Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 5 |
+
import json
|
| 6 |
+
import os
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
import time
|
| 9 |
+
|
| 10 |
+
# --- Configuration ---
|
| 11 |
+
QA_FILE = "qa.txt"
|
| 12 |
+
RESULTS_FILE = "Eval_results.jsonl"
|
| 13 |
+
JUDGE_MODEL_REPO = "google/flan-t5-base" # A capable but relatively small model for judging
|
| 14 |
+
|
| 15 |
+
# --- Setup: Ensure files exist ---
|
| 16 |
+
if not os.path.exists(RESULTS_FILE):
|
| 17 |
+
with open(RESULTS_FILE, "w") as f:
|
| 18 |
+
pass # Create an empty file if it doesn't exist
|
| 19 |
+
|
| 20 |
+
if not os.path.exists(QA_FILE):
|
| 21 |
+
# Create a dummy qa.txt if it's missing, with a few example questions
|
| 22 |
+
dummy_data = """ID,Question_Type,Question,Golden_Answer_Summary
|
| 23 |
+
1,Code,"Create a Python function that implements the Bubble Sort algorithm.","The function should take a list, use nested loops to compare adjacent elements, and swap them if they are in the wrong order. The outer loop runs n times, and the inner loop runs n-i-1 times."
|
| 24 |
+
2,Common Chat,"What is the capital of France?","The answer must be Paris."
|
| 25 |
+
3,Advanced Code,"Write a Python script that connects to a public FTP server, lists the files in the root directory, and then disconnects.","The script must import the `ftplib` library. It should create an FTP object, for example `FTP('ftp.dlptest.com')`, call the `login()` method, then `retrlines('LIST')` to print the directory listing, and finally `quit()` to close the connection."
|
| 26 |
+
"""
|
| 27 |
+
with open(QA_FILE, "w") as f:
|
| 28 |
+
f.write(dummy_data)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
# --- AI Judge Logic ---
|
| 32 |
+
def get_ai_judge_verdict(judge_pipeline, question, golden_summary, ai_answer):
|
| 33 |
+
"""
|
| 34 |
+
Uses the AI Judge model to give a verdict on the tested model's answer.
|
| 35 |
+
"""
|
| 36 |
+
system_instruction = f"""
|
| 37 |
+
You are an expert evaluator for an AI model benchmark. Your task is to determine if the AI's answer is a correct and satisfactory response to the user's question. You must only respond with a single character: '1' for a correct/passing answer, or '0' for an incorrect/failing answer.
|
| 38 |
+
|
| 39 |
+
A '1' means the AI's answer correctly addresses the main components of the question and is similar in spirit to the expected golden answer summary.
|
| 40 |
+
A '0' means the AI's answer is factually wrong, does not address the question, is a refusal to answer, or is fundamentally incomplete.
|
| 41 |
+
|
| 42 |
+
---
|
| 43 |
+
User Question:
|
| 44 |
+
{question}
|
| 45 |
+
|
| 46 |
+
Expected Golden Answer Summary:
|
| 47 |
+
{golden_summary}
|
| 48 |
+
|
| 49 |
+
---
|
| 50 |
+
AI Model's Answer:
|
| 51 |
+
{ai_answer}
|
| 52 |
+
---
|
| 53 |
+
|
| 54 |
+
Based on this, is the AI Model's Answer correct? Respond with only '1' or '0'.
|
| 55 |
+
"""
|
| 56 |
+
try:
|
| 57 |
+
response = judge_pipeline(system_instruction, max_new_tokens=5)
|
| 58 |
+
# Extract the generated text and clean it up
|
| 59 |
+
verdict = response[0]['generated_text'].strip()
|
| 60 |
+
# Ensure the verdict is either '1' or '0'
|
| 61 |
+
if '1' in verdict:
|
| 62 |
+
return 1
|
| 63 |
+
else:
|
| 64 |
+
return 0
|
| 65 |
+
except Exception:
|
| 66 |
+
# If the judge fails for any reason, default to a failing grade
|
| 67 |
+
return 0
|
| 68 |
+
|
| 69 |
+
# --- Core Evaluation Logic ---
|
| 70 |
+
def run_evaluation(model_repo, model_nickname, progress=gr.Progress()):
|
| 71 |
+
"""
|
| 72 |
+
Loads a user-specified model, runs it against the benchmark, evaluates the answers
|
| 73 |
+
using an AI judge, and saves the results.
|
| 74 |
+
"""
|
| 75 |
+
if not model_repo or not model_nickname:
|
| 76 |
+
gr.Warning("Model Repository and Nickname cannot be empty.")
|
| 77 |
+
return pd.DataFrame(), None
|
| 78 |
+
|
| 79 |
+
# Load benchmark questions
|
| 80 |
+
try:
|
| 81 |
+
questions_df = pd.read_csv(QA_FILE)
|
| 82 |
+
# Use a small subset for quick demos if needed
|
| 83 |
+
# questions_df = questions_df.head(3)
|
| 84 |
+
except Exception as e:
|
| 85 |
+
gr.Error(f"Failed to load benchmark questions from {QA_FILE}: {e}")
|
| 86 |
+
return pd.DataFrame(), None
|
| 87 |
+
|
| 88 |
+
# --- Load Models ---
|
| 89 |
+
progress(0, desc="Loading AI Judge Model...")
