Spaces:
Running
Running
| from transformers import AutoProcessor, Gemma3nForConditionalGeneration | |
| from PIL import Image | |
| import requests | |
| import torch | |
| model_id = "google/gemma-3n-e2b-it" | |
| model = Gemma3nForConditionalGeneration.from_pretrained(model_id, device="cuda", torch_dtype=torch.bfloat16,).eval() | |
| processor = AutoProcessor.from_pretrained(model_id) | |
| messages = [ | |
| { | |
| "role": "system", | |
| "content": [{"type": "text", "text": "You are a helpful assistant."}] | |
| }, | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"}, | |
| {"type": "text", "text": "Describe this image in detail."} | |
| ] | |
| } | |
| ] | |
| inputs = processor.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| tokenize=True, | |
| return_dict=True, | |
| return_tensors="pt", | |
| ).to(model.device, dtype=torch.bfloat16) | |
| input_len = inputs["input_ids"].shape[-1] | |
| with torch.inference_mode(): | |
| generation = model.generate(**inputs, max_new_tokens=100, do_sample=False) | |
| generation = generation[0][input_len:] | |
| decoded = processor.decode(generation, skip_special_tokens=True) | |
| print(decoded) | |
| # **Overall Impression:** The image is a close-up shot of a vibrant garden scene, | |
| # focusing on a cluster of pink cosmos flowers and a busy bumblebee. | |
| # It has a slightly soft, natural feel, likely captured in daylight. | |