vae_scale_factor = self.pipeline.vae_scale_factor


        # --- <INÍCIO DA LÓGICA DE CÁLCULO EXATA> ---
        # Replica a fórmula da LTXMultiScalePipeline
        x_width = int(width_padded * downscale_factor)
        downscaled_width = x_width - (x_width % vae_scale_factor)
        x_height = int(height_padded * downscale_factor)
        downscaled_height = x_height - (x_height % vae_scale_factor)
        print(f"[DEBUG] First Pass Dims: Original Pad ({width_padded}x{height_padded}) -> Downscaled ({downscaled_width}x{downscaled_height})")
        # --- <FIM DA LÓGICA DE CÁLCULO EXATA> ---

        first_pass_kwargs = {
            "prompt": prompt, "negative_prompt": negative_prompt, "height": downscaled_height, "width": downscaled_width,
            "num_frames": actual_num_frames, "frame_rate": int(FPS), "generator": generator, "output_type": "latent",
            "conditioning_items": conditioning_items, "guidance_scale": float(guidance_scale),
            **(self.config.get("first_pass", {}))
        }

        with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'):
            latents = self.pipeline(**first_pass_kwargs).images
            log_tensor_info(latents, "Latentes Low-Res Gerados")

            pixel_tensor = vae_manager_singleton.decode(latents.clone(), decode_timestep=float(self.config.get("decode_timestep", 0.05)))
            video_path = self._save_and_log_video(pixel_tensor, "low_res_video", FPS, temp_dir, results_dir, used_seed)
            del pixel_tensor

            latents_cpu = latents.detach().to("cpu")
            tensor_path = os.path.join(results_dir, f"latents_low_res_{used_seed}.pt")
            torch.save(latents_cpu, tensor_path)
            print(f"[DEBUG] Tensor latente de baixa resolução salvo em: {tensor_path}")
        
        self._log_gpu_memory("Fim da Geração Low-Res")
        return video_path, tensor_path, used_seed

    def generate_upscale_denoise(self, latents_path, prompt, negative_prompt, guidance_scale, seed):
        print("\n--- INICIANDO ETAPA 2: UPSCALE E REFINAMENTO ---")
        self._log_gpu_memory("Início do Upscale/Denoise")

        used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
        seed_everething(used_seed)

        temp_dir = tempfile.mkdtemp(prefix="ltxv_up_"); self._register_tmp_dir(temp_dir)
        results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
        
        latents_low = torch.load(latents_path).to(self.device)
        log_tensor_info(latents_low, "Latentes Low-Res Carregados")
        
        with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'):
            upsampled_latents = self._upsample_latents_internal(latents_low)
            upsampled_latents = adain_filter_latent(latents=upsampled_latents, reference_latents=latents_low)
            del latents_low; torch.cuda.empty_cache()
            
            total_frames = upsampled_latents.shape[2]
            mid_point = total_frames // 2
            chunk1 = upsampled_latents[:, :, :mid_point, :, :]
            chunk2 = upsampled_latents[:, :, mid_point:, :, :]
            
            final_latents_list = []
            
            for i, chunk in enumerate([chunk1, chunk2]):
                if chunk.shape[2] == 0: continue
                print(f"  - Refinando chunk {i+1}/{2} com {chunk.shape[2]} frames")
                second_pass_height = chunk.shape[3] * self.pipeline.vae_scale_factor
                second_pass_width = chunk.shape[4] * self.pipeline.vae_scale_factor

                second_pass_kwargs = {
                    "prompt": prompt, "negative_prompt": negative_prompt, "height": second_pass_height, "width": second_pass_width,
                    "num_frames": chunk.shape[2], "latents": chunk, "guidance_scale": float(guidance_scale),
                    "output_type": "latent", "generator": torch.Generator(device=self.device).manual_seed(used_seed),
                    **(self.config.get("second_pass", {}))
                }
                
                refined_chunk = self.pipeline(**second_pass_kwargs).images
                final_latents_list.append(refined_chunk.detach().clone())
            
            del upsampled_latents, chunk1, chunk2; torch.cuda.empty_cache()

            final_latents = torch.cat(final_latents_list, dim=2)
            log_tensor_info(final_latents, "Latentes Upscaled/Refinados Finais")

            latents_cpu = final_latents.detach().to("cpu")
            tensor_path = os.path.join(results_dir, f"latents_refined_{used_seed}.pt")
            torch.save(latents_cpu, tensor_path)
            
            pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05)))
            video_path = self._save_and_log_video(pixel_tensor, "refined_video", 24.0, temp_dir, results_dir, used_seed)
            del pixel_tensor, final_latents

        self._log_gpu_memory("Fim do Upscale/Denoise")
        return video_path, tensor_path

    def encode_mp4(self, latents_path: str, fps: int = 24):
        print("\n--- INICIANDO ETAPA 3: DECODIFICAÇÃO FINAL ---")
        self._log_gpu_memory("Início do Encode MP4")

        latents = torch.load(latents_path)
        seed = random.randint(0, 99999)
        temp_dir = tempfile.mkdtemp(prefix="ltxv_enc_"); self._register_tmp_dir(temp_dir)
        results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
        
        total_frames = latents.shape[2]
        mid_point = total_frames // 2
        chunk1_latents = latents[:, :, :mid_point, :, :]
        chunk2_latents = latents[:, :, mid_point:, :, :]
        
        video_parts = []
        with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'):
            for i, chunk in enumerate([chunk1_latents, chunk2_latents]):
                if chunk.shape[2] == 0: continue
                print(f"  - Decodificando chunk {i+1}/{2}")
                pixel_chunk = vae_manager_singleton.decode(chunk.to(self.device), decode_timestep=float(self.config.get("decode_timestep", 0.05)))
                
                part_path = os.path.join(temp_dir, f"part_{i}.mp4")
                video_encode_tool_singleton.save_video_from_tensor(pixel_chunk, part_path, fps=fps)
                video_parts.append(part_path)
                del pixel_chunk; torch.cuda.empty_cache()
        
        final_video_path = os.path.join(results_dir, f"final_concatenated_{seed}.mp4")
        self._concat_mp4s_no_reencode(video_parts, final_video_path)
        
        print(f"Encode final concluído: {final_video_path}")
        self._log_gpu_memory("Fim do Encode MP4")
        return final_video_path

# --- INSTANCIAÇÃO DO SERVIÇO ---
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
video_generation_service = VideoService()
print("Instância do VideoService pronta para uso.")