|
| 90 |
+
try:
|
| 91 |
+
judge_pipeline = pipeline("text2text-generation", model=JUDGE_MODEL_REPO, device_map="auto", torch_dtype=torch.bfloat16)
|
| 92 |
+
except Exception as e:
|
| 93 |
+
gr.Error(f"Failed to load AI Judge model '{JUDGE_MODEL_REPO}': {e}")
|
| 94 |
+
return pd.DataFrame(), None
|
| 95 |
+
|
| 96 |
+
progress(0.1, desc=f"Loading test model: {model_repo}")
|
| 97 |
+
try:
|
| 98 |
+
model_to_test_tokenizer = AutoTokenizer.from_pretrained(model_repo)
|
| 99 |
+
model_to_test = AutoModelForCausalLM.from_pretrained(
|
| 100 |
+
model_repo,
|
| 101 |
+
device_map="auto",
|
| 102 |
+
torch_dtype=torch.bfloat16 # bfloat16 is good for ZeroGPU
|
| 103 |
+
)
|
| 104 |
+
test_pipeline = pipeline(
|
| 105 |
+
"text-generation",
|
| 106 |
+
model=model_to_test,
|
| 107 |
+
tokenizer=model_to_test_tokenizer,
|
| 108 |
+
max_new_tokens=1024, # Set a reasonable limit for code generation
|
| 109 |
+
do_sample=True,
|
| 110 |
+
temperature=0.7,
|
| 111 |
+
top_p=0.95
|
| 112 |
+
)
|
| 113 |
+
except Exception as e:
|
| 114 |
+
gr.Error(f"Failed to load the specified test model '{model_repo}': {e}")
|
| 115 |
+
return pd.DataFrame(), None
|
| 116 |
+
|
| 117 |
+
# --- Run Benchmark Loop ---
|
| 118 |
+
detailed_results = []
|
| 119 |
+
total_score = 0
|
| 120 |
+
total_questions = len(questions_df)
|
| 121 |
+
|
| 122 |
+
for i, row in enumerate(questions_df.itertuples()):
|
| 123 |
+
progress_val = 0.1 + (0.8 * (i / total_questions))
|
| 124 |
+
progress(progress_val, desc=f"Running Q{row.ID}/{total_questions}")
|
| 125 |
+
|
| 126 |
+
# Generate answer from the model being tested
|
| 127 |
+
try:
|
| 128 |
+
prompt = f"Question: {row.Question}\n\nAnswer:"
|
| 129 |
+
response = test_pipeline(prompt)
|
| 130 |
+
ai_answer = response[0]['generated_text'].replace(prompt, "").strip()
|
| 131 |
+
except Exception as e:
|
| 132 |
+
ai_answer = f"Error during generation: {e}"
|
| 133 |
+
|
| 134 |
+
# Get verdict from the AI Judge
|
| 135 |
+
score = get_ai_judge_verdict(judge_pipeline, row.Question, row.Golden_Answer_Summary, ai_answer)
|
| 136 |
+
total_score += score
|
| 137 |
+
|
| 138 |
+
detailed_results.append({
|
| 139 |
+
"ID": row.ID,
|
| 140 |
+
"Question": row.Question,
|
| 141 |
+
"AI_Answer": ai_answer,
|
| 142 |
+
"Score": score
|
| 143 |
+
})
|
| 144 |
+
time.sleep(0.1) # Small delay to allow UI to update
|
| 145 |
+
|
| 146 |
+
# --- Finalize and Save Results ---
|
| 147 |
+
progress(0.95, desc="Finalizing and saving...")
|
| 148 |
+
final_score_percent = (total_score / total_questions) * 100 if total_questions > 0 else 0
|
| 149 |
+
|
| 150 |
+
run_summary = {
|
| 151 |
+
"model_nickname": model_nickname,
|
| 152 |
+
"model_repo": model_repo,
|
| 153 |
+
"score_percent": round(final_score_percent, 2),
|
| 154 |
+
"timestamp": datetime.utcnow().isoformat(),
|
| 155 |
+
"detailed_results": detailed_results
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
try:
|
| 159 |
+
with open(RESULTS_FILE, "a") as f:
|
| 160 |
+
f.write(json.dumps(run_summary) + "\n")
|
| 161 |
+
except Exception as e:
|
| 162 |
+
gr.Warning(f"Could not save results to {RESULTS_FILE}: {e}")
|
| 163 |
+
|
| 164 |
+
progress(1, desc="Evaluation Complete!")
|
| 165 |
+
return pd.DataFrame(detailed_results), gr.Markdown(f"**Overall Score: {final_score_percent:.2f}%**")
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
# --- Leaderboard Logic ---
|
| 169 |
+
def load_leaderboard():
|
| 170 |
+
"""
|
| 171 |
+
Loads and displays the leaderboard from the results file.
|
| 172 |
+
"""
|
| 173 |
+
if not os.path.exists(RESULTS_FILE) or os.path.getsize(RESULTS_FILE) == 0:
|
| 174 |
+
return pd.DataFrame(columns=["Rank", "Model Nickname", "Score (%)", "Date"])
|
| 175 |
+
|
| 176 |
+
results_data = []
|
| 177 |
+
with open(RESULTS_FILE, "r") as f:
|
| 178 |
+
for line in f:
|
| 179 |
+
try:
|
| 180 |
+
data = json.loads(line)
|
| 181 |
+
results_data.append({
|
| 182 |
+
"Model Nickname": data.get("model_nickname"),
|
| 183 |
+
"Score (%)": data.get("score_percent"),
|
| 184 |
+
"Model Repo": data.get("model_repo"),
|
| 185 |
+
"Date": datetime.fromisoformat(data.get("timestamp")).strftime('%Y-%m-%d %H:%M:%S')
|
| 186 |
+
})
|
| 187 |
+
except (json.JSONDecodeError, KeyError):
|
| 188 |
+
# Skip corrupted or malformed lines
|
| 189 |
+
continue
|
| 190 |
+
|
| 191 |
+
if not results_data:
|
| 192 |
+
return pd.DataFrame(columns=["Rank", "Model Nickname", "Score (%)", "Date"])
|
| 193 |
+
|
| 194 |
+
leaderboard_df = pd.DataFrame(results_data)
|
| 195 |
+
leaderboard_df = leaderboard_df.sort_values(by="Score (%)", ascending=False).reset_index(drop=True)
|
| 196 |
+
leaderboard_df["Rank"] = leaderboard_df.index + 1
|
| 197 |
+
|
| 198 |
+
# Reorder columns for display
|
| 199 |
+
leaderboard_df = leaderboard_df[["Rank", "Model Nickname", "Score (%)", "Date", "Model Repo"]]
|
| 200 |
+
return leaderboard_df
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
# --- Gradio UI ---
|
| 204 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="NPFL Benchmark") as demo:
|
| 205 |
+
gr.Markdown("# NPFL (No Placeholders, Full Logic) AI Benchmark")
|
| 206 |
+
|
| 207 |
+
with gr.Tabs():
|
| 208 |
+
with gr.TabItem("Run Evaluation"):
|
| 209 |
+
with gr.Row():
|
| 210 |
+
with gr.Column(scale=2):
|
| 211 |
+
model_repo_input = gr.Textbox(
|
| 212 |
+
label="Hugging Face Model Repository",
|
| 213 |
+
placeholder="e.g., google/gemma-2b-it",
|
| 214 |
+
info="The model to be tested. Must be compatible with the text-generation pipeline."
|
| 215 |
+
)
|
| 216 |
+
model_nickname_input = gr.Textbox(
|
| 217 |
+
label="Model Nickname",
|
| 218 |
+
placeholder="e.g., Gemma-2B-v1",
|
| 219 |
+
info="A unique name to display on the leaderboard."
|
| 220 |
+
)
|
| 221 |
+
run_button = gr.Button("Start Evaluation", variant="primary")
|
| 222 |
+
with gr.Column(scale=1):
|
| 223 |
+
final_score_output = gr.Markdown("**Overall Score: --**")
|
| 224 |
+
|
| 225 |
+
gr.Markdown("---")
|
| 226 |
+
gr.Markdown("### Detailed Run Results")
|
| 227 |
+
results_output = gr.DataFrame(
|
| 228 |
+
headers=["ID", "Question", "AI_Answer", "Score"],
|
| 229 |
+
wrap=True,
|
| 230 |
+
height=600
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
with gr.TabItem("Leaderboard"):
|
| 234 |
+
leaderboard_refresh_button = gr.Button("Refresh Leaderboard")
|
| 235 |
+
leaderboard_output = gr.DataFrame(
|
| 236 |
+
headers=["Rank", "Model Nickname", "Score (%)", "Date", "Model Repo"],
|
| 237 |
+
wrap=True,
|
| 238 |
+
height=700
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
# --- Event Handlers ---
|
| 242 |
+
run_button.click(
|
| 243 |
+
fn=run_evaluation,
|
| 244 |
+
inputs=[model_repo_input, model_nickname_input],
|
| 245 |
+
outputs=[results_output, final_score_output]
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
leaderboard_refresh_button.click(
|
| 249 |
+
fn=load_leaderboard,
|
| 250 |
+
inputs=[],
|
| 251 |
+
outputs=[leaderboard_output]
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
# Load leaderboard once on startup
|
| 255 |
+
demo.load(load_leaderboard, None, leaderboard_output)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
if __name__ == "__main__":
|
| 259 |
+
demo.launch(debug=True)
